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摘要：多智能体系统的分布式协同定位是系统执行诸多复杂协同任务的关键环节。分布式协同定位方法

旨在使各智能体利用相对空间测量信息与锚智能体位置信息，通过结合分布式的网络通信，计算自身在

全局坐标系下的位置。本文针对多智能体系统分布式协同定位方法的研究进展进行详细总结。首先，根

据相对空间测量信息的类型，将现有分布式协同定位方法分为如下三类：基于距离测量信息、基于方位

测量信息、以及基于混合测量信息的分布式协同定位方法。进而，通过描述测量信息与智能体位置之间

的约束关系，对上述分布式协同定位方法的设计方案进行详细阐述，并比较现有方法的优缺点。此外，

本文针对带有恶意测量信息的多智能体系统，介绍了可靠分布式协同定位方法的研究现状。最后，本文

对多智能体系统分布式协同定位方法存在的问题进行了归纳总结，并提出了一些可能的解决方向。 
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0   引言 

随着自动控制、计算机、人工智能等领域的飞速发展，实际生产制造与理论研究中所聚焦的对象逐

渐从简单的、独立的单点系统过渡到智能的、协同的多元系统。为此，国内外专家学者提出了“多智能

体系统”这一重要概念。多智能体系统是由一群具备感知、通信、计算与执行能力的智能体通过通信关
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联形成的一类信息物理系统，所有智能体利用网络的信息交互，结合自我感知与智能决策，完成单一智

能体难以独自完成的协同任务，如无人机群的编队、水下机器人集群的环境勘探、智能弹群的协同打击、

多机器人的地理探测等。值得注意的是，在多智能体系统执行协同任务的过程中，智能体的位置信息通

常是必不可少的[1,2]，只有位置信息确定，系统才可以执行完整的动作指令。因此，多智能体系统的协同

定位是为多智能体系统提供自主与协同能力的一个关键核心问题。 

目前，基于分布式框架的协同定位方法得到了国内外专家学者的高度重视。该类方法通常利用多个

锚智能体（位置信息已知的智能体称为锚智能体）的位置信息、以及各智能体测量到与邻居智能体的相

对信息（如方位信息或距离信息），同时结合智能体间的网络通信与各智能体自身的优化决策来完成待

定智能体的定位任务，如图 1−1 所示。相对于集中式定位方法而言，分布式定位方法不需要中心平台对

所有智能体进行部署，各智能体仅需与局部邻居智能体进行协作，并结合自身的优化决策，便可完成规

定的定位任务。因此该类方法有计算效率高、可行性强等优点。鉴于上述优点，分布式定位方法在多智

能体系统协同定位中占有重要地位。根据相对空间测量信息的类型，分布式协同定位方法可分为如下三

类：基于距离测量信息、基于方位测量信息以及基于混合测量信息的分布式协同定位方法。 

无无人人机机群群编编队队 水水下下机机器器人人集集群群环环境境勘勘探探

智智能能弹弹群群协协同同打打击击 多多机机器器人人地地理理探探测测
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图 1-1 多智能体系统协同定位的基本框架以及一些应用场景（部分图片来源于网络） 

另一方面，多智能体系统所处的外部环境往往是非常复杂的，这将为具有破坏性的恶意攻击者提供

机会使其对多智能体系统的可靠性造成威胁。特别地，考虑到分布式定位是多智能体系统实现诸多复杂

协同任务的关键环节，因此系统在进行定位的过程中更容易受到攻击者的针对。攻击者的目的通常是篡

改智能体配备的传感器的测量信息，以使待定智能体的定位结果出错。这类被篡改的测量信息称为恶意

测量信息。一旦定位结果出错，系统的进一步动作将会受到极大的阻碍，最终造成意想不到的损失。因

此，在多智能体系统带有恶意测量信息的情况下，保证分布式定位的可靠性是十分必要的。 
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针对上述研究背景，本文将围绕多智能体系统协同定位问题，从以下四个方面对现有的研究工作进

行回顾：基于距离的协同定位方法、基于方位的协同定位方法、基于混合测量信息的协同定位方法以及

恶意测量信息存在下可靠协同定位方法。 

1 基于距离的协同定位方法 

基于距离的协同定位方法是协同定位技术的重要分支，其核心思想是待定智能体利用距离测量信息

与锚智能体位置信息，通过分布式通信与邻居智能体交换距离数据，计算自身在全局坐标系下的位置。

本章将对基于距离的协同定位方法进行详细介绍。 

考虑𝑅𝑅𝑚𝑚(𝑚𝑚 ≥ 1)空间中的一组智能体，其中包括𝑚𝑚 + 1个位置已知的锚智能体，与𝑀𝑀个位置待定的

智能体。各智能体仅与它们的邻居交换数据；不存在集中式的数据处理或通信，也没有集中式的融合中

心来计算位置。DILOC 算法[3]使用智能体相对于其邻居的重心坐标；这些坐标通过 Cayley–Menger 行列

式（即智能体间距离矩阵的行列式）计算。 

设𝛩𝛩为网络中的智能体集合，可分解为 

                                                                            𝛩𝛩 = 𝜅𝜅 ∪ 𝛺𝛺,                                                                           (1)  

其中𝜅𝜅为锚智能体的集合，也就是那些位置已知的智能体，而𝛺𝛺是待测智能体的集合，其位置有待确定。

设𝑐𝑐𝑙𝑙为智能体𝑙𝑙 ∈ 𝛩𝛩在全局坐标系下的𝑚𝑚维坐标向量，写成𝑚𝑚维行向量的形式为 

                                                                    𝑐𝑐𝑙𝑙 = [𝑐𝑐𝑙𝑙,1, 𝑐𝑐𝑙𝑙,2, … , 𝑐𝑐𝑙𝑙,𝑚𝑚].                                                              (2)  

智能体𝑙𝑙的真实位置由𝑐𝑐𝑙𝑙
∗表示。由于分布式定位算法DILOC是迭代算法，𝑐𝑐𝑙𝑙(𝑡𝑡)将表示智能体𝑙𝑙在第𝑡𝑡次

迭代时的估计位置向量，或者说状态。更新公式具体如下 

                                                 𝑐𝑐𝑙𝑙(𝑡𝑡 + 1) = {
𝑐𝑐𝑙𝑙(𝑡𝑡), 𝑙𝑙 ∈ 𝜅𝜅,

∑ 𝑎𝑎𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘(𝑡𝑡)
𝑘𝑘∈𝛩𝛩𝑙𝑙

, 𝑙𝑙 ∈ 𝛺𝛺.                                             (3)  

其中𝑎𝑎𝑙𝑙𝑙𝑙是智能体𝑙𝑙相对于集合𝛩𝛩𝑙𝑙中智能体𝑘𝑘的重心坐标。将式（3）写为矩阵的形式 

                                                                    𝑪𝑪(𝑡𝑡 + 1) = 𝜰𝜰𝑪𝑪(𝑡𝑡),                                                                     (4)  

其中的𝜰𝜰表示的是迭代矩阵，表达式如下 

                                                                     𝚼𝚼 = [𝑰𝑰𝑚𝑚+1 𝟎𝟎
𝑩𝑩 𝑷𝑷],                                                                        (5)  
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其中𝐵𝐵 = {𝑏𝑏𝑙𝑙𝑙𝑙}是𝑀𝑀 × (𝑚𝑚 + 1)的块矩阵，其非零元素对应自由智能体与锚智能体之间的连接权重；

𝑃𝑃 = {𝑝𝑝𝑙𝑙𝑙𝑙}是𝑀𝑀 × 𝑀𝑀的块矩阵，其非零元素对应自由智能体与其他自由智能体之间的连接权重。通过将

DILOC 算法与一个吸收马尔可夫链相关联，证明了算法的收敛性，其中吸收状态为锚智能体的状态。 

注意到，上述算法要求所有待定位智能体必须位于锚智能体构成的凸包内部，且每个非锚智能体需

位于其三个邻居智能体构成的三角形内部，如图 2–1 所示。这一假设在实际智能体网络中往往难以满

足，尤其是在大规模或随机部署的场景中（如锚智能体不在网络边界、邻居智能体分布不规则等）。文

献[4]通过广义重心坐标放宽凸包假设、支持任意部署场景，包括智能体位于邻居凸包外的情形。下面进

行简要介绍。 

 

图 2-1 DILOC 算法要求所有待定位智能体必须位于锚智能体构成的凸包内部[4]。 

该图例中，待定位智能体 4、5、6、7 在锚智能体 1、2、3 构成凸包的内部。 

假设现有一个由 n 个智能体组成的网络，不失一般性，假设存在三个锚智能体，其坐标表示为

𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3 ∈ ℝ1×2。将其他智能体的坐标记为𝑝𝑝4, … , 𝑝𝑝𝑛𝑛 ∈ ℝ1×2。如果为每个智能体（锚智能体除外）找到

了相对于其他一些智能体的重心表示，那么对于整个网络，有如下描述位置与距离测量信息的约束方程： 

                                                                      [𝑝𝑝𝑎𝑎
𝑝𝑝𝑠𝑠

] = [𝐼𝐼3 0
𝐵𝐵 𝐶𝐶] [𝑝𝑝𝑎𝑎

𝑝𝑝∗
].                                                              (6)  

𝑝𝑝𝑎𝑎为锚智能体坐标矩阵，𝑝𝑝𝑎𝑎 = [𝑝𝑝1 𝑝𝑝2 𝑝𝑝3]𝑇𝑇，𝑝𝑝𝑠𝑠为待定位智能体坐标矩阵，𝑝𝑝𝑠𝑠 = [𝑝𝑝4 … 𝑝𝑝𝑛𝑛]𝑇𝑇，

且[𝐵𝐵 𝐶𝐶]中每行的非零元素是对应行智能体的重心坐标，其中𝐵𝐵为关联锚智能体，𝐶𝐶为关联其他自由智能

体。等效地，上式可以写成 

                                                                        𝑝𝑝𝑠𝑠 = 𝐶𝐶𝑝𝑝𝑠𝑠 + 𝐵𝐵𝑝𝑝𝑎𝑎.                                                                   (7)  

DILOC 算法计算坐标的迭代形式为 
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                                                          𝑝̂𝑝𝑠𝑠(𝑡𝑡 + 1) = 𝐶𝐶𝑝̂𝑝𝑠𝑠(𝑡𝑡) + 𝐵𝐵𝑝𝑝𝑎𝑎.                                                              (8)  

在文献[4]中通过求解广义坐标打破 DILOC 的限制，具体的计算公式如下 

                                                                       𝑎𝑎𝑙𝑙𝑙𝑙 = 1
𝑚𝑚 ∑  

𝑚𝑚

𝑟𝑟=1
𝑎𝑎𝑙𝑙𝑙𝑙

(𝑟𝑟),                                                                    (9)  

其中𝑎𝑎𝑙𝑙𝑙𝑙
(𝑟𝑟)

是智能体𝑙𝑙对第𝑟𝑟个邻居的局部重心坐标，通过有符号面积比计算 

                                                𝑎𝑎𝑙𝑙𝑙𝑙
(𝑟𝑟) =

𝑆𝑆Δ𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆Δ𝑖𝑖𝑖𝑖𝑖𝑖

, 𝑎𝑎𝑙𝑙𝑙𝑙
(𝑟𝑟) = 𝑆𝑆Δ𝑙𝑙𝑙𝑙𝑙𝑙

𝑆𝑆Δ𝑖𝑖𝑖𝑖𝑖𝑖
, 𝑎𝑎𝑙𝑙𝑙𝑙

(𝑟𝑟) =
𝑆𝑆Δ𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆Δ𝑖𝑖𝑖𝑖𝑖𝑖

.                                                (10)  

𝑆𝑆Δ可以用 Cayley-Menger 行列式求解 

                                                        𝑆𝑆Δ𝑖𝑖𝑖𝑖𝑖𝑖
2 = − 1

16 ||

0 1 1 1
1 0 𝑑𝑑𝑖𝑖𝑖𝑖

2 𝑑𝑑𝑖𝑖𝑖𝑖
2

1 𝑑𝑑𝑗𝑗𝑗𝑗
2 0 𝑑𝑑𝑗𝑗𝑗𝑗

2

1 𝑑𝑑𝑘𝑘𝑘𝑘
2 𝑑𝑑𝑘𝑘𝑘𝑘

2 0
||.                                                 (11)  

另外文献[5]还针对广义重心坐标可能导致迭代矩阵不稳定、即式(8)会发散的情况，提出了扩展坐标计算

方案（ECHO），通过引入缩放参数和 Richardson 迭代确保全局收敛性，解决了 DILOC 的严格几何限制，

扩展了算法在复杂部署中的适用性，并提供了更强的理论保证。 

设𝑀𝑀 = 𝐼𝐼 − 𝐶𝐶，将式(7)整理为 

                                                                             𝑀𝑀𝑝𝑝𝑠𝑠 = 𝐵𝐵𝑝𝑝𝑎𝑎.                                                                 (12)  

将矩阵𝜖𝜖𝑀𝑀𝑇𝑇乘以上述等式的两边，得到 

                                                                   𝜖𝜖𝑀𝑀𝑇𝑇𝑀𝑀𝑝𝑝𝑠𝑠 = 𝜖𝜖𝑀𝑀𝑇𝑇𝐵𝐵𝑝𝑝𝑎𝑎.                                                          (13)  

再通过 Richardson 迭代法从式(13)求解𝑝𝑝𝑠𝑠 

                                                          𝑝̂𝑝𝑠𝑠(𝑡𝑡 + 1) = (𝐼𝐼 − 𝜖𝜖𝑀𝑀𝑇𝑇𝑀𝑀)𝑝̂𝑝𝑠𝑠(𝑡𝑡) + 𝜖𝜖𝑀𝑀𝑇𝑇𝐵𝐵𝑝𝑝𝑎𝑎.                           (14)  

ECHO 通过以下两步交替更新实现分布式计算 

                          {𝜂𝜂(2𝑡𝑡 + 1) = 𝑀𝑀𝑝̂𝑝𝑠𝑠(2𝑡𝑡) − 𝐵𝐵𝑝𝑝𝑎𝑎,
𝑝̂𝑝𝑠𝑠(2𝑡𝑡 + 2) = 𝑝̂𝑝𝑠𝑠(2𝑡𝑡) − 𝜖𝜖𝑀𝑀𝑇𝑇𝜂𝜂(2𝑡𝑡 + 1).                                       (15)  
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通过理论证明，文献[4]得出结论：由式（15）算法生成的位置估计变量收敛至相应智能体的真实位置，

从而完成协同定位任务。 

2 基于方位的协同定位方法 

在ℝ𝑑𝑑空间中的网络𝑔𝑔(𝑝𝑝)环境下，基于方位的网络定位是在已知锚智能体位置({𝑝𝑝𝑖𝑖}𝑖𝑖∈𝑉𝑉𝑎𝑎)以及邻居智能

体的方位({𝑔𝑔𝑖𝑖𝑖𝑖}(𝑖𝑖,𝑗𝑗)∈ℰ)的情况下，确定待测智能体的位置({𝑝𝑝𝑖𝑖}𝑖𝑖∈𝒱𝒱f)。其特点在于系统中多个智能体之间通

过信息交互实现协同合作，从而实现多智能体一致性和分布式协同定位等目标。下面对基于方位的协同

定位方法作详细介绍。 

首先，文献[5]将基于方位的协同定位问题表述为求解如下非线性方程组的问题 

                                                             {
𝑝̂𝑝𝑗𝑗 − 𝑝̂𝑝𝑖𝑖

∥ 𝑝̂𝑝𝑗𝑗 − 𝑝̂𝑝𝑖𝑖 ∥
= 𝑔𝑔𝑖𝑖𝑖𝑖, ∀(𝑖𝑖, 𝑗𝑗) ∈ ℰ,

𝑝̂𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖, ∀𝑖𝑖 ∈ 𝒱𝒱𝑎𝑎.
                                                 (18)  

该方程组刻画了各智能体位置与其方位信息之间的约束关系。通过引入正交投影算子 

                                                                   𝑃𝑃(𝑥𝑥) ≜ 𝐼𝐼𝑑𝑑 −
𝑥𝑥

∥ 𝑥𝑥 ∥
𝑥𝑥T
∥ 𝑥𝑥 ∥                                                           (19)

 

将上述非线性方程组线性化 

                                                             {𝑃𝑃𝑔𝑔𝑖𝑖𝑖𝑖(𝑝̂𝑝𝑗𝑗 − 𝑝̂𝑝𝑖𝑖) = 0, ∀(𝑖𝑖, 𝑗𝑗) ∈ ℰ,
𝑝̂𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖, ∀𝑖𝑖 ∈ 𝒱𝒱𝑎𝑎.

                                                (20)  

进而转化为线性最小二乘问题 

minimize 𝐽𝐽(𝑝̂𝑝) = 12∑  
𝑖𝑖∈𝒱𝒱

∑  
𝑗𝑗∈𝒩𝒩𝑖𝑖

∥ 𝑃𝑃𝑔𝑔𝑖𝑖𝑖𝑖(𝑝̂𝑝𝑖𝑖 − 𝑝̂𝑝𝑗𝑗) ∥2,

subject to 𝑝̂𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖, 𝑖𝑖 ∈ 𝒱𝒱𝑎𝑎.
 

在最小二乘公式中出现的方位拉普拉斯矩阵的子块矩阵 

                                               [ℬ(𝒢𝒢(𝑝𝑝))]𝑖𝑖𝑗𝑗 =

{ 
 
  

𝟎𝟎𝑑𝑑×𝑑𝑑, 𝑖𝑖 ≠ 𝑗𝑗, (𝑖𝑖, 𝑗𝑗) ∉ ℰ,
−𝑃𝑃𝑔𝑔𝑖𝑖𝑖𝑖, 𝑖𝑖 ≠ 𝑗𝑗, (𝑖𝑖, 𝑗𝑗) ∈ ℰ,

∑  
𝑘𝑘∈𝒩𝒩𝑖𝑖

𝑃𝑃𝑔𝑔𝑖𝑖𝑖𝑖, 𝑖𝑖 = 𝑗𝑗, 𝑖𝑖 ∈ 𝒱𝒱.
                                          (21)  
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与网络的方位刚性属性密切相关，具有对称性、半正定性等性质，其秩和零空间可用于表征网络的方位

刚性。文[5]从代数和刚性理论角度给出网络可定位的充要条件，前者为矩阵ℬ𝑓𝑓𝑓𝑓非奇异、得到的待测智

能体位置为−ℬ𝑓𝑓𝑓𝑓
−1ℬ𝑓𝑓𝑓𝑓𝑝𝑝𝑎𝑎，后者为每个可定位网络都涉及至少两个锚智能体，每一个无穷小方位运动都涉

及至少一个锚智能体；文[5]还给出了一些充分条件与必要条件，分析了锚智能体数量与可定位性的关系，

并给出了关于可定位性的直观例子，如图 2−2 和 2−3 所示。 

 

图 2-2  不可定位的拓扑结构（空心点为待定位智能体，实心点为锚智能体）[5]。 

待定位智能体可在不改变方位约束情况下自由移动（红线方向） 

 

图 2-3  可定位的拓扑结构（空心点为待定位智能体，实心点为锚智能体）[5]。 

待定位智能体无法在不改变方位约束情况下自由移动，即在当前方位约束下，待定位智能体的位置可唯一确定 

基于上述分析，文献[5]提出一种梯度下降法的线性分布式定位协议 

                            𝑝̇̂𝑝𝑖𝑖(𝑡𝑡) = − ∑  
𝑗𝑗∈𝒩𝒩𝑖𝑖

𝑃𝑃𝑔𝑔𝑖𝑖𝑖𝑖 (𝑝̂𝑝𝑖𝑖(𝑡𝑡) − 𝑝̂𝑝𝑗𝑗(𝑡𝑡)) , 𝑖𝑖 ∈ 𝒱𝒱𝑗𝑗.                                       (22)  

通过理论证明，文献[5]得出结论：由算法（22）生成的位置估计变量收敛至相应智能体的真实位置，

从而完成协同定位任务。 

值得说明的是，基于方位的协同定位方法需假设所有智能体拥有统一坐标系，这需要多智能体系统

通过额外的协作对坐标系进行确定，从而增加定位任务的复杂程度。为了放宽该限制，文献[6,7]基于角

度信息给出了协同定位方法。该方法无需令所有智能体统一坐标系，各智能体仅需收集与其两个邻居智

能体之间的角度信息便可实现协同定位。具体地，文献[6,7]通过定义角度可固定性，证明相关条件，设

计基于智能体间通信的分布式协议，利用双边测量定位，通过理论分析和仿真验证表明该协议在特定条

件下可有限步定位，但对测量精度要求高。与方位定位相比，角度定位的优点是每个智能体无需获取全
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局坐标系中的方位信息，分布式角度定位方法仅需智能体与邻居智能体进行有限次通信且可避免坐标框

架对齐过程，通信成本显著降低。角度定位和方位定位在所需锚智能体数量上存在差异。在二维空间中，

角度定位要求锚智能体不能全部共线，至少需要 3 个锚智能体才能实现角度可定位；而基于全局坐标系

中方位测量的定位方法，在二维空间中定位所需的最少锚智能体数量是 2 个。与方位定位相比，角度定

位的缺点在于对测量精度要求极高，在噪声环境下，分布式角度定位中的智能体定位误差会随邻居误差

积累，导致定位准确性受影响，且角度定位在部分场景下需将问题转化为复杂的秩约束半定规划求解，

计算复杂度高。 

3 基于混合测量信息的协同定位方法 

传统分布式协同定位方法多依赖距离、相对位置、角度及方位等单一测量信息[8]。但在实际应用场

景中，各智能体往往配备异构传感器，导致混合测量信息的普遍存在，如图 3−1 所示。相比单一测量信

息方法，基于混合测量信息的分布式协同定位方法能够克服传感器异构性限制，解决复杂环境下单一信

息维度不足的问题，从而使系统适应性和鲁棒性显著提高。如何在缺乏全局坐标系、通信受限的条件下，

高效融合多源异构测量数据并实现高精度分布式定位，成为近年来的热点研究问题。 

在分布式协同定位问题中，距离和位置信息可提供尺度约束，但易受噪声干扰；角度及方位信息可

增强方向约束，但对坐标系对齐敏感。在此背景下，具有互补优势的混合分布式协同定位方法应运而生。

具体地，文献[8]提出了一种基于多种测量信息混合方法的 3D 分布式定位框架：通过混合相对位置、距

离、方位等多种局部测量建立智能体间的线性位移约束，并形式化为矩阵方程： 

                                            𝜇𝜇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖ℎ𝑒𝑒𝑖𝑖ℎ + 𝜇𝜇𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 = 0                                                             (23)  

 
图 3-1 配备异构传感器的多智能体网络样例[8]，其中红点表示能够测量相对位置的智能体；绿点表示能够测量相对

方位、角度、距离和距离比 4 种局部相对测量类型之一的智能体；黑点表示能够测量以上 5 种局部相对测量类型之

一的智能体 
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其中𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑖𝑖为相对位置，系数𝜇𝜇𝑖𝑖𝑖𝑖由测量类型（如距离比、角度余弦等）动态计算；之后设计基于

信息矩阵𝑀𝑀 = 𝑅𝑅𝑇𝑇𝑅𝑅的迭代更新规则，通过局部通信实现位置估计的全局收敛；最后提出网络需满足无限

小角度−位移刚性以及至少三个非共线锚智能体的图条件以确保定位唯一。该文献的研究在角度−位移刚

性理论基础上进行，其中角度约束通过 3 个智能体的相对位置关系构建，如下式所示。 

                                                              {
𝜔𝜔𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖

𝑇𝑇 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘𝑘𝑘
𝑇𝑇 𝑒𝑒𝑘𝑘𝑘𝑘 = 0,

𝜔𝜔𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖
𝑇𝑇 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗

𝑇𝑇𝑒𝑒𝑗𝑗𝑗𝑗 = 0,
𝜔𝜔𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗𝑗𝑗

𝑇𝑇 𝑒𝑒𝑗𝑗𝑗𝑗 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘𝑘𝑘
𝑇𝑇 𝑒𝑒𝑘𝑘𝑘𝑘 = 0.

                                                         (24)  

其中𝜔𝜔𝑖𝑖𝑖𝑖 = 1/𝑒𝑒𝑖𝑖𝑖𝑖
𝑇𝑇 𝑒𝑒𝑖𝑖𝑖𝑖为参数，角度𝜃𝜃𝑖𝑖、𝜃𝜃𝑗𝑗和𝜃𝜃𝑘𝑘由上式中的𝜔𝜔𝑖𝑖𝑖𝑖、𝜔𝜔𝑘𝑘𝑘𝑘、𝜔𝜔𝑖𝑖𝑖𝑖、𝜔𝜔𝑗𝑗𝑗𝑗、𝜔𝜔𝑗𝑗𝑗𝑗和𝜔𝜔𝑘𝑘𝑘𝑘唯一确定，角度约

束用以描述智能体间的几何关系。位移约束通过四个或更多智能体的线性组合构建，用以表示智能体位

置的线性依赖性，如上式(24)所示。对混合测量处理，该研究根据测量类型将智能体分为五类（距离、

方位、相对位置、角度、距离比）。对相对位置测量，可直接利用局部相对位置构造位移约束。对于其

他测量类型，若邻居智能体中有相对位置测量智能体，可通过其测量构造约束；若无，则通过距离比矩

阵和三角形几何关系推导约束。文献将定位问题转化为一个基于位移约束的全局最小二乘优化问题，并

通过分布式梯度下降法设计智能体更新律。全局优化目标为最小化位移约束残差 

                                 𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝

  ∥ 𝐿𝐿𝜒𝜒𝒢𝒢 (𝑝̂𝑝) ∥2= 𝑝̂𝑝𝑇𝑇𝑀𝑀𝑝̂𝑝.                                                          (25)  

随后，将全局梯度分解为每个智能体的局部梯度。对某一智能体𝑖𝑖，其更新方向由以𝑖𝑖自身为中心的位移

约束𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘, ℎ, 𝑙𝑙)和来自邻居智能体𝑗𝑗的约束贡献𝑁𝑁(𝑗𝑗, 𝑖𝑖, 𝑘𝑘, ℎ, 𝑙𝑙)两部分组成。基于上述约束关系，文献[8]考

虑了通信同步和噪声环境两种应用场景，分别设计同步更新和异步更新定位算法。在网络满足刚性条件

且通信同步的场景中，每个自由智能体𝑖𝑖按以下规则更新估计值𝑝̂𝑝𝑖𝑖 

                      𝑝̇̂𝑝𝑖𝑖 = ∑  
(𝑖𝑖,𝑗𝑗,𝑘𝑘,ℎ,𝑙𝑙)∈𝒳𝒳𝒢𝒢

𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘, ℎ, 𝑙𝑙) + ∑  
(𝑗𝑗,𝑖𝑖,𝑘𝑘,ℎ,𝑙𝑙)∈𝒳𝒳𝒢𝒢

𝑁̅𝑁(𝑗𝑗, 𝑖𝑖, 𝑘𝑘, ℎ, 𝑙𝑙).                     (26)  

在网络满足角度−位移刚性并有至少三个非共线锚智能体情况下，上述算法可全局收敛。在噪声环境或

网络拓扑动态变化场景中，则利用序贯算法逐一定位自由智能体；当自由智能体成功更新位置估计𝑝̂𝑝𝑖𝑖后，

将其自身状态切换为已定位智能体，并向其邻居智能体广播𝑝̂𝑝𝑖𝑖。该研究通过两个数值仿真案例验证了所

提出的分布式定位算法在混合测量下的有效性；实验基于 3D 空间，覆盖了 5 种测量类型，考虑无噪声

与含噪声两种场景，克服了传统 2D 定位方法的局限性，验证了算法在配备异构传感器的智能体网络中

的普适性，可为分布式定位算法在实际复杂场景中的应用提供重要参考。 
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图 3-2 可定位网络[8]，其中𝑝𝑝𝑎𝑎1, 𝑝𝑝𝑎𝑎2, 𝑝𝑝𝑎𝑎3, 𝑝𝑝𝑎𝑎4代表锚智能体，𝑝𝑝𝑓𝑓1, 𝑝𝑝𝑓𝑓2, 𝑝𝑝𝑓𝑓3代表待测智能体 

文献[9]同样考虑智能体传感器异构情况，限定每个智能体仅能测量与邻居智能体之间的某一种信息

（距离、方位或相对位置），对于在通信不可靠（智能体网络中的通信拓扑可能时变）情况下的分布式

协同定位问题展开研究。该文献提出的方法结合了基于重心坐标的分布式定位算法，利用重心坐标将不

同测量值转换为统一的线性约束方程，并设计了一种针对通信链路时变情况的分布式迭代算法。针对任

一全局位置待定的自由智能体，首先将智能体的绝对位置表示为邻居智能体位置的凸组合 

                                                                 𝑝𝑝𝑖𝑖 = ∑  
𝑗𝑗∈𝒩𝒩𝑖𝑖

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗 且 ∑𝑎𝑎𝑖𝑖𝑖𝑖 = 1,                                                       (27)  

其中权重𝑎𝑎𝑖𝑖𝑖𝑖通过几何关系计算。重心坐标的引入统一了多种测量模态的数学表达，简化了迭代算法的设

计。该研究针对距离、方位与相对位置三类不同的测量智能体分别设计权重计算策略。对于距离智能体，

通过三角形面积关系计算权重；对方位智能体，通过旋转矩阵对齐不同智能体的局部坐标系，消除方向

偏差，再计算重心坐标；对相对位置智能体，则直接利用相对位置构建凸组合方程。上述过程通过重心

坐标将异构测量统一为全局线性约束。随后，文献构建了最小二乘优化问题，并利用分布式梯度下降法

推导出各智能体的局部更新律。将所有智能体的重心关系汇总为全局线性方程组 

                                                            ([𝐿𝐿𝑎𝑎(𝑡𝑡) 𝐿𝐿𝑠𝑠(𝑡𝑡)] ⊗ 𝐼𝐼2) [𝑝𝑝𝑎𝑎
𝑝𝑝𝑠𝑠

] = 0,                                                     (28)  

其中𝐿𝐿𝑎𝑎(𝑡𝑡)和𝐿𝐿𝑠𝑠(𝑡𝑡)为动态拓扑下的拉普拉斯子矩阵，𝑝𝑝𝑎𝑎为锚智能体坐标，𝑝𝑝𝑠𝑠为待估计智能体坐标。将定

位问题转化为最小化线性约束的残差 

                                               min
𝑝𝑝𝑠𝑠

 ∥∥(𝐿𝐿𝑎𝑎(𝑡𝑡) ⊗ 𝐼𝐼2)𝑝𝑝𝑎𝑎 + (𝐿𝐿𝑠𝑠(𝑡𝑡) ⊗ 𝐼𝐼2)𝑝𝑝𝑠𝑠∥∥2                                                  (29)  
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以使𝑝𝑝𝑠𝑠满足重心约束。将全局优化目标分解为每个待估计智能体的局部优化子问题。对于某一待估计智
能体𝑖𝑖，为使其估计坐标与邻居智能体估计坐标的加权误差最小化，设计局部目标为 

                                                          𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝𝑖𝑖

  ∑  
𝑗𝑗∈𝒩𝒩𝑖𝑖(𝑡𝑡)

𝑎𝑎𝑖𝑖𝑖𝑖(𝑡𝑡)∥∥𝑝̂𝑝𝑖𝑖 − 𝑝̂𝑝𝑗𝑗∥∥2.                                                            (30)  

通过梯度下降法可设计动态拓扑下的分布式迭代规则如下 

                                         𝑝̂𝑝𝑖𝑖(𝑡𝑡 + 1) = 𝑝̂𝑝𝑖𝑖(𝑡𝑡) + 𝑑𝑑𝑖𝑖 ∑  
𝑗𝑗∈𝑁𝑁𝑖𝑖(𝑡𝑡)

𝑎𝑎𝑖𝑖𝑖𝑖(𝑡𝑡) (𝑝̂𝑝𝑗𝑗(𝑡𝑡) − 𝑝̂𝑝𝑖𝑖(𝑡𝑡)),                                 (31)  

其中𝑑𝑑𝑖𝑖 ∈ (0,1)为步长参数，可控制迭代算法的收敛速度；𝑎𝑎𝑖𝑖𝑖𝑖(𝑡𝑡)为动态更新的重心坐标权重，依赖于目

前网络拓扑中的邻居智能体选择。研究还提出了“一致联合可达性”条件，即待测智能体在动态图中需

能够在一定时间窗口内通过路径从锚智能体集合到达，这一条件为动态网络下的分布式定位算法提供了

收敛性保证。经仿真实验验证，上述算法在动态拓扑和混合测量情况下能够全局收敛至真实坐标，为分

布式定位算法在动态网络中的应用提供了可行参考。 

4 多智能体系统可靠协同定位方法 

4.1 多智能体系统可靠协同定位方法的研究背景 

多智能体系统依赖节点之间的协同交互来实现环境感知和任务执行，其核心在于精准的相对或绝对

定位。然而，在开放或对抗环境中，恶意测量信息（例如攻击者篡改距离、方位、信号强度等数据，导

致节点定位结果偏离真实值的虚假或错误信息）构成了核心挑战。攻击者蓄意伪造或污染测量信息，破

坏数据交互的真实性，进而导致定位算法的输出偏离真实值，如图 4−1 所示。针对上述挑战，围绕恶意

测量下多智能体系统的可靠协同定位方法，文献[10]从理论建模−算法设计−仿真验证展开，构建了一套

完整技术体系，下面进行详细介绍。 

4.2 s-稀疏可定位性理论 

文献[10]引入 s−可靠性与 s−稀疏可定位性概念，在基于方位的协同定位方法基础上，建立网络拓扑
与抗恶意信息能力的关联如下。 

s−可靠性：网络移除含恶意边的 s 条边后可定位，移除不含恶意边的 s 条边后不可嵌入，确保恶意
测量可被“隔离”。 

s−稀疏可定位性：原始网络移除任意 s 条边仍保持可定位性，为抗攻击提供基础拓扑条件。 
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图 4-1：（a）无恶意方位测量信息时智能体的空间布局；（b）当智能体 3 与 4 之间的方位测量信息被篡改时， 

传统协同定位算法计算出的智能体 3 位置将会发生改变。 

 

图 4-2：s-可靠性与 s-稀疏可定位性的图例。（a）多智能体系统空间布局，其中智能体 3 与 5 之间的方位测量

信息是恶意的；（b）无恶意测量信息情况下多智能体系统的空间布局。（c）当去掉任意 2 条边时，多智能体系统

仍是可定位的（该图给出其中一种例子），因此系统是 2-稀疏可定位的。（d）当任意一条恶意边放回 

（c）图的拓扑结构中，得到的图是不可嵌入的，因此该网络是 1-可靠的。 

基于上述定义，文献[10]给出关键定理：当网络满足 2s−稀疏可定位性时，具备 s−可靠性。图 4−2给

出了 s−可靠性与 s−稀疏可定位性的图例。该定理将抗攻击能力转化为拓扑可定位性的扩展条件，为恶

意测量搜索提供理论依据。 

4.3 可靠协同定位算法设计 

在可靠协同定位算法设计的过程中，文献[10]首先针对恶意测量信息进行搜索。具体而言通过网络

泛洪获取全局边信息，基于字典序算法生成统一搜索顺序，遍历边子集组合，利用方位拉普拉斯矩阵二

次型优化（判断最优值是否为 0），识别包含所有恶意边的子集。此流程可通过图表清晰展示多智能体
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如何进行分布式协同，减少中心节点依赖。进而，通过排除恶意测量信息，采用梯度迭代算法求解方位

约束优化问题，设计了如下的可靠协同定位算法。 

𝑝̂𝑝𝛤𝛤,𝑖𝑖(𝑡𝑡 + 1) = 𝑝̂𝑝𝛤𝛤,𝑖𝑖(𝑡𝑡) − 𝛼𝛼𝛤𝛤 ∑ 𝑃𝑃𝑚𝑚𝑖𝑖𝑖𝑖
𝑗𝑗∈𝒩𝒩𝑖𝑖

𝛤𝛤
(𝑝̂𝑝𝛤𝛤,𝑖𝑖(𝑡𝑡) − 𝑝̂𝑝𝛤𝛤,𝑗𝑗(𝑡𝑡)), 

其中𝑃𝑃mij为投影矩阵，𝛼𝛼Γ为步长。通过理论证明，得出结论：由算法生成的位置估计误差是有界的，该

界可通过调节相关参数变得任意小，且与恶意测量信息无关。图 4−3 给出该算法的收敛曲线，并给出了

与 Zhao 等人在文献[5]所设计算法的比较结果，直观呈现算法收敛过程，并体现出该算法与传统算法相

比在恶意信息存在情况下的可靠性保证优势。文献[10]还考虑了正常测量信息带有误差的情况，通过引

入平均方位拉普拉斯矩阵ℬΓ =
1
2 (ℬΓ

T + ℬΓ)处理传感器噪声，修正非对称测量偏差，保证含噪场景下的收

敛性。图 4−4 给出含噪场景定位结果对比曲线，展示本文算法与经典算法的误差分布，验证该扩展在实

际噪声干扰下的有效性，凸显算法的鲁棒性优势。 

 

图 4-3 梯度迭代收敛曲线                                图 4-4 含噪场景定位结果对比曲线 

5 总结与展望 

本文对近年来多智能体系统协同定位问题上的研究进行了综述。本文着重介绍了基于距离测量信息、

基于方位测量信息、基于混合测量信息的协同定位方法，通过描述测量信息与智能体位置之间的约束关

系，对上述分布式协同定位方法的设计方案进行详细阐述。并且，本文针对带有恶意测量信息的多智能

体系统，介绍了可靠协同定位方法的研究现状。值得强调的是，随着信息技术和智能技术的快速发展，
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针对多智能体系统分布式协同定位方法的研究也面临着越来越多的挑战。目前，仍然存在许多难点问题

有待解决，总结如下。 

1）有向网络拓扑结构下的分布式协同定位方法：现有针对多智能体系统分布式协同定位方法的研

究主要是在多智能体系统底层网络拓扑结构为无向图的情况下展开的，相关方法的设计依赖于无向网络

的拉普拉斯矩阵的对称性，如文献[3,4,5]。然而，许多实际多智能体系统的底层网络拓扑结构是有向图，

其中各节点与邻居节点的通信方式是单向通信。在此情况下，有向网络的拉普拉斯矩阵不再满足对称性，

这将提高分布式协同定位方法设计的难度。因此，如何在有向网络拓扑结构下设计分布式协同定位方法

是一个难点问题。 

2）噪声环境下的分布式协同定位方法：现有针对分布式协同定位方法的研究主要是在测量噪声在

一定界内的条件下展开，如文献[5,8]。然而，实际测量噪声的上界可能无法有效刻画，如高斯噪声等，

这将导致已有分布式协同定位方法的收敛性分析受到严重阻碍。因此，如何放宽测量噪声有界的限制，

进而给出更加全面的分布式协同定位方法收敛性分析是又一难点问题。 

3）完全分布式的可靠协同定位方法：针对带有恶意信息的多智能体系统，现有可靠协同定位方法

需要通过遍历搜索技术对恶意信息进行筛查，以保证定位方法的可靠性，如文献[10]。然而，恶意信息

的筛查需使各智能体提前获取网络整体规模的相关信息，这意味着现有方法很难做到完全分布式。因此，

如何利用局部邻居信息实现恶意信息的筛查，进而给出完全分布式的可靠协同定位方法同样是一个难点

问题。 

4）可靠协同位姿估计方法：现有可靠分布式协同定位方法主要面向的是单纯位置估计问题。然而，

实际的多智能体系统在执行协同任务的过程中不仅需要获取位置信息，而且需要获取姿态信息，因此可

靠协同位姿估计方法的研究同样十分重要。注意到，由于姿态变量的引入，协同位姿估计问题呈现出非

凸性与耦合性，这将提高可靠协同位姿估计方法的设计难度。因此，如何在多智能体系统存在恶意测量

信息的情况下设计有效的可靠协同位姿估计方法，以保证位姿估计的可靠性是一个难点问题。 
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