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Abstract: This paper investigates privacy-preserving Nash equilibrium (NE) computation in non-cooperative games where play-
ers may have correlated payoff functions with prior knowledge. Although mechanisms with differential privacy (DP) guarantees
are widely used to mitigate information leakage, their privacy guarantees are ineffective for correlated datasets. To address this
limitation, we are inspired by pointwise maximal leakage (PML), a recently proposed privacy measure that exploits prior knowl-
edge for assessing information leakage. We first revisit the traditional privacy-preserving mechanism and demonstrate that its
PML guarantee averaged over players can be bounded by its DP guarantee. On this basis, we propose a novel NE-computing
mechanism that integrates prior knowledge of players’ payoff datasets into noise design, ensuring the adaptation of existing
techniques for convergence guarantees. Furthermore, we show that the proposed mechanism offers a tighter bound with PML
guarantees than the traditional mechanism with DP guarantees, which refines the over-conservative assessment of information
leakage risks with correlated payoff datasets. Numerical experiments illustrate the effectiveness of our theoretical results.
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1 Introduction

Non-cooperative game-theoretical models investigate
strategic interactions among multiple players in competi-
tive environments. A fundamental concept in such game
problems is the Nash Equilibrium (NE), a strategy profile in
which no player can improve their outcome by unilaterally
altering their decision-making. The computation of NE has
been a key focus in practice, driving the development of
NE-seeking algorithms over the past decade [1–5].

Since the computational mechanisms of NE involve in-
formation exchange among players, privacy protection has
become a crucial consideration in algorithm design to
mitigate information leakage. Differential Privacy (DP),
recognized for its explicit mathematical formulation, has
emerged as the popular standard for assessing privacy leak-
age risks [6–8]. Recent studies have incorporated DP into
game-theoretic problems to develop privacy-preserving NE-
computing mechanisms. For example, an NE-seeking algo-
rithm for aggregate games was designed to achieve both ap-
proximate convergence and bounded privacy leakage with
DP guarantees [9], followed by the extended study on
stochastic game settings [10]. Further research focused on
general game models with convergence to the exact NE, as
well as the investigations on the privacy budget under DP
guarantees [11, 12].

Nevertheless, DP is not without limitations. A primary
criticism is that DP focuses on individual entry differences
and ignores prior distribution knowledge. Thus, DP privacy
guarantees are ineffective for assessing privacy leakage risks
in correlated datasets, as first pointed out in [13] and analyti-
cally shown in [14]. In fact, practical datasets are frequently
accompanied by significant distributional patterns and inter-
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dependencies [15]. For instance, medical databases exhibit
that some sensitive attributes of different individuals may be
correlated across the population [13], while social network
datasets reveal interdependencies in user preferences due to
familial or social ties [16]. Such inherent correlations en-
hance the privacy leakage risk, as adversaries can exploit
these relationships to infer sensitive information. This limi-
tation highlights the need for privacy measures that account
for the underlying distributional structures, including corre-
lated datasets.

To address this concern, recently, a promising informa-
tion leakage measure, known as pointwise maximal leak-
age (PML), was introduced that has quickly gained signif-
icant attention [17]. As the name suggests, PML gener-
alizes the concept of maximal leakage [18] in a pointwise
view. PML exploits information leakage in datasets with
prior distribution by examining the worst-case ratio between
two scenarios–whether the output sequence is observed or
not by an adversary. Unlike DP, PML can effectively as-
sess information leakage with underlying prior distributions,
making it particularly advantageous for correlated datasets.
The recent research in [19] further refined the PML verifica-
tion, enhancing its practical applicability. As a result, PML
becomes an operationally meaningful, robust, and flexible
measure for designing privacy-preserving mechanisms.

In this paper, we focus on the privacy-preserving NE com-
putation in multi-player non-cooperative games. We con-
sider that the players have correlated payoff function sets
with prior distributions in practice. Traditional mechanisms
with DP guarantees are inadequate to assess information
leakage in such scenarios. To address this limitation, we
are inspired by PML to design a novel NE-computing mech-
anism that effectively accounts for correlated payoffs with
prior knowledge.
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Our main contributions are as follows.
• We revisit the traditional privacy-preserving NE-

computing mechanism and assess its information leak-
age using DP and PML. Our finding shows that its PML
guarantee averaged over players can be bounded by the
same DP guarantee. This result highlights the broader
applicability of PML in assessing information leakage
with players’ correlated payoffs.

• We propose a novel NE-computing mechanism that in-
tegrates the information of prior distributions of play-
ers’ payoff datasets into the noise design. The de-
sign maintains bounded noise, allowing for the seam-
less adoption of developed convergence analysis in the
existing privacy-preserving algorithms.

• We analyze the proposed NE-computing mechanism.
On the one hand, the DP guarantee maintains the same
bound as in the traditional privacy-preserving mecha-
nism. On the other hand, given the prior distribution of
correlated payoff datasets, the PML guarantee indicates
a tighter bound, which refines the over-conservative as-
sessment of information leakage risks.

The organization of the paper is as follows. Section II
shows the problem formulation. Section III introduces the
PML measure and shows its relation with DP. Section IV
proposes a novel NE-computing mechanism with both al-
gorithm convergence analysis and better privacy protection.
Section V gives numerical experiments to evaluate our theo-
retical results, followed by the conclusions in Section VI.

2 Problem Formulation

In this section, we show the non-cooperative game-
theoretical model, along with the NE concept, the traditional
privacy-preserving mechanism, the DP guarantee, and the
problem statement with the current challenge.

2.1 Nash Equilibrium and Computation
Consider a non-cooperative game G with multiple play-

ers indexed by [N ] = {1, . . . , N}. Player i ∈ [N ] takes a
strategy xi subject to a local constraint Ωi ⊆ Rn. Let x =(
xT
1 , . . . , x

T
N

)T
be the stacked strategy profile for all players

and x−i =
(
xT
1 , . . . , x

T
i−1, x

T
i+1, . . . , x

T
N

)T
be the profile

except for player i. Take Ω =
∏N

i=1 Ωi ⊆ RnN as all play-
ers’ constraints. Player i has the continuously differentiable
payoff function fi : RnN → R. Take f = {f1, . . . , fN} as
the set of all player’s payoff functions, and similarly define
the set f−i = {f1, . . . , fi−1, fi+1, . . . fN}. Given x−i, the
objective of player i is to solve the following problem:

min
xi∈Ωi

fi (xi, x−i) .

With these factors, the multi-player game can be represented
by a triple G = {[N ],Ω, f}.

Definition 1 (Nash Equilibrium) An strategy profile x∗ =(
x∗
i , x

∗
−i

)
∈ Ω is said to be an NE of game G if for all

i ∈ [N ] and all xi ∈ Ωi, we have

fi
(
x∗
i , x

∗
−i

)
≤ fi

(
xi, x

∗
−i

)
.

NE is a primary concept in non-cooperative games be-
cause when achieving an NE, no players can obtain a better
payoff by unilaterally changing strategies.

Consider designing discrete-time algorithms to compute
an NE. Regarding the protection of players’ private informa-
tion in the payoffs f , players are usually not willing to send
their strategy x directly to others. Instead, at each time k
in the computation iterations, player i adds noise ζki to its
strategy xk

i . Then, player i broadcasts its obscured strategy
oki = xk

i + ζki to other players, which is also called observa-
tion. Take ok−i as player i’s observations of other players.

Furthermore, let x = {xk}Tk=0 with xk = {xk
i }Ni=1 rep-

resent the strategy sequence from time 0 to T . Analogously,
we can define the observation sequence by o = {ok}Tk=0

with ok = {oki }Ni=1. In the non-cooperative game G, player
i only knows its payoff function fi, its strategy xk

i , and ob-
servation ok at current time k. To achieve an NE strategy,
player i may update its strategy variable xk

i by xk+1
i =

h(xk
i , o

k, λk, fi), where λk is the iteration stepsize and h
is an operator constructed according to difference compu-
tational mechanisms. In this view, the potentially designed
algorithm for each player i ∈ [N ] can be expressed as the
following mechanism:{

oki = xk
i + ζki , x0

i ∈ Ωi,

xk+1
i = h(xk

i , o
k, λk, fi).

(A1)

Concretely, there exist various ways to design the opera-
tor h(xk

i , o
k, λk, fi) in practice. For instance, a basic idea is

to update the strategy through the best response mechanism
[6], i.e., xk+1

i = argmaxxi∈Ωi fi(xi, o
k
−i). The first-order

derivative of payoff functions can also be adopted [11], i.e.,
xk+1
i = xk

i + λk∇xi
fi(x

k
i , o

k
−i). No matter the detailed

kind of computation mechanisms in A1, one main purpose
is the guarantee of algorithm convergence. Besides conver-
gence, such an NE-computing mechanism A1 with noise is
employed for privacy protection. Thus, it is also important
to consider the privacy guarantees along with iterations.

2.2 Revisiting Differential Privacy
As a popular standard to protect privacy, DP has been

widely applied to algorithm design in optimization and game
problems [9, 10, 12, 20]. DP assesses the information leak-
age risk in mechanisms from the perspective of an individ-
ual partaking. The expression of DP is based on adjacent
datasets, namely, two datasets that only differ in one entry
[7]. In the game model G, the players’ payoff function set
f is considered as the private dataset. Two function sets f
and f ′ are accordingly adjacent if only one player’s payoff
function is different [9], i.e., there exists i ∈ [N ] such that
fi ̸= f ′

i but fj = f ′
j for all j ̸= i.

Let Ef be the set containing all possible payoff functions
f , while F be the σ-algebra on Ef . Similarly, we can define
Fi and F−i generated by fi and f−i, respectively. Suppose
that (Ef ,F) is a standard Borel space. In this context, take
F as a random variable from (Ef ,F). Besides, regarding
the observation sequence o, we can similarly define the set
Eo, the σ-algebra O, the standard Borel space (Eo,O), and
the random variable O.

With these preparations, algorithm A1 could be viewed as
a mapping A1 : Ef → O. We can further define a map-
ping PO|F : Ef × O → [0, 1] such that PO|F=f (·) is the
conditional probability of the observation sequence o ∈ O
given the payoff function set f ∈ Ef . The definition of DP



regarding algorithm A1 is accordingly as follows [8].

Definition 2 (ϵ-Differential Privacy) Given ϵ ≥ 0, algo-
rithm A1 is said to be ϵ-DP if for any possible o ∈ O and
any adjacent datasets f and f ′, we have

PO|F=f (o)

PO|F=f ′(o)
≤ exp(ϵ).

The formulation of DP guarantees in Definition 2 is con-
sistent with other common formulations. For example, ac-
cording to the results in the field of control and optimization
[6, 9], algorithm A1 is ϵ-DP if for any two adjacent datasets
f, f ′ ∈ Ef and any observation sequence os ⊆ Eo, we have

P [A1 (f) ∈ os] ≤ eϵP [A1 (f
′) ∈ os] .

Both the above formulation and Definition 2 illustrate the
fact that, if the privacy guarantee ϵ is small enough, then the
likelihoods of all possible observation sequences o and all
adjacent datasets are close, meaning the difficulty of distin-
guishing the two adjacent datasets with high probability.

Given an observation sequence o and the payoff function
set f , we can rewrite the strategy sequence x generated by
an iterated algorithm (here it refers to algorithm A1) as x =
A(o,f). At each time k, based on any adjacent datasets f
and f ′, define DP sensitivity [12, 20] of algorithm A1 by

∆DP (k)= sup
o∈O

 sup
xk
i ∈A(o,f)

x′k
i ∈A(o,f′)

∥xk − x′k∥1

 . (1)

The following lemma has established a bridge between pri-
vacy guarantee ϵ and DP sensitivity ∆DP .

Lemma 1 ([20]) Suppose that the noise in algorithm A1 fol-
lows a Laplace distribution ζki ∼ Lap(0,Mk) for i ∈ [N ].
For any finite iteration T , algorithm A1 is ϵ-DP if

T∑
k=0

∆DP (k)

Mk
≤ ϵ.

2.3 Problem Statement
In fact, a notable concern is that DP has been subject to

scrutiny, with some studies suggesting that it may be vul-
nerable due to its omission of the intrinsic distributional
characteristics of correlated datasets [13]. As outlined in
Definition 2, DP does not incorporate any underlying dis-
tribution information within the payoff function datasets f ,
thereby failing to capture how these inherent distributions in-
fluence the information leakage risk. While extant research
often assumes that datasets are comprised exclusively of in-
dependent records, the reality is that datasets frequently ex-
hibit significant distributional patterns and interdependen-
cies [15], which in turn affect the privacy-preserving mech-
anism. For example, medical databases exhibit that some
sensitive attributes of different individuals may be corre-
lated across the population [13]. In the social network [16],
agents’ preferences may be strongly correlated due to fa-
milial factors or friendship ties. Datasets characterized by
underlying distribution patterns pose elevated privacy risks,
especially when the distributions have inherent correlations

and the population base is large. Traditional DP guarantees
are inadequate to assess information leakage in such scenar-
ios. We will elucidate more in the following example.

Example 1 Suppose a company with 10 members, where
each member works on either Task 1 or Task 2. A busi-
ness rival aims to figure out “How many members work on
Task 1?” Suppose that Lap(0, 1

β ) noise has been added to
the truth with DP guarantees [13]. Imagine an extreme case
where members’ choices are 100% correlated due to, for in-
stance, the limited resources. Then, the output of the query
answer might be 12, which could be proved to be exp(10β)
times more likely when the truth is 10 (refers to Task 1) than
when the truth is 0 (refers to Task 2). Hence, DP falls short in
preventing information leakage under these circumstances.

Generally, for datasets with an underlying distribution, the
risk of information leakage is a pressing concern. The tra-
ditional DP framework, focusing on the privacy of individ-
ual entry differences, is ineffective for assessing the amount
of information leakage if the prior distribution of datasets
is not independent, especially for large-scale datasets with
high correlation. This limitation underscores the importance
of an innovative privacy measure and the development of a
privacy-preserving NE-computing mechanism.

Problem 1 How can we design a privacy-preserving NE-
computing mechanism with privacy guarantees when play-
ers have correlated payoff datasets?

3 Pointwise Maximal Leakage

In this section, we will introduce PML and its relation
with DP concerning discrete-time algorithm iterations.

PML has ascended as a promising privacy measure re-
cently and garnered significant attention [17]. As the name
suggests, PML generalizes the concept of maximal leakage
[18] in a pointwise view and integrates robustness character-
istics by quantifying the amount of worst-case information
leakage of a mechanism. In other words, PML can assess
any process from a database with arbitrary distribution to an
outcome sequence and thus is operationally meaningful, ro-
bust, and flexible.

Recall the random variables F and O taking values
from (Ef ,F) and (Eo,O), respectively. To describe
the prior information behind payoff functions f , con-
sider the distributions PF of F and PO of O. Denote
supp (PF ) = {f ∈ F : PF (f) > 0} and supp (PO) =
{o ∈ O : PO(o) > 0} as the support sets of F and O, re-
spectively. When an adversary observes o, it usually wants
to guess the true F . Thus, take F̂ as the random variable
of the adversary’s guess and (Ef̂ , F̂) as all its possible mea-
surable spaces. Analogously, the guessing process can be
denoted by a mapping PF̂ |O : Eo × F̂ → [0, 1].

In the following, we introduce PML from the perspective
of gain functions [19], and more comprehensive discussions
can be found in [17]. Based on the guess, the objective of
an adversary is to maximize its expected gain g to assess
the performance of the guess, where the form of the gain
function should be g : F × F̂ → R+. Noticing the adver-
sary’s preference is unknown, the adversary may construct
gain functions in different ways, for example, by the identity



function or by other metrics and distances. To address these
scenarios, we consider that the adversary could pick any gain

function g from Γ ≜

{
g : sup

f̂∈F̂
E
[
g(F, f̂)

]
< ∞

}
. Given

a specific realization f̂ of the guess, E[g(F, f̂)] should be
the adversary’s expected gain regarding a random variable
F . Given the observation sequence o, E[g(F, F̂ )|O = o]
should be the adversary’s expected gain between a random
variable F and a random variable F̂ .

Based on the concept of the gain function g, when the
adversary has no observation, sup

f̂∈F̂
E[g(F, f̂)] denotes the

worst-case value for protecting privacy since the adversary
maximizes its expected gain. On the other hand, when the
adversary observes o, sup

PF̂ |O

E[g(F, F̂ )|O = o] is the worst-

case value for protecting privacy since the adversary max-
imizes its expected gain among all guesses F̂ according to
possible mappings PF̂ |O.

Then, these two expected adversarial gains in the worst
case over all possible measurable spaces and for all possible
gain functions could be utilized to describe the PML of any
mechanism [19]. Specifically, defined the PML from F to o
as

ℓ(F → o) := log sup
(EF̂ ,F̂),g∈Γ

sup
PF̂ |O

E[g(F, F̂ )|O = o]

sup
f̂∈F̂

E[g(F, f̂)]
. (2)

Remark 1 Upon examining the above formulation, PML is
defined with the combination of the suprema over all possi-
ble guessing and the ratio1 of worst-case values. The def-
inition ensures that PML captures the worst-case scenario
and quantifies the largest amount of potential information
leakage. In this context, PML serves as a robust measure of
privacy protection.

Although PML possesses remarkable advantages, its for-
mulation in (2) is complicated, thereby posing considerable
challenges for its practical implementation. Fortunately, it
has been shown in the following theorem that PML has a
simple equivalent formulation beneficial for analysis.

Theorem 1 ([19, Theorem 3]) The PML from F to o ∈
supp (PO) can be expressed as

ℓ(F → o) = log sup
f∈supp(PF )

PO|F=f (o)

PO(o)
.

More details on the fundamental result of PML can be
found in [19]. With this, we can now define a privacy mea-
sure suitable for our NE computation.

Definition 3 (ϵ-PML averaged over players) Given ϵ ≥ 0
and a prior distribution PF of players’ payoff function f ,
algorithm A1 is said to be ϵ-PML averaged over players if
for all o ∈ supp (PO), we have

1

N
ℓ(F → o) ≤ ϵ.

1We use the conventions that 0
0
= 1 and x

0
= ∞ if x > 0.

Note that PML assesses the information leakage across the
entire dataset, while DP merely assesses the leakage of all
possible adjacent datasets with one different entry. Hence,
it is reasonable to introduce the factor 1

N in Definition 3,
which aligns the privacy guarantee with the same level as
DP regarding player numbers.

A general equivalence between the formulations of DP
and PML of the worst case over individual data entries has
been provided in [21, Theorem 4.2] by considering finite al-
phabets. Here, we consider continuous payoff functions in
the game G setting. In particular, we investigate Laplace
noise in algorithm A1 and reveal the privacy guarantees of
DP and PML in the following result.

Theorem 2 Suppose that the noise in algorithm A1 follows
a Laplace distribution ζki ∼ Lap(0,Mk) for i ∈ [N ]. If
there exists ϵ > 0 such that, for any finite iteration T ,

T∑
k=0

∆DP (k)

Mk
≤ ϵ,

then algorithm A1 is both ϵ-DP and ϵ-PML averaged over
players (for any prior distribution PF ).

Proof If
T∑

k=0

∆DP (k)
Mk ≤ ϵ, then algorithm A1 is ϵ-DP ac-

cording to [20]. By Definition 2, for any possible o ∈ O
and two adjacent payoff function sets f and f ′, we have
PO|F=f (o)

PO|F=f′ (o)
≤ exp(ϵ). Recall PFi

and PF−i
as the distri-

butions of Fi and F−i, respectively. The ϵ-DP result holds
over the support sets, i.e., for any o ∈ supp (PO), i ∈ [N ],
f−i ∈ supp

(
PF−i

)
, fi, f

′
i ∈ supp (PFi), we can obtain

PO|F={fi,f−i}(o)

PO|F={f′
i
,f−i}

(o) ≤ exp(ϵ).

For f = {f1, . . . , fN} and f ′ = {f ′
1, . . . , f

′
N}, take the

sets f[i:j] = {fi, . . . , fj} and f ′
[i:j] = {f ′

i , . . . , f
′
j} if i ≤ j,

while f[i:j] = f ′
[i:j] = ∅, if i > j. In this view, for any

two datasets f and f ′ which are not restricted as adjacent
payoffs, we have

PO|F=f (o)

PO|F=f ′(o)

=
PO|F={f[1:N]}(o)

PO|F={f ′
[1:N]

}(o)

=
PO|F={f1,f[2:N]}(o)

PO|F={f ′
1,f[2:N]}(o)

·
PO|F={f ′

1,f[2:N]}(o)

PO|F={f ′
1,f

′
[2:N]

}(o)

=
PO|F={f1,f[2:N]}(o)

PO|F={f ′
1,f[2:N]}(o)

·
PO|F={f ′

[1:1]
,f2,f[3:N]}(o)

PO|F={f ′
[1:1]

,f ′
2,f[3:N]}(o)

·
PO|F={f ′

[1:2]
,f[3:N]}(o)

PO|F={f ′
[1:2]

,f ′
[3:N]

}(o)

= · · ·

=ΠN
i=1

PO|F={f ′
[1:i−1]

,fi,f[i+1:N]}(o)

PO|F={f ′
[1:i−1]

,f ′
i ,f[i+1:N]}(o)

.

Notice that
PO|F={f′

[1:i−1]
,fi,f[i+1:N]}

(o)

PO|F={f′
[1:i−1]

,f′
i
,f[i+1:N]}

(o) ≤ exp(ϵ) since

{f ′
[1:i−1], fi, f[i+1:N ]} and {f ′

[1:i−1], f
′
i , f[i+1:N ]} are adja-



cent. Thus, we have the following inequality

sup
o∈supp(PO)

sup
f,f ′∈supp(PF )

PO|F=f (o)

PO|F=f ′(o)
≤ exp(Nϵ).

By taking the reciprocal of both sides and swapping f and
f ′ in the above inequality,

inf
o∈supp(PO)

inf
f,f ′∈supp(PF )

PO|F=f (o)

PO|F=f ′(o)
≥ exp(−Nϵ).

To analyze the bounds of PML, we first introduce the follow-
ing inequalities with integrals∫

f∈supp(PF )

inf
o∈supp(PO)

inf
f ′∈supp(PF )

PO|F=f (o)

PO|F=f ′(o)
PF (f)df

≥ inf
o∈supp(PO)

inf
f̂ ,f ′∈supp(PF )

PO|F=f̂ (o)

PO|F=f ′(o)

∫
f∈supp(PF )

PF (f)df

≥ exp(−Nϵ).

Following the above result, we can derive

sup
o∈supp(PO)

exp ℓ(F → o)

= sup
o∈supp(PO)

sup
f ′∈supp(PF )

PO|F=f ′(o)∫
f∈supp(PF )

PO|F=f (o)P (f)df

≤ 1∫
f∈supp(PF )

inf
o∈supp(PO)

inf
f ′∈supp(PF )

PO|F=f (o)

PO|F=f′ (o)
PF (f)df

≤ exp(Nϵ),
(3)

where the first inequality holds because of Fatou’s Lemma.
Therefore, the above conclusion yields that algorithm A1 is
ϵ-PML averaged over players, which completes the proof. □

The result in Theorem 2 shows that the applicability area
of PML is wider than that of DP. If an algorithm adopts the
noise with a Laplace distribution, then the bound of DP guar-
antees is the same as PML guarantees. On the other side, the
conclusion in Theorem 2 is true for any prior distribution be-
hind the payoff function dataset f , meaning the capability of
PML to describe the information leakage over the correlated
datasets.

4 Privacy-preserving NE-computing Mechanism

In this section, we aim to design a novel NE-computing
mechanism and show both the convergence guarantee and
better privacy guarantees than algorithm A1.

Following the game setting for introducing algorithm
A1, we further consider a prior distribution PFi

be-
hind the payoff function fi of each player i. We re-
design the noise in algorithm A1 by utilizing each player’s
prior distribution PFi

. Here, denote the entropy Hi =
−
∫
fi∈supp(PFi)

PFi(fi) log(PFi(fi))dfi and the function

σ(s) = 1 + 1
1+exp(−s) generated by a sigmoid function.

The following mechanism shows the novel discrete-time NE
computation. For i ∈ [N ],{

oki = xk
i + ζki · σ(Hi), x0

i ∈ Ωi,

xk+1
i = h(xk

i , o
k, λk, fi).

(A2)

Similarly to algorithm A1, we continue using the scalar λk

and the operator h in algorithm A2 to represent an iteration
stepsize and a general updating process regarding player i’s
strategy variable xk

i , respectively.

4.1 Convergence Analysis
As a newly proposed algorithm, its convergence analysis

is of primary concern. Similarly to most NE-computing al-
gorithms in non-cooperative games [1–5, 9, 11], suppose the
payoff function set f equipped with good properties lead-
ing to a strongly monotone and Lipchitz continuous pseudo-
gradient, as well as the constraint set Ω with convexity and
compactness. We give the convergence result of algorithm
A2 based on the noise following a Laplace distribution and
the payoff prior distribution PFi

.

Theorem 3 Suppose that the noise following Laplace dis-
tribution ζki ∼ Lap(0,Mk) satisfies

∑∞
k=0(M

k)2 < ∞. If
algorithm A1 is convergent to an NE, then with the same up-
dating operator h and stepsize setting λk, algorithm A2 is
also convergent to the same NE.

Proof It is not hard to find that the main distinction between
algorithms A1 and A2 lies in the scaling of the noise vari-
ance from ζki to ζki σ(Hi). Generally, when proving the con-
vergence of algorithm A1, all concerns about the noise are
to examine whether some constants can bound them. For
each time k, take X k = {xl

i, i ∈ [N ], 0 ≤ l ≤ k}. Specif-
ically, after some process like [11, Lemma 5], the follow-
ing two properties of noise are necessary to verify for the
convergence of algorithm A1: E[⟨C1, C2ζ

k
i ⟩|X k] = 0 and

E[⟨C3ζ
k
i , C4ζ

k
i ⟩|X k] ≤ c, where the inner product is well-

defined over vectors in Rn, and constants satisfy C1 ∈ Rn,
C2, C3, C4 ∈ Rn×n, and c ∈ R.

Regarding our noise setting in algorithm A2, we need to
examine ζki σ(Hi). Recalling ζki ∼ Lap(0,Mk), we ob-
tain ζki σ(Hi) ∼ Lap(0, σ(Hi)M

k). Hence, we can fur-
ther derive E[ζki σ(Hi)|X k] = 0 and E[∥ζki σ(Hi)∥22|X k] =
2σ(Hi)

2(Mk)2. In this context, we have

E[⟨C1, C2ζ
j
i σ(Hi)⟩|X k] = CT

1 C2E[ζji σ(Hi)|X k] = 0,

E[⟨C3ζ
k
i σ(Hi), C4ζ

k
i σ(Hi)⟩|X k] ≤ ∥CT

3 C4∥2σ(Hi)
2(Mk)2.

Thus, the newly introduced noise terms in algorithm A2 will
not impact its convergence analysis. As a result, provided
that algorithm A1 converges to an NE, algorithm A2 is guar-
anteed to converge to the same NE. □

4.2 Information Leakage Analysis
We can follow the definitions of ϵ-DP and ϵ-PML aver-

aged over players of algorithm A1 to analogously define
these two guarantees of algorithm A2. The following the-
orem assesses the PML guarantee of algorithm A2.

Theorem 4 Suppose that the noise ζki follows a Laplace dis-
tribution with ζki ∼ Lap(0,Mk). If there exists ϵ1 > 0 such
that, for any finite iteration T ,

T∑
k=0

∆DP (k)

Mk
≤ ϵ1,

then algorithm A2 is ϵ1-DP and there exists ϵ2 < ϵ1 such
that algorithm A2 is ϵ2-PML averaged over players.



To give a rigorous proof of Theorem 4, we need to in-
troduce a new sensitivity term to assess the bound of PML
guarantees in algorithm A2. Recalling the DP sensitivity in
(1), we denote the PML sensitivity of a fixed f at time k by

∆PML(k, f)= sup
o∈supp(PO)
f′∈supp(PF)

 sup
xk∈A(o,f)

x′k∈A(o,f′)

∥xk−x′k∥1

 . (4)

The distinction between ∆DP (k) and ∆PML(k, f)
emerges in their functional domains: ∆PML considers all
possible payoff function sets over F while ∆DP just oper-
ates with the adjacent sets of f . Following the theoretical
results in DP [9, 12], if f and f ′ are adjacent where fi ̸= f ′

i

but fj = f ′
j for j ̸= i, then ∥xk −x′k∥1 = ∥xk

i −x′k
i ∥1.

In this special case, both ∆PML and ∆DP yield equiva-
lent results with the almost-sure guarantee. Consequently,
∆PML demonstrates superior generality when considering
non-adjacent functions, since ∥xk−x′k∥1 may not equal to
∥xk

i −x′k
i ∥1 in most cases and ∆DP could no longer char-

acterize this scenario. In other words, ∆PML expands the
descriptive domain beyond the limitations of ∆DP and of-
fers flexibility for privacy analysis across players’ general
payoff function spaces.

Next, we use the concept of ∆PML to prove Theorem 4.

Proof Take Ok and Xk as the random variables to represent
the observation ok and the strategy xk at time k, respectively.
Also, take O[k] and X [k] as the random variables to repre-
sent the observation {ol}kl=0, the strategy {xl}kl=0 from time
l = 0 to k, respectively. To avoid ambiguity, if l = 0, take
O[l−1] = ∅ and {ol−1, xl} = {xl}. According to [20], for
any fixed o, f and T ,

PO|F=f (o)

=

∫
PO[T ],X[T ]|F=f ({ok, xk}Tk=0)dx

=

∫
ΠT

k=0POk,Xk|F=f,{O[k−1],X[k−1]}={ol,xl}k−1
l=0

({ok, xk})dx

=

∫
ΠT

k=0{POk|F=f,{O[k−1],X[k]}={ol−1,xl}k
l=0

(ok)

· PXk|F=f,{O[k−1],X[k−1]}={ol,xl}k−1
l=0
(xk)}dx

=

∫
x∈A(o,f)

ΠT
k=0Π

N
i=1POk

i |F=f,Xk
i =xk

i
(oki )dx.

Due to ζki ∼ Lap(0,Mk), we have xk
i + ζki · σ(Hi) ∼

Lap(xk
i , σ(Hi)M

k), and

POk
i |F=f,Xk

i=x
k
i
(xk

i + ζki · σ(Hi)) =
exp

(
−∥oki −xk

i ∥1

σ(Hi)Mk

)
2σ(Hi)Mk

.

Thus, for any f and f ′, the following inequality holds

POk
i |F=f,Xk

i =xk
i
(oki )

POk
i |F=f ′,Xk

i =x′k
i
(oki )

=

1
2σ(Hi)Mk exp

(
−∥oki −xk

i ∥1

σ(Hi)Mk

)
1

2σ(Hi)Mk exp
(
−∥oki −x′k

i ∥1

σ(Hi)Mk

)
=exp

(
∥oki −x′k

i ∥1−∥oki −xk
i ∥1

σ(Hi)Mk

)
.

(5)

Now consider ∥oki −x′k
i ∥1−∥oki −xk

i ∥1 ≤ ∥xk
i −x′k

i ∥1. By
substituting this in (5), we have

ΠT
k=0Π

N
i=1

POk
i |F=f,Xk

i =xk
i
(oki )

POk
i |F=f ′,Xk

i =x′k
i
(oki )

≤ exp

(
T∑
k=0

N∑
i=1

∥xk
i − x′k

i ∥1
σ(Hi)Mk

)

≤ exp

(
T∑
k=0

N∑
i=1

∥xk
i − x′k

i ∥1
Mk

)
.

According to [20], if f and f ′ are adjacent, then we have

PO|F=f (o)

PO|F=f ′(o)
≤ exp

(
−

T∑
k=0

∆DP (k)

Mk

)
.

Thus, algorithm A2 is ϵ1-DP due to
T∑

k=0

∆DP (k)
Mk ≤ ϵ1.

Similarly, we can find ∥oki −x′k
i ∥1−∥oki −xk

i ∥1 ≥ −∥xk
i −

x′k
i ∥1. Again, by substituting the above condition in (5),

ΠT
k=0Π

N
i=1

POk
i |F=f,Xk

i =xk
i
(oki )

POk
i |F=f ′,Xk

i =x′k
i
(oki )

=ΠT
k=0Π

N
i=1 exp

(
∥oki − x′k

i ∥1 − ∥oki − xk
i ∥1

σ(Hi)Mk

)
≥ΠT

k=0Π
N
i=1 exp

(
−∥xk

i − x′k
i ∥1

σ(Hi)Mk

)
=exp

(
−

T∑
k=0

N∑
i=1

∥xk
i − x′k

i ∥1
σ(Hi)Mk

)
.

(6)

By investigating a relation

xk+1
i = x′k+1

i + h(xk
i , o

k, λk, fi)− h(x′k
i , ok, λk, f ′

i),

let us define a mapping B : A(o, f ′) → A(o, f) such that
x = B(x′). Obviously, B is a bijection from set A(o, f ′) to
set A(o, f). Then,∫

x∈A(o,f)

ΠT
k=0Π

N
i=1POk

i |F=f,Xk
i =xk

i
(oki )dx

=

∫
x∈A(o,f)

ΠT
k=0Π

N
i=1POk

i |F=f,Xk
i =xk

i
(oki )

ΠT
k=0Π

N
i=1POk

i |F=f ′,Xk
i =x′k

i
(oki )

·ΠT
k=0Π

N
i=1POk|F=f ′,Xk

i =x′k
i
(oki )dx

≥
∫
x′∈A(o,f ′)

exp

(
−

T∑
k=0

N∑
i=1

∥xk
i − x′k

i ∥1
σ(Hi)Mk

)
·ΠT

k=0Π
N
i=1POk|F=f ′,Xk

i =x′k
i
(oki )dx

′

≥ inf
o∈supp(PO)
f′∈supp(PF)

 inf
xk∈A(o,f)

x′k∈A(o,f′)

exp

(
−

T∑
k=0

N∑
i=1

∥xk
i − x′k

i ∥1
σ(Hi)Mk

)
·
∫
x′∈A(o,f ′)

ΠT
k=0Π

N
i=1POk|F=f ′,Xk

i =x′k
i
(oki )dx

′.

(7)



By considering both (6) and (7), we have

PO|F=f (o)

PO|F=f ′(o)

=

∫
x∈A(o,f)

ΠT
k=0Π

N
i=1POk

i |F=f,Xk
i=x

k
i
(oki )dx.∫

x′∈A(o,f ′)
ΠT

k=0Π
N
i=1POk

i |F=f ′,Xk
i=x

′k
i
(oki )dx

′.

≥ exp

− T∑
k=0

1

Mk
sup

o∈supp(PO)
f′∈supp(PF)

 sup
xk∈A(o,f)

x′k∈A(o,f′)

N∑
i=1

∥xk
i − x′k

i ∥1
σ(Hi)




> exp

(
−

T∑
k=0

∆PML(k, f)

Mk

)
,

where the last inequality holds due to σ(Hi) > 1 and the def-
inition of ∆PML in (4). Recalling the sensitives of ∆PML in
(4) and ∆DP in (1), we can obtain the following inequality:

T∑
k=0

∆PML(k, f)

Mk

=
T∑
k=0

1

Mk
sup

o∈supp(PO)
f′∈supp(PF)

 sup
xk∈A(o,f)

x′k∈A(o,f′)

N∑
i=1

∥xk
i − x′k

i ∥1


≤

T∑
k=0

1

Mk
sup

o∈supp(PO)
f′∈supp(PF)

 sup
xk∈A(o,f)

x′k∈A(o,f′)

max
i∈[N ]

N∥xk
i − x′k

i ∥1


≤

T∑
k=0

N
∆DP (k)

Mk

≤Nϵ1.

Suppose there exists T and f, f ′ ∈ supp (PF ) such that∑T
k=0

∆PML(k,f)
Mk ̸=

∑T
k=0

∆PML(k,f ′)
Mk ; Otherwise, f and f ′

are identical almost surely in x. On this basis, we have∫
f∈supp(PF )

inf
o∈supp(PO)

inf
f ′∈supp(PF )

PO|F=f (o)

PO|F=f ′(o)
PF (f)df

≥
∫
f∈supp(PF )

exp

(
−

T∑
k=0

∆PML(k, f)

Mk

)
PF (f)df

> exp(−Nϵ1).

Thus, there exists ϵ2 < ϵ1 such that

exp(−Nϵ2)≤
∫
f∈supp(PF )

exp

(
−

T∑
k=0

∆PML(k, f)

Mk

)
PF (f)df.

Recalling (3) in the Proof of Theorem 2, we have
1
N sup

o∈supp(PO)

ℓ(F → o) ≤ ϵ2. Algorithm A2 is then ϵ2-

PML averaged over players with ϵ2 < ϵ1, and the conclusion
is proved. □

As shown in Theorem 4, compared to algorithm A1, our
proposed algorithm A2 demonstrates better privacy protec-
tion. On one hand, from the perspective of DP, algorithm
A2 maintains the same privacy guarantees as algorithm A1.
This is because DP focuses on adjacent datasets and is in-
sensitive to the distribution of correlated datasets, making it

unable to distinguish variations in privacy leakage caused by
different distributions within the algorithms. On the other
hand, by integrating the prior knowledge of players’ pay-
off function datasets into the noise, algorithm A2 achieves a
tighter bound ϵ2 of PML guarantees compared to ϵ1 in the
traditional algorithm A1.

At this point, by adopting PML as the measure to as-
sess information leakage, we have successfully designed a
privacy-preserving mechanism for computing NE in the non-
cooperative game G. When players have correlated payoff
datasets, algorithm A2 leads to better privacy protection with
PML guarantees than the traditional algorithm A1 with DP
guarantees. We have addressed Problem 1 so far.

5 Numerical Experiment

Consider a non-cooperative game model with N play-
ers exposed to a contagious disease [13]. Let α represent
the probability of infection for player 1. Given the in-
fected player 1, let η denote the correlation coefficient for
the probability of other players being infected. With the
availability of vaccines, each player must decide whether
to vaccinate. The strategy of player i is represented by
xi ∈ [0, 1], which denotes the probability that this player
vaccinates [22]. Each player’s payoff function is defined by
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(b) η = 0.95

Fig. 1: Privacy guarantee trends by PML and DP with differ-
ent correlation coefficients: (a) η = 0.05 indicates players’
very low infection correlation; (b) η = 0.95 reflects players’
remarkably high infection correlation.



fi(xi, x−i) = xi(−rva) + (1 − xi)(−rinδ(x)), where rva
and rin represent the morbidity risks for vaccination and in-
fection, respectively, while δ(x) is the probability that an un-
vaccinated individual will be infected given the vaccination
coverage status, that is, players’ strategies x.

To compare with the existing privacy-preserving bench-
marks [9, 11], we take the similar parameter settings, in-
cluding Mk = 1 + 0.2 ∗ k0.8 in the Laplace distribution
and λk = 0.1

1+0.1k in the stepsize, to investigate both the DP
and PML guarantees in algorithm A2. An adversary aims
to extract information related to the payoff function f , such
as inquiring about morbidity risks or the number of infected
individuals. Note that the privacy guarantees in both the DP
and PML reflect the upper bounds of all possible information
leakage. As can be seen from Fig. 1(a), when the infection
correlation among players is very low, the upper bound of
the privacy guarantee ϵ2 of PML does not show a significant
advantage over ϵ1 of DP. However, in Fig. 1(b), when the
infection correlation among players is remarkably high, the
upper bound of the privacy guarantee ϵ2 of PML is notably
tighter than ϵ1 of DP. These numerical illustrations support
our main theoretical results in Theorem 4.

6 Concluding Remarks

This paper explored privacy-preserving NE computation
in non-cooperative games with correlated payoffs. It is im-
portant to note that PML provides a wider information leak-
age assessment than DP, particularly for correlated datasets.
By integrating prior knowledge into noise design, we pro-
posed a novel mechanism ensuring seamless adaptation of
existing convergence guarantees. Moreover, we realized a
tighter bound with PML guarantees in the proposed mecha-
nism, which refines the over-conservative assessment of in-
formation leakage risks with correlated payoff datasets.

To our knowledge, this is the first work to successfully
employ PML in NE computation. Our work establishes a
new connection between privacy protection and NE compu-
tation, which may pave the way for future advancements to
enhance this research topic, for example, developing a neces-
sary and sufficient bound for privacy guarantees, extending
the mechanism to distributed networks, and refining noise
design to accommodate specific models. These perspectives
offer promising avenues for privacy-preserving mechanisms
to prosper with multi-agent interactions. We are conduct-
ing ongoing work on extending our results to network game
models and corresponding distributed algorithm design.
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