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Introduction and Motivation



Controlling complex systems

How to orchestrate in real-time the collective behaviour of a complex system?
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What do these systems have in common?

L. Torres, A. Blevins, D. Bassett, T. Eliassi-Rad, The Why, How and When of Representations for Complex Systems, SIAM Review 2021

1. Large collection of agents
2. Nontrivial interactions
3. Complex network (graph)

4. Emergent collective behaviour
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Complex systems vs Classical Control Systems

Feedback Control = Sense + Compute + Actuate

Controller

Nodes

Sensing

Whom do we sense? 
observability

Actuation

Whom do we control? 
controllability

What do we compute? 
control design

• Distributed
• Real-Time
• Robust
• Stable

Wish List
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A multi-scale problem

M. di Bernardo, Controlling collective behaviour in complex systems, Encyclopedia of Systems and Control, Springer, 2020

Microscopic description

Macroscopic description
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A multi-scale control problem

M. di Bernardo, Controlling collective behaviour in complex systems, Encyclopedia of Systems and Control, Springer, 2020
R. D’Souza, M. di Bernardo, Y.Y. Liu, Controlling complex networks with complex nodes, Nature Reviews Physics, 2023

Control 
strategy

Desired collective 
behaviour

Macroscopic 
Actuation

Microscopic 
Actuation

Macroscopic 
Sensing

Microscopic 
Sensing
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A distributed control strategy

Nature Reviews Physics | Volume 5 | April 2023 | 250–262 250

nature reviews physics

Perspective

https://doi.org/10.1038/s42254-023-00566-3

 Check for updates

Controlling complex networks 
with complex nodes
Raissa M. D’Souza    1,2,3  , Mario di Bernardo4,5   & Yang-Yu Liu    6,7 

Abstract

Real-world networks often consist of millions of heterogenous 
elements that interact at multiple timescales and length scales. The 
!elds of statistical physics and control theory both contribute di"erent 
perspectives for understanding, modelling and controlling these 
systems. To address real-world systems, more interaction between 
these !elds and integration of new paradigms such as heterogeneity 
and multiple levels of representation will be necessary. It may be 
possible to expand models from statistical physics to integrate the 
notion of feedback (both positive and negative) and to extend control 
theory formulations to more mesoscopic analysis over averages of 
collections of degrees of freedom. There is also the need to integrate 
theoretical models, machine learning and data-driven control methods. 
We review recent progress and identify opportunities to help advance 
understanding and control of real-world systems from oscillator 
networks and social networks to biological and technological networks.
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Relevance in applications

Long et al, A comprehensive review of shepherding […], IEEE Trans. Emergent Topics in Comp. Intell., 2020 10



A paradigmatic problem



• Here a group of agents, the herders, need to steer the collective dynamics of 
another group of agents, the targets, in some desired way

The shepherding control problem

Herders

Targets

© F. Auletta
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• Crucial problem: design the distributed control strategy driving the herders

Deciding the herding behaviour

A Pierson, M Schwager, Controlling noncooperative herds with robotic herders, IEEE Trans Robotics 2018
R.A. Licitra, Z Bell, W Dixon, Single-agent indirect herding of mutliple targets with uncertain dynamics, IEEE Trans Robotics, 2019
D. Ko, E. Zuazua, Asymptotic behaviour and control of “a guidance by repulsion model, Math Models Methods Appl Sci, 2020 

Possible solutions: 
formation control, 
virtual force fields

Herders must 
cooperate: 
collective 

sensing and 
decision-making
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Timeline
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Collective behaviours from 
local rules [Reynolds]

Distributed swarm
control [Steels]

Early shepherding
experiments [Vaughan]

First multi-agent 
approach [Lien]

Seminal work on herding
behaviours [Strombom]

First learning-based
solution [Go]

First optimal control 
formulation [Escobedo]

First multiscale
modelling [Albi]

Human decision –
making [Nalepka]

1987 1989 1998

2005

2014 2016

2013

2017
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Two key assumptions

Targets’ cohesiveness (e.g. flocking)
[e.g., Pierson et al, 2017]

Herders’ Unlimited sensing
[Auletta et al, Auton, Rob., 2022]

We relax both of these assumptions!
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Key research questions

Can local feedback rules solve the global shepherding control problem 
in the presence of limited sensing and non-cohesive targets?

Under what “herdability” conditions multiple operating herders can effectively 
shepherd a group of targets towards a desired state?
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• The shepherding problem can be solved at different description levels

Controlling across scales
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A microscopic approach

Andrea 
Lama

Italo 
Napolitano
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De Lellis

Stefano 
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A minimal shepherding model

20A. Lama, MdB,  Shepherding control and Herdability in Complex Multiagent Systems, Physical Review Research, 2024
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FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
with all the targets in ⌦G (dark blue circle). (d) Schematic
of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �

respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).

ature on control and controllability of complex systems
(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:

Ṫa =
p
2DN + �

X

i2Na

(�� |dia|) d̂ia (1)

where, analogously to what typically considered in the lit-
erature on soft matter, e.g. [18, 19, 22], N is white Gaus-
sian noise, � and D are positive constants, dia = Hi�Ta

is the vector of the di↵erence between the position of
herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =

(
�vH bHi if |Hi| � r⇤

0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
herder i selects a target within its sensing region, say
T

⇤
i
= Ti(H,T, ⇠), to coral and chase. Then, we choose

Ii(T,H, ⇠) = �
h
↵
⇣
Hi � (T⇤

i
+ �bT

⇤
i
)
⌘i

vH

(4)

where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement

,

• We studied the problem of removing the assumptions of targets’ cohesiveness (e.g. 
flocking targets) and herders’ global sensing
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FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by magenta
circles) at (a) the initial time t = 0 with the agents uniformly dis-
tributed in !0 (yellow shaded disk), (b) at an intermediate time
during shepherding control when herders surround all targets, and
(c) when the task is successfully achieved with all the targets in !G

(dark blue circle). (d) Schematic of the herders’ and targets’ sensing
(magenta shaded disks) and repulsion (blue shaded disk) regions of
radius ξ and λ, respectively. The solid black arrows represent the
direction of motion of the herders when moving in the absence of
nearby targets (H1), selecting the target to chase T∗ with the largest
distance from to goal (H2), or when the herder pushes a selected
target towards the goal region (H3).

and foraging behaviors [20]. In particular, in the problem we76

study, herders actively make decisions on what targets to se-77

lect and maneuver incorporating a feedback mechanism based78

on their proximity to themselves and the goal region. This79

unique integration of feedback control theory into physics-80

inspired models marks our study as distinct in the field of81

complex systems control. Our goal is to engineer the collec-82

tive behavior of a complex multiagent system (the herders) in83

order for another group of agents (the targets) to perform a84

desired task and solve a distributed control problem, an aspect85

that has been rarely considered in the vast literature on control86

and controllability of complex systems (see, e.g., [21] and87

references therein).88

We consider the shepherding problem in R2 [see Fig. 1(a)],89

where N herders must corral M targets to a goal region !G.90

We assume that both the herders and the targets are initially91

randomly and uniformly distributed in a circle !0 of radius R,92

and that the !G region is a circle of radius r∗ < R, both !093

and !G being centered around the origin. Let H ∈ R2N be the94

vector of the herders’ positions H = [H1, H2, . . . , HN ] with95

Hi ∈ R2 being the Cartesian coordinates of the ith herder,96

i = 1, . . . , N , and T ∈ R2M the vector of the targets’ positions97

T = [T1, T2, . . . , TM ], with Ta ∈ R2 being the Cartesian co-98

ordinates of target a, a = 1, . . . , M.99

We assume the targets do not exhibit any type of cohesive 100

collective behavior with their dynamics being described by the 101

following overdamped Langevin equation 102

Ṫa =
√

2DN + β
∑

i∈Na

(λ − |dia|)d̂ia, (1)

where, analogously to what is typically considered in the 103

literature on soft matter, e.g., [18,19,22], N is white Gaus- 104

sian noise, β and D are positive constants, dia = Hi − Ta is 105

the vector of the difference between the position of herder 106

i and target a, λ > 0 is the radius of the region where 107

targets are repelled by nearby herders, and Na represents 108

the set of indices of all the herders, if any, whose po- 109

sitions are such that |dia| ! λ. Note that βλ ≡ vT is the 110

maximum escaping speed of a target due to the presence 111

of one nearby herder and that we assume βλ2 & D so 112

that the harmonic repulsive action eventually exerted by the 113

herders onto the targets dominates over their own Brownian 114

dynamics 115

We model the dynamics of the herders as made of two 116

mutually exclusive terms, one capturing their own dynamics 117

and the other their interaction with the targets (see, e.g., [23]). 118

Specifically, we set 119

Ḣi = (1 − ηi )Fi(Hi, r∗) + ηiIi(T, H, ξ ), (2)

where ηi = ηi(T, H, ξ ) is an indicator function activating 120

when herder i has at least one target to chase in its sensing 121

region of radius ξ , Fi(Hi, r∗) describes the herder’s own dy- 122

namics when it is not chasing any targets, while Ii(T, H, ξ ) is 123

a feedback term capturing the herder’s reaction to the presence 124

of targets in its sensing region. 125

Without loss of generality, we choose Fi(Hi, r∗) so that the 126

herders, in the absence of nearby targets, converge towards the 127

origin if outside the goal region of radius r∗; namely we set 128

Fi(Hi, r∗) =
{
−vH Ĥi, if |Hi| " r∗,
0, otherwise.

(3)

As typically done in the control theoretic and robotics 129

literature, e.g., [12], we assume that at each time step, 130

herder i selects a target within its sensing region, say T∗
i = 131

Ti(H, T, ξ ), to corral and chase. Then, we choose 132

Ii(T, H, ξ ) = −{α[Hi − (T∗
i + δT̂∗

i )]}vH , (4)

where δ = λ/2 is the distance at which the herder places itself 133

behind the chosen target to corral it towards the goal region, 134

α is a positive dimensional constant, and {·}vH is a saturation 135

operator that limits the herders’ maximum speed to vH when 136

chasing a target. 137

The target to chase T∗
i is selected by herder i as the target 138

with the largest distance from the origin among those, if any, 139

within the sensing radius of herder i. Furthermore, if herder 140

i detects other herders H j in its sensing region (i.e., such 141

that |H j − Hi| ! ξ ), it only considers those targets Ta for 142

which |Ta − Hi| ! |Ta − H j |. Through this simple local rule, 143

nearby herders effectively cooperate so as to decide which 144

target to chase without needing any global information on the 145

positions of other herders and targets. 146

We assume that the herders’ velocity vH > vT as typically 147

done in the control literature [8] and to prevent the formation 148
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FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by magenta
circles) at (a) the initial time t = 0 with the agents uniformly dis-
tributed in !0 (yellow shaded disk), (b) at an intermediate time
during shepherding control when herders surround all targets, and
(c) when the task is successfully achieved with all the targets in !G

(dark blue circle). (d) Schematic of the herders’ and targets’ sensing
(magenta shaded disks) and repulsion (blue shaded disk) regions of
radius ξ and λ, respectively. The solid black arrows represent the
direction of motion of the herders when moving in the absence of
nearby targets (H1), selecting the target to chase T∗ with the largest
distance from to goal (H2), or when the herder pushes a selected
target towards the goal region (H3).

and foraging behaviors [20]. In particular, in the problem we76

study, herders actively make decisions on what targets to se-77

lect and maneuver incorporating a feedback mechanism based78

on their proximity to themselves and the goal region. This79

unique integration of feedback control theory into physics-80

inspired models marks our study as distinct in the field of81

complex systems control. Our goal is to engineer the collec-82

tive behavior of a complex multiagent system (the herders) in83

order for another group of agents (the targets) to perform a84

desired task and solve a distributed control problem, an aspect85

that has been rarely considered in the vast literature on control86

and controllability of complex systems (see, e.g., [21] and87

references therein).88

We consider the shepherding problem in R2 [see Fig. 1(a)],89

where N herders must corral M targets to a goal region !G.90

We assume that both the herders and the targets are initially91

randomly and uniformly distributed in a circle !0 of radius R,92

and that the !G region is a circle of radius r∗ < R, both !093

and !G being centered around the origin. Let H ∈ R2N be the94

vector of the herders’ positions H = [H1, H2, . . . , HN ] with95

Hi ∈ R2 being the Cartesian coordinates of the ith herder,96

i = 1, . . . , N , and T ∈ R2M the vector of the targets’ positions97

T = [T1, T2, . . . , TM ], with Ta ∈ R2 being the Cartesian co-98

ordinates of target a, a = 1, . . . , M.99

We assume the targets do not exhibit any type of cohesive 100

collective behavior with their dynamics being described by the 101

following overdamped Langevin equation 102

Ṫa =
√

2DN + β
∑

i∈Na

(λ − |dia|)d̂ia, (1)

where, analogously to what is typically considered in the 103

literature on soft matter, e.g., [18,19,22], N is white Gaus- 104

sian noise, β and D are positive constants, dia = Hi − Ta is 105

the vector of the difference between the position of herder 106

i and target a, λ > 0 is the radius of the region where 107

targets are repelled by nearby herders, and Na represents 108

the set of indices of all the herders, if any, whose po- 109

sitions are such that |dia| ! λ. Note that βλ ≡ vT is the 110

maximum escaping speed of a target due to the presence 111

of one nearby herder and that we assume βλ2 & D so 112

that the harmonic repulsive action eventually exerted by the 113

herders onto the targets dominates over their own Brownian 114

dynamics 115

We model the dynamics of the herders as made of two 116

mutually exclusive terms, one capturing their own dynamics 117

and the other their interaction with the targets (see, e.g., [23]). 118

Specifically, we set 119

Ḣi = (1 − ηi )Fi(Hi, r∗) + ηiIi(T, H, ξ ), (2)

where ηi = ηi(T, H, ξ ) is an indicator function activating 120

when herder i has at least one target to chase in its sensing 121

region of radius ξ , Fi(Hi, r∗) describes the herder’s own dy- 122

namics when it is not chasing any targets, while Ii(T, H, ξ ) is 123

a feedback term capturing the herder’s reaction to the presence 124

of targets in its sensing region. 125

Without loss of generality, we choose Fi(Hi, r∗) so that the 126

herders, in the absence of nearby targets, converge towards the 127

origin if outside the goal region of radius r∗; namely we set 128

Fi(Hi, r∗) =
{
−vH Ĥi, if |Hi| " r∗,
0, otherwise.

(3)

As typically done in the control theoretic and robotics 129

literature, e.g., [12], we assume that at each time step, 130

herder i selects a target within its sensing region, say T∗
i = 131

Ti(H, T, ξ ), to corral and chase. Then, we choose 132

Ii(T, H, ξ ) = −{α[Hi − (T∗
i + δT̂∗

i )]}vH , (4)

where δ = λ/2 is the distance at which the herder places itself 133

behind the chosen target to corral it towards the goal region, 134

α is a positive dimensional constant, and {·}vH is a saturation 135

operator that limits the herders’ maximum speed to vH when 136

chasing a target. 137

The target to chase T∗
i is selected by herder i as the target 138

with the largest distance from the origin among those, if any, 139

within the sensing radius of herder i. Furthermore, if herder 140

i detects other herders H j in its sensing region (i.e., such 141

that |H j − Hi| ! ξ ), it only considers those targets Ta for 142

which |Ta − Hi| ! |Ta − H j |. Through this simple local rule, 143

nearby herders effectively cooperate so as to decide which 144

target to chase without needing any global information on the 145

positions of other herders and targets. 146

We assume that the herders’ velocity vH > vT as typically 147

done in the control literature [8] and to prevent the formation 148
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The herdability problem

Under what conditions on the repulsion zone, the sensing area and the density of the 
targets can we achieve herdability of a given number of targets?
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What is the minimum number of  herders  
#∗ $ necessary to herd M  targets?

 

Herdability charts
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p
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FIG. 2. Values of the fraction � of successfully herd targets
obtained for di↵erent values of M and N when R = 50. Re-
sults are averaged over 50 simulations; the increments of N
and

p
M have values �N = 1, �

p
M = 1. The level curve for

�
⇤ = 0.99 is depicted by the white curve. The left panel shows

the case of infinite sensing (⇠ = 1) where N
⇤ /

p
M while

the right panel the case of limited sensing (⇠ < 1) where we
recover N⇤ /

p
M only above a critical threshold M > M

low

(white vertical line).

of the control goal. In addition, the radius of the repul-
sion zone, �, is chosen smaller than that of the sensing
area, ⇠, as any other choice would be unrealistic.

Next, we study the herdability of a group of M targets
by a group of N herders [27]. Specifically, we define a
group of M target agents as “herdable” by N herders if
the latter can successfully guide at least a certain fraction
� > �⇤ of the former towards ⌦G within a finite time (see
SM for further details). The threshold fraction �⇤ is set
based on standard values in control theory, typically �⇤ 2
{0.9, 0.95, 0.99} [28]. Given the dynamics of the agents,
we will then look for the minimal number of herders,
denoted as N⇤(M), required to achieve herdability of M
targets.

For the sake of comparison, we start by considering
herders with infinite sensing capabilities, setting ⇠ = 1.
As shown in Figure 2a, for a broad range of target group
sizes, the required number of herders, N⇤(M), exhibits a
quadratic relationship with the number of targets. Con-
versely, in scenarios with finite sensing (Figure 2b), the
scaling N⇤(M) /

p
M is observed, but only when the

number of targets, M , exceeds a certain critical thresh-
old, M low. Below this threshold, the task notably de-
mands more herders, indicating, counterintuitively, that
fewer targets do not necessarily ease the control task with
herders’ limited sensing abilities.

In general, the minimum number of herders, N⇤(M),
needed to shepherd M targets depends on two things,
namely the herders’ ability to (i) collectively sense all
targets, which are random independent walkers, and (ii)
to counterbalance the di↵usion of the M targets with the
transport flow they induce.

From a simple dimensional argument, as the M tar-
gets are distributed in a two-dimensional circular domain
while the N herders tend to arrange themselves on its
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structure of the corresponding herdability graph G (whose
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the critical percolation threshold \M low. Green arrows show
possible paths the herder could potentially navigate to reach
the furthermost targets, denoted as T?, showing that when
the graph is too sparse [panel (a)] more distant targets can
be lost.

one-dimensional boundary [see Fig.1(b) and supplemen-
tary videos], condition (ii) is satisfied for N⇤(M) /

p
M

(as observed in Fig. 2a) while condition (i) is trivially sat-
isfied when the herders possess infinite sensing (⇠ = 1).

However, with finite sensing ⇠ < 1, meeting condi-
tion (i) becomes increasingly more cumbersome as target
density decreases (e.g., M < M low). In this case, targets
can become too sparse, hindering herders from e�ciently
scouting the area based on local information alone. Con-
sequently, a larger number of herders, N⇤ is required to
ensure all targets, particularly those farthest from the
goal ⌦G, are observed consistently. This requirement de-
viates from the quadratic scaling observed with infinite
sensing. For M > M low, the higher density of targets en-
ables herders to e↵ectively navigate end explore the area
of interest moving from target to target, even without
sensing each target at every time instant, thus aligning
with the scaling law observed in the infinite sensing sce-
nario.

To explain the critical threshold M low, we analyze how
herders, relying on local information, can satisfy the con-
dition of sensing and corralling also distant targets from
⌦G.

To this aim, we define the herdability graph G as the
random geometric graph [29] where nodes represent tar-
gets, and an edge exists between two targets, say Ta and
Tb, if their distance is within the sensing radius of the
herders, i.e. if |Ta �Tb|  ⇠.

Then, a path in G from one target, Ta, to another
generic target, say Tc, indicates the potential for a herder
to transition from sensing Ta to sensing Tc. Therefore, we
propose to estimate the critical threshold M low by calcu-
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based on standard values in control theory, typically �⇤ 2
{0.9, 0.95, 0.99} [28]. Given the dynamics of the agents,
we will then look for the minimal number of herders,
denoted as N⇤(M), required to achieve herdability of M
targets.

For the sake of comparison, we start by considering
herders with infinite sensing capabilities, setting ⇠ = 1.
As shown in Figure 2a, for a broad range of target group
sizes, the required number of herders, N⇤(M), exhibits a
quadratic relationship with the number of targets. Con-
versely, in scenarios with finite sensing (Figure 2b), the
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herders’ limited sensing abilities.

In general, the minimum number of herders, N⇤(M),
needed to shepherd M targets depends on two things,
namely the herders’ ability to (i) collectively sense all
targets, which are random independent walkers, and (ii)
to counterbalance the di↵usion of the M targets with the
transport flow they induce.

From a simple dimensional argument, as the M tar-
gets are distributed in a two-dimensional circular domain
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the critical percolation threshold \M low. Green arrows show
possible paths the herder could potentially navigate to reach
the furthermost targets, denoted as T?, showing that when
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one-dimensional boundary [see Fig.1(b) and supplemen-
tary videos], condition (ii) is satisfied for N⇤(M) /
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(as observed in Fig. 2a) while condition (i) is trivially sat-
isfied when the herders possess infinite sensing (⇠ = 1).

However, with finite sensing ⇠ < 1, meeting condi-
tion (i) becomes increasingly more cumbersome as target
density decreases (e.g., M < M low). In this case, targets
can become too sparse, hindering herders from e�ciently
scouting the area based on local information alone. Con-
sequently, a larger number of herders, N⇤ is required to
ensure all targets, particularly those farthest from the
goal ⌦G, are observed consistently. This requirement de-
viates from the quadratic scaling observed with infinite
sensing. For M > M low, the higher density of targets en-
ables herders to e↵ectively navigate end explore the area
of interest moving from target to target, even without
sensing each target at every time instant, thus aligning
with the scaling law observed in the infinite sensing sce-
nario.

To explain the critical threshold M low, we analyze how
herders, relying on local information, can satisfy the con-
dition of sensing and corralling also distant targets from
⌦G.

To this aim, we define the herdability graph G as the
random geometric graph [29] where nodes represent tar-
gets, and an edge exists between two targets, say Ta and
Tb, if their distance is within the sensing radius of the
herders, i.e. if |Ta �Tb|  ⇠.

Then, a path in G from one target, Ta, to another
generic target, say Tc, indicates the potential for a herder
to transition from sensing Ta to sensing Tc. Therefore, we
propose to estimate the critical threshold M low by calcu-
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of the control goal. In addition, the radius of the repul-
sion zone, �, is chosen smaller than that of the sensing
area, ⇠, as any other choice would be unrealistic.

Next, we study the herdability of a group of M targets
by a group of N herders [27]. Specifically, we define a
group of M target agents as “herdable” by N herders if
the latter can successfully guide at least a certain fraction
� > �⇤ of the former towards ⌦G within a finite time (see
SM for further details). The threshold fraction �⇤ is set
based on standard values in control theory, typically �⇤ 2
{0.9, 0.95, 0.99} [28]. Given the dynamics of the agents,
we will then look for the minimal number of herders,
denoted as N⇤(M), required to achieve herdability of M
targets.

For the sake of comparison, we start by considering
herders with infinite sensing capabilities, setting ⇠ = 1.
As shown in Figure 2a, for a broad range of target group
sizes, the required number of herders, N⇤(M), exhibits a
quadratic relationship with the number of targets. Con-
versely, in scenarios with finite sensing (Figure 2b), the
scaling N⇤(M) /
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M is observed, but only when the

number of targets, M , exceeds a certain critical thresh-
old, M low. Below this threshold, the task notably de-
mands more herders, indicating, counterintuitively, that
fewer targets do not necessarily ease the control task with
herders’ limited sensing abilities.

In general, the minimum number of herders, N⇤(M),
needed to shepherd M targets depends on two things,
namely the herders’ ability to (i) collectively sense all
targets, which are random independent walkers, and (ii)
to counterbalance the di↵usion of the M targets with the
transport flow they induce.

From a simple dimensional argument, as the M tar-
gets are distributed in a two-dimensional circular domain
while the N herders tend to arrange themselves on its
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structure of the corresponding herdability graph G (whose
edges are depicted as solid black lines) (a) below and (b) above

the critical percolation threshold \M low. Green arrows show
possible paths the herder could potentially navigate to reach
the furthermost targets, denoted as T?, showing that when
the graph is too sparse [panel (a)] more distant targets can
be lost.

one-dimensional boundary [see Fig.1(b) and supplemen-
tary videos], condition (ii) is satisfied for N⇤(M) /

p
M

(as observed in Fig. 2a) while condition (i) is trivially sat-
isfied when the herders possess infinite sensing (⇠ = 1).

However, with finite sensing ⇠ < 1, meeting condi-
tion (i) becomes increasingly more cumbersome as target
density decreases (e.g., M < M low). In this case, targets
can become too sparse, hindering herders from e�ciently
scouting the area based on local information alone. Con-
sequently, a larger number of herders, N⇤ is required to
ensure all targets, particularly those farthest from the
goal ⌦G, are observed consistently. This requirement de-
viates from the quadratic scaling observed with infinite
sensing. For M > M low, the higher density of targets en-
ables herders to e↵ectively navigate end explore the area
of interest moving from target to target, even without
sensing each target at every time instant, thus aligning
with the scaling law observed in the infinite sensing sce-
nario.

To explain the critical threshold M low, we analyze how
herders, relying on local information, can satisfy the con-
dition of sensing and corralling also distant targets from
⌦G.

To this aim, we define the herdability graph G as the
random geometric graph [29] where nodes represent tar-
gets, and an edge exists between two targets, say Ta and
Tb, if their distance is within the sensing radius of the
herders, i.e. if |Ta �Tb|  ⇠.

Then, a path in G from one target, Ta, to another
generic target, say Tc, indicates the potential for a herder
to transition from sensing Ta to sensing Tc. Therefore, we
propose to estimate the critical threshold M low by calcu-

unlimited sensing
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• We define the herdability graph

• If there is a path on G between 
a and e the herder is able to 
switch from a to e

• Then, herdability can be linked
to the percolation of this graph

The herdability graph
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FIG. 2. Values of the fraction χ of successfully herd targets
obtained for different values of M and N when R = 50. Results
are averaged over 50 simulations; the increments of N and

√
M

have values "N = 1, "
√

M = 1. The level curve for χ∗ = 0.99 is
depicted by the white curve. The left panel shows the case of infinite
sensing (ξ = ∞) where N∗ ∝

√
M while the right panel the case of

limited sensing (ξ < ∞) where we recover N∗ ∝
√

M only above a
critical threshold M > M low (white vertical line).

of stable chasing patterns that can be observed for vT ! vH149

(similar to those reported in [24–26]) that can hinder the150

achievement of the control goal. In addition, the radius of the151

repulsion zone λ is chosen smaller than that of the sensing152

area ξ .153

Next, we study the herdability of a group of M targets by154

a group of N herders [27]. Specifically, we define a group155

of M target agents as “herdable” by N herders if the latter156

can successfully guide at least a certain fraction χ > χ∗ of157

the former towards %G within a finite time [see Supplemental158

Material (SM) [28] for further details]. The threshold fraction159

χ∗ is set based on standard values in control theory, typi-160

cally χ∗ ∈ {0.9, 0.95, 0.99} [29]. Given the dynamics of the161

agents, we will then look for the minimal number of herders,162

denoted as N∗(M ), required to achieve herdability of M163

targets.164

For the sake of comparison, we start by considering herders165

with infinite sensing capabilities, setting ξ = ∞. As shown in166

Fig. 2(a), for a broad range of target group sizes, the required167

number of herders, N∗(M ), exhibits a quadratic relationship168

with the number of targets. Conversely, in scenarios with finite169

sensing [Fig. 2(b)], the scaling N∗(M ) ∝
√

M is observed, but170

only when the number of targets, M, exceeds a certain critical171

threshold, M low. Below this threshold, the task notably de-172

mands more herders, indicating, counterintuitively, that fewer173

targets do not necessarily ease the control task with herders’174

limited sensing abilities.175

In general, the minimum number of herders, N∗(M ),176

needed to shepherd M targets depends on two things, namely177

the herders’ ability to (i) collectively sense all targets, which178

are random independent walkers, and (ii) to counterbalance179

the diffusion of the M targets with the transport flow they180

induce.181

From a simple dimensional argument, as the M targets are182

distributed in a two-dimensional circular domain while the183

N herders tend to arrange themselves on its one-dimensional184

boundary [see Fig. 1(b) and SM videos [28]], condition (ii) is185

satisfied for N∗(M ) ∝
√

M [as observed in Fig. 2(a)] while186
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FIG. 3. Two representative configurations of targets and the
structure of the corresponding herdability graph G (whose edges are
depicted as solid black lines) (a) below and (b) above the critical
percolation threshold M̂ low. Green arrows show possible paths the
herder could potentially navigate to reach the furthermost targets,
denoted as T&, showing that when the graph is too sparse [panel (a)]
more distant targets can be lost.

condition (i) is trivially satisfied when the herders possess 187

infinite sensing (ξ = ∞). 188

However, with finite sensing ξ < ∞, meeting condition 189

(i) becomes increasingly more cumbersome as targets’ den- 190

sity decreases (e.g., M < M low). In this case, targets can 191

become too sparse, hindering herders from efficiently scout- 192

ing the area based on local information alone. Consequently, 193

a larger number of herders, N∗ is required to ensure all 194

targets, particularly those farthest from the goal %G, are ob- 195

served. This requirement deviates from the quadratic scaling 196

observed with infinite sensing. For M > M low, the higher 197

density of targets enables herders to effectively navigate and 198

explore the area of interest moving from target to target, 199

even without sensing each target at every time instant, thus 200

aligning with the scaling law observed in the infinite sensing 201

scenario. 202

To explain the critical threshold M low, we analyze how 203

herders, relying on local information, can satisfy the condition 204

of sensing and corralling also distant targets from %G. 205

To this aim, we define the herdability graph G as the ran- 206

dom geometric graph [30] where nodes represent targets, and 207

an edge exists between two targets, say Ta and Tb, if their 208

distance is within the sensing radius of the herders, i.e., if 209

|Ta − Tb| ! ξ . 210

Then, a path in G from one target, Ta, to another generic 211

target, say Tc, indicates the potential for a herder to transition 212

from sensing Ta to sensing Tc. Therefore, we propose to esti- 213

mate the critical threshold M low by calculating the percolation 214

threshold of the graph G, denoted as M̂ low(R, ξ ); in particular, 215

we compute M̂ low(R, ξ ) in the worst case at t = 0 when targets 216

are randomly and uniformly distributed within a circle of 217

radius R (see Sec. II of the SM [28] for further details). 218

Figure 3 presents two schematic examples illustrating tar- 219

get configurations below and above the estimated threshold 220

M̂ low along with their respective herdability graph structures 221
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A hierarchical learning-based approach

25
I. Napolitano et al., Emergent Cooperative Strategies for Multi-Agent Shepherding via Reinforcement Learning, Eur. Control Conf, 2025
S. Covone et al., Hierarchical Policy-Gradient Reinforcement Learning for Multi-Agent Shepherding Control,  IEEE CDC, 2025

Can herders learn to solve 
the problem without a model?

Does spontaneous cooperation emerge
without any explicity rule?



Driving policy

26

Approaching phase

Steering phase

Goal region 
avoidance

Control effort



Decision-making policy (decentralized)

27

Distance from goal

Cooperation among herders emerges spontaneously



• The trained policy is extended to large-scale systems through topological sensing.

Towards a scalable solution

28



Experimental validation and further tasks

29S. Covone, I. Napolitano et al. A hierarchical machine learning approach to solve the shepherding problem, IEEE Trans. on Robotics, 2025 



• Control laws can be designed to solve the 
shepherding problem

• Herdability requires a minimum target density 
if herders possess limited sensing

• Herders can learn to cooperate and self 
organize to be successful 

• How can we prove convergence?
• What about more sophisticated shepherding 

goals, e.g. achieving a desired density?

To sum up

30

Limited sensing

No cohesiveness



• We need to work at a different description level

Bridging microscopic and macroscopic scales

31

Crucial problem: how to incorporate decision-making in fields equations?



A macroscopic approach

Gian Carlo
Maffettone

Beniamino
Di Lorenzo

Andrea 
Lama



• As is typical in mean-field, given stochastic equations of the agents dynamics:

• We consider average forces acting on each ”particle”:

• We obtain a PDE describe the evolution of the agents’ densities:

From micro to macro

33You et al, Nonreciprocity as a generic route to traveling states, PNAS, 2020 



Herders

Targets

Shepherding in the continuum

34
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(a) (b)

(c) (d)

H1

⇠

H2
H3

�

⌦G

FIG. 1. Representative snapshots of the system configuration
(with herders represented by blue diamonds and targets by
magenta circles) at (a) the initial time t = 0 with the agents
uniformly distributed in ⌦0 (yellow shaded disk), (b) at an in-
termediate time during shepherding control when herders sur-
round all targets and (c) when the task is successfully achieved
with all the targets in ⌦G (dark blue circle). (d) Schematic
of the herders’ and targets’ sensing (magenta shaded disks)
and repulsion (blue shaded disk) regions of radius ⇠ and �

respectively. The solid black arrows represent the direction of
motion of the herders when moving in the absence of nearby
targets (H1), selecting the target to chase T⇤ with the largest
distance from to goal (H2), or when the herder pushes a se-
lected target towards the goal region (H3).

ature on control and controllability of complex systems
(see e.g. [21] and references therein).

We consider the shepherding problem in R2 (see Fig.
1a), where N herders have to corral M targets to a goal
region ⌦G. We assume that both the herders and the
targets are initially randomly and uniformly distributed
in a circle ⌦0 of radius R, and that the ⌦G region is a
circle of radius r⇤ < R; both ⌦0 and ⌦G being centered
around the origin. Let H 2 R2N be the vector of the
herders’ positions H = [H1, H2, ..., HN ] with Hi 2 R2

being the Cartesian coordinates of the i-th herder, i =
1, ..., N , and T 2 R2M the vector of the targets’ positions
T = [T1, T2, ..., TM ], with Ta 2 R2 being the Cartesian
coordinates of target a, a = 1, ...,M .

We assume the targets do not exhibt any type of cohe-
sive collective behaviour with their dynamics being de-
scribed by the following overdamped Langevin equation:

Ṫa =
p
2DN + �

X

i2Na

(�� |dia|) d̂ia (1)

where, analogously to what typically considered in the lit-
erature on soft matter, e.g. [18, 19, 22], N is white Gaus-
sian noise, � and D are positive constants, dia = Hi�Ta

is the vector of the di↵erence between the position of
herder i and target a, � > 0 is the radius of the region
where targets are repelled by nearby herders, andNa rep-
resents the set of indexes of all the herders, if any, whose
positions are such that |dia|  �. Note that �� ⌘ vT is
the maximum escaping speed of a target due to the pres-
ence of a nearby herder and that we assume ��2 � D
so that the harmonic repulsive action eventually exerted
by the herders onto the targets dominates over their own
Brownian dynamics
We model the dynamics of the herders as made of two

mutually exclusive terms, one capturing their own dy-
namics and the other their interaction with the targets,
see e.g. [23]. Specifically, we set

Ḣi = (1� ⌘i)Fi(Hi, r
⇤) + ⌘iIi(T,H, ⇠) (2)

where ⌘i = ⌘i(T,H, ⇠) is an indicator function activating
when herder i has at least one target to chase in its sens-
ing region of radius ⇠, Fi(Hi, r⇤) describes the herder’s
own dynamics when it is not chasing any targets while
Ii(T,H, ⇠) is a feedback term capturing the herder’s re-
action to the presence of targets in its sensing region.
Without loss of generality, we choose Fi(Hi, r⇤) so that

the herders, in the absence of nearby targets, converge
towards the origin if outside the goal region of radius r⇤;
namely we set

Fi(Hi, r
⇤) =

(
�vH bHi if |Hi| � r⇤

0 otherwise
(3)

As typically done in the control theoretic and robotics
literature, e.g. [12], we assume that at each time step,
herder i selects a target within its sensing region, say
T

⇤
i
= Ti(H,T, ⇠), to coral and chase. Then, we choose

Ii(T,H, ⇠) = �
h
↵
⇣
Hi � (T⇤

i
+ �bT

⇤
i
)
⌘i

vH

(4)

where � = �/2 is the distance at which the herder places
itself behind the chosen target to coral it towards the goal
region, ↵ is a positive dimensional constant and [·]vH is
a saturation operator that limits the herders’ maximum
speed to vH when chasing a target.
The target to chase T

⇤
i
is selected by herder i as the

target with the largest distance from the origin among
those, if any, within the sensing radius of herder i. Fur-
thermore, if herder i detects other herders Hj in its sens-
ing region (i.e. such that |Hj �Hi|  ⇠), it only consid-
ers those targets Ta for which |Ta � Hi|  |Ta � Hj |.
Through this simple local rule, nearby herders e↵ectively
cooperate so as to decide which target to chase without
needing any global information on the positions of other
herders and targets.
We assume that the herders’ velocity vH > vT as typi-

cally done in the control literature [8] and to prevent the
formation of stable chasing patterns that can be observed
for vT . vH [24–26], and that can hinder the achievement

,
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FIG. 2: Field theory description of shepherding dynamics. (a) The coupling functions v1 and v2 generating
shepherding dynamics; v2 maintains a constant sign reflecting consistent attraction between species, whereas v1
changes sign depending on the position x of the herders with respect to the goal region x = 0, encoding
goal-directed behaviour. (b) Spatiotemporal evolution of the density di!erence εT → εH: starting from a
homogeneous distribution, the density profiles evolve and saturate to a “shepherding configuration” where εH

e!ectively confines εT in a bounded region around the origin. (c-d) Steady state values of εT and εH for ϖ = 0,
ϱ = 0 (c) showing homogeneous distribution and for ϱ > 0 and ϖ > 0 (d) showing confined configuration.(e-g)
Representative one-dimensional configurations of targets (sheep) and herders (dog) illustrating the corresponding
nonreciprocal couplings in Eq. (4). (e) The herder observes a symmetric distribution of targets (↑εT = 0), which
generates no motion for the herder. (f) The herder observes an asymmetric distribution of targets (↑εT ↓= 0), and
moves towards higher targets concentration; this is captured by the coupling the coupling →v2εH↑εT. In (g), the
target distribution is symmetric again (↑εT = 0), however the herder also possesses the additional information of
the position of the goal region (fence) where to collect the targets. The herder will then move so as to complete the
task; this is captured by the coupling term →v1(x)εTεH in Eq. (4).

framework for incorporating decision-making in presence of a pre-defined control goal into continuum theories of113

collective behavior. This framework opens new perspectives for analyzing and designing distributed control strategies114

across diverse applications, from robotic swarm coordination and crowd management to understanding collective115

animal behavior and developing autonomous transportation systems - scenarios where local decisions fundamentally116

drive global behavior.117

2. RESULTS118

A. A field theory for decision-driven shepherding119

Our main achievement is a first-principles continuum theory that captures the essential physics of shepherding,120

derived from microscopic rules of agents’ behavior to predict the emergence of macroscopic patterns. Specifically, we121

propose a mean field framework for shepherding dynamics based on two coupled partial di!erential equations (PDEs)122

A. Lama, MdiB, S. Klapp, Nonreciprocal field theory of decision-making in multi-agent control systems, Nature Communications, 2025
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• We can formulate shepherding as a more general density control problem

• We wish to design the control field to achieve

Leader-follower density control 

37GC Maffettone et al, Leader-Follower Density Control of Spatial Dynamics in Large-Scale Multi-Agent Systems, IEEE TAC, 2025
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• We derived a condition on the leaders’ mass needed for a feasible solution

Feasibility conditions (herdability)

38

Theorem: the LF density control problem admits a feasible solution if and only if 

where



Macroscopic Control Strategy 

39

Theorem: in a feasible scenario, if                                                        and

the error dynamics globally converges to 0 almost everywhere
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Numerical validation
• Desired density: von Mises distribution with zero mean
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convergence robustness
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Governor Macroscopic
Herders' controller

Herders' and
Targets' mixture

Reference governor strategy
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New strategyOld strategy

GC Maffettone et al, Leader-Follower Density Control of Spatial Dynamics in Large-Scale Multi-Agent Systems, IEEE TAC, 2025



• We now have a macroscopic controller but need to 
implement the strategy at the microscopic agent level

• Microscopic control inputs can be computed by the 
agents via spatial sampling:

• This can also be extended to higher dimensions

From macro to micro (discretization)

42



G.C. Maffettone et al, Mixed Reality Environment and High-Dimensional Continuification Control For Swarm Robotics, IEEE TCST, 2024

Numerical and experimental validation

43
B. Di Lorenzo et al, A Continuification-Based Control Solution for Large-Scale Shepherding, European Journal of Control, 2025 (in press)

Mixed reality experiment280 herders & 720 targets



• To compute      each herder needs to know the positions of all other herders

• Solution: estimate the density using a distributed density estimation strategy 
to compute the microscopic control input

A possible limitation

B. Di Lorenzo et al, Decentralized Continuification Control of Multi-Agent Systems via Distributed Density Estimation, CSS Letters, 2025

Macro control Micro control

Density computation

44



• We consider a distributed density estimation scheme based on PI consensus

Distributed Density Estimation

B. Di Lorenzo, et al, Decentralized Continuification Control of Multi-Agent Systems via Distributed Density Estimation, CSS Letters, 2025

Interaction layer

Communication  layer

where the control field U is the macroscopic counterpart of
ui in (1).

For the problem to be well posed, we impose periodic
boundary conditions and initial conditions:

ω(→ε, t) = ω(ε, t), ↑t ↓ 0, (8)
ω(x, 0) = ω0(x), ↑x ↔ [→ε,ε]. (9)

These periodic boundary conditions ensure that, when q =
0, mass is conserved, i.e. (

∫ ω
→ω ω(x, t) dx)t = 0 (recall that

V is periodic by construction as it results from a circular
convolution; see [9] for more details).

B. Macroscopic control design

We design q assuming that the desired density profile
satisfies the reference dynamics

ωdt (x, t) + [ωd(x, t)V d(x, t)]x = 0, (10)

where

V d(x, t) =

∫ ω

→ω
f({x, y}ω)ωd(y, t) dy = (f ↗ ωd)(x, t).

(11)
Defining the error function as

e(x, t) = ωd(x, t) → ω(x, t). (12)

we can state the following theorem.

Theorem 1 (Macroscopic Convergence). Choosing

q(x, t) = Kpe(x, t)+[ω(x, t)V (x, t)]x→ [ωd(x, t)V d(x, t)]x,
(13)

where Kp is a positive control gain, the error dynamics

globally asymptotically pointwisely converges to 0.

Proof. See Theorem 1 in [10] for d = 1.

C. Discretization

Next, we discretize the macroscopic control action to
recover agent-level control inputs. Exploiting (7), we recover
U from q through spatial integration, yielding

U(x, t) = → 1

ω(x, t)

[∫ x

→ω
q(y, t) dy + q(→ε, t)

]
. (14)

Agents can then compute their individual control inputs ui

through spatial sampling of (14), that is by setting ui(t) =
U(xi, t) [9].

IV. DECENTRALIZED CONTINUIFICATION CONTROL

Next, we assume that, in accordance with the constraints
described in Section II, agents cannot access U directly, but
must estimate it through communication with their neigh-
bors. Therefore, each agent in the group can only compute
a local estimate of the macroscopic control action given by:

U (i)(x, t) = → 1

ω̂(i)(x, t)

[∫ x

→ω
q̂(i)(y, t) dy + q̂(i)(→ε, t)

]

(15)
where ω̂(i) and q̂(i) are the agent’s local estimates of ω and
q.

Macroscopic
controller Discretization Physical set of

agents

Distributed
Density Estimator

(a)

Kernel function PI consensus

Distributed Density Estimator

(b)

Fig. 3: (a) Block diagram: individual agents compute their
own macroscopic control action U (i) depending on their local
estimate of the density. (b) Detail of the distributed density
estimator.

The microscopic control input ui can then obtained
through spatial sampling of U (i) as:

ui(t) = U (i)(xi, t), ↑i = 1, . . . , N. (16)

To close the loop, agents need to be able to estimate ω̂(i)

and q̂(i) as will be discussed in what follows.
Fig. 3 illustrates the overall decentralized control strategy

which relies on a distributed density estimation algorithm.

A. Distributed density estimation

The group’s density ω is computed from the agents’
positions. Hence, to perform its estimation in a distributed
fashion, we show how to design c in (2) such that ω̂(i)

converges to ω. Our methodology combines kernel density
estimation (KDE) with PI consensus [2], [17].

In particular, within the field of kernel density estimation,
density functions on ! can be expressed as a summation of
kernel functions

ω(x, t) =
N∑

i=1

Kh (x → xi(t)) , (17)

with Kh : ! ↘ R↑0 ≃ R↑0, h being a tunable smoothing
parameter and

∫

!
Kh(x, t) dx = 1, ↑t ↓ 0, (18)

Up to a division by N , (17) is the average of the kernel
functions at each x. Therefore, we implement c as a PI
consensus algorithm to ensure that, if the communication
topology G is strongly connected, ω̂(i) converges to the
average in (17) with a bounded steady-state error (see [18]).

Hence, following [18], we select c in (2) so that

ω̂t = →ϑ (ω̂ → r) → ϖPLω̂ → ϖIL

∫ t

0
ω̂ dϱ. (19)

where the control field U is the macroscopic counterpart of
ui in (1).

For the problem to be well posed, we impose periodic
boundary conditions and initial conditions:

ω(→ε, t) = ω(ε, t), ↑t ↓ 0, (8)
ω(x, 0) = ω0(x), ↑x ↔ [→ε,ε]. (9)

These periodic boundary conditions ensure that, when q =
0, mass is conserved, i.e. (

∫ ω
→ω ω(x, t) dx)t = 0 (recall that

V is periodic by construction as it results from a circular
convolution; see [9] for more details).

B. Macroscopic control design

We design q assuming that the desired density profile
satisfies the reference dynamics
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where
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Defining the error function as
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we can state the following theorem.
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q(x, t) = Kpe(x, t)+[ω(x, t)V (x, t)]x→ [ωd(x, t)V d(x, t)]x,
(13)

where Kp is a positive control gain, the error dynamics

globally asymptotically pointwisely converges to 0.

Proof. See Theorem 1 in [10] for d = 1.

C. Discretization

Next, we discretize the macroscopic control action to
recover agent-level control inputs. Exploiting (7), we recover
U from q through spatial integration, yielding

U(x, t) = → 1
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[∫ x
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Agents can then compute their individual control inputs ui

through spatial sampling of (14), that is by setting ui(t) =
U(xi, t) [9].
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Next, we assume that, in accordance with the constraints
described in Section II, agents cannot access U directly, but
must estimate it through communication with their neigh-
bors. Therefore, each agent in the group can only compute
a local estimate of the macroscopic control action given by:

U (i)(x, t) = → 1
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[∫ x
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where ω̂(i) and q̂(i) are the agent’s local estimates of ω and
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The microscopic control input ui can then obtained
through spatial sampling of U (i) as:

ui(t) = U (i)(xi, t), ↑i = 1, . . . , N. (16)

To close the loop, agents need to be able to estimate ω̂(i)

and q̂(i) as will be discussed in what follows.
Fig. 3 illustrates the overall decentralized control strategy

which relies on a distributed density estimation algorithm.

A. Distributed density estimation

The group’s density ω is computed from the agents’
positions. Hence, to perform its estimation in a distributed
fashion, we show how to design c in (2) such that ω̂(i)

converges to ω. Our methodology combines kernel density
estimation (KDE) with PI consensus [2], [17].

In particular, within the field of kernel density estimation,
density functions on ! can be expressed as a summation of
kernel functions

ω(x, t) =
N∑

i=1

Kh (x → xi(t)) , (17)

with Kh : ! ↘ R↑0 ≃ R↑0, h being a tunable smoothing
parameter and

∫

!
Kh(x, t) dx = 1, ↑t ↓ 0, (18)

Up to a division by N , (17) is the average of the kernel
functions at each x. Therefore, we implement c as a PI
consensus algorithm to ensure that, if the communication
topology G is strongly connected, ω̂(i) converges to the
average in (17) with a bounded steady-state error (see [18]).

Hence, following [18], we select c in (2) so that
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• By using the online kernel-based density estimation strategy we can solve the 
shepherding problem in a fully decentralized manner

A fully decentralized strategy

46

Herders communicate on a 
10-nearest neighbors topology



Continuification-based control

47

• Continuification
• Mean field
• Graphons

• Macroscopic control design
• in domain
• boundary

• Discretization
• Spatial sampling 
• Finite differences schemes for 

index-dependent PDEs 

Nikitin, D., et al, A continuation method for large-scale modelling and control: from ODEs to PDE, a round trip, IEEE TAC, 2021
G.C. Maffettone et al. Continuification control of large-scale multiagent systems in a ring, IEEE Control Systems Letters, 2022



Conclusions and Open Challenges



• Controlling complex systems requires bridging the gap between different scales
• Shepherding is a great paradigmatic example..
• ..where emerging behaviour needs to arise so

that a distributed control task can be solved
• We saw both microscopic control solutions and

macroscopic solution
• Field equations where derived in the presence

of decision-making controlled agents
• The problem was formulated and solved as a 

density control problem and then discretized
(continuification-based control)

Conclusions
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FIG. 2: Field theory description of shepherding dynamics. (a) The coupling functions v1 and v2 generating
shepherding dynamics; v2 maintains a constant sign reflecting consistent attraction between species, whereas v1
changes sign depending on the position x of the herders with respect to the goal region x = 0, encoding
goal-directed behaviour. (b) Spatiotemporal evolution of the density di!erence εT → εH: starting from a
homogeneous distribution, the density profiles evolve and saturate to a “shepherding configuration” where εH

e!ectively confines εT in a bounded region around the origin. (c-d) Steady state values of εT and εH for ϖ = 0,
ϱ = 0 (c) showing homogeneous distribution and for ϱ > 0 and ϖ > 0 (d) showing confined configuration.(e-g)
Representative one-dimensional configurations of targets (sheep) and herders (dog) illustrating the corresponding
nonreciprocal couplings in Eq. (4). (e) The herder observes a symmetric distribution of targets (↑εT = 0), which
generates no motion for the herder. (f) The herder observes an asymmetric distribution of targets (↑εT ↓= 0), and
moves towards higher targets concentration; this is captured by the coupling the coupling →v2εH↑εT. In (g), the
target distribution is symmetric again (↑εT = 0), however the herder also possesses the additional information of
the position of the goal region (fence) where to collect the targets. The herder will then move so as to complete the
task; this is captured by the coupling term →v1(x)εTεH in Eq. (4).
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• How do we engineer local rules of interaction for
more complex tasks than shepherding?

• What if the targets actively escape from herders?
• What if the herders actively search for targets?
• How to obtain field equations (continuify) 

more complex microscopic control laws?
• Can we use macroscopic descriptions and 

continuification for other large-scale systems?
• Are there better ways to discretize macroscopic

control laws to obtain microscopic control inputs?

Challenges and open problems
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Harnessing complex systems for control

Can we engineer the emerging collective behaviour of a 
complex multiagent system  to solve a distributed control task?
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• Large-scale complex systems abound (drone swarms, cells, smart cities etc)
• Traditional methods are too expensive and inefficient to control these systems: 

scale, emergence and nonlinearities are uniquely entangled
• We need complex systems to control their own behaviour and self-organize to 

solve distributed control tasks

Why this matters now?
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… and maybe one day..
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