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Abstract: This paper studies the distributed adaptive identification problem for stochastic large models. Here the large models
refer to those with a large or infinite number of parameters. A novel distributed recursive least squares algorithm is proposed to
estimate the unknown system parameters, where the growth rate of regressors’ dimension is characterized by a nondecreasing
positive function. The almost sure convergence of the proposed algorithm is analyzed under a cooperative decaying excita-
tion condition, which incorporates the temporal information as well as the spatial information to reflect the cooperative effect
among multiple agents. Notably, our theoretical results are derived without imposing independence, stationarity, or ergodicity
assumptions on the regression vectors, thereby allowing for the inclusion of strongly correlated feedback signals. We employ
the double-array martingale theory to address the theoretical challenges arising from time-varying order growth in large models,
and further extend the results established for finite-dimensional stochastic regression models and the single-agent case. Finally,
a numerical simulation is provided to demonstrate the effectiveness of our findings.
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1 Introduction

With the rapid growth of computational resources and data
availability, large models have garnered widespread atten-
tion due to their remarkable performance in various fields.
These models are typically characterized by a vast or even
infinite number of system parameters, enabling them to cap-
ture complex, high-dimensional spatiotemporal dynamics.
However, while their architectural complexity provides un-
precedented modeling capacity, it simultaneously presents
intractable theoretical challenges in parameter identification.

Distributed adaptive estimation, as a prominent method in
system identification, can cooperatively accomplish global
tasks through local information interaction. Compared with
centralized estimation algorithms where a fusion center is
needed to collect and process information, distributed adap-
tive estimation has many advantages including reduction
communication and computation costs or increasing robust-
ness to network link failures. Therefore, numerous dis-
tributed adaptive estimation algorithms based on typical dis-
tributed strategies, such as the incremental, diffusion and
consensus have been developed, see [1–5].

To achieve good estimation performance for algorithms, it
is often necessary to impose certain conditions on the regres-
sion data. Some studies focus on the performance analysis
of distributed parameter estimation algorithms using deter-
ministic or time-invariant regressors [2, 6, 7], while the sta-
bility of other distributed adaptive estimation algorithms is
established based on the independence, stationarity, or er-
godicity of stochastic regressors [4, 8–10]. Note that for
the typical models such as autoregressive moving average
with exogenous input model and Hammerstein system, the
regressors are often generated from the past input and output
signals, making it difficult for random regressors to satisfy
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the traditional statistical assumptions of independence, sta-
tionarity, and ergodicity. To address these challenges, some
effort has been devoted to relaxing the stringent conditions
on random regression vectors in non-stationary scenarios,
leading to advancements in distributed adaptive estimation
and filtering algorithms [11–13]. However, almost all exist-
ing theoretical analyses of distributed estimation algorithms
have been tailored to finite-order or finite-dimensional sys-
tem models, which are ill-equipped to address the unique
challenges posed by emerging large models with infinite pa-
rameters.

In this paper, we focus on the distributed adaptive iden-
tification for the large model described by an autoregressive
model with exogenous inputs (ARX) system with infinite un-
known parameters. We propose a distributed recursive least
squares algorithm with increasing dimension regression vec-
tors by using the first adaption and then combination strat-
egy. The almost sure convergence of the proposed algorithm
is established under a cooperative decaying excitation condi-
tion, which integrates both temporal and spatial information
from the random regression vectors. This condition captures
the cooperative effect of multiple agents, enabling the the en-
tire multi-agent system to achieve global estimation, even if
any individual agent cannot due to a lack of necessary infor-
mation. Moreover, our theoretical analysis is derived with-
out relying on the stringent conditions for regression vec-
tors such as independence, stationarity or ergodicity, see e.g.
[4, 8–10], making it applicable to stochastic feedback control
systems. To the best of our knowledge, this work presents
the first rigorous theoretical results for distributed identifi-
cation of stochastic large models with infinite parameters,
and the convergence results can be viewed as an extension
of the related results for single-agent case in [14], as well as
a generalization of the results for finite-dimensional random
regression models in [13].

The rest of the paper is organized as follows. The problem
formulation and algorithm design are given in Section 2. The
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convergence results of the proposed algorithm are carried out
in Section 3. A simulation example is provided in Section 4.
Conclusion remarks are drawn in Section 5.

2 Problem Formulation

2.1 Some preliminaries
For a matrix X ∈ Rp×q , ∥X∥ denotes its Euclidean

norm, defined as ∥X∥ =
√
λmax(XX⊤), where (·)⊤ rep-

resents the transpose operator and λmax(·) denotes the max-
imum eigenvalue of the matrix. Corresponding, the mini-
mum eigenvalue and trace of a matrix are denoted as λmin(·)
and tr(·). For two symmetric matrices X and Y , X ≥ Y
means that X − Y is a positive semi-definite matrix. For
two positive scalar sequences {αk} and {βk}, αk = O(βk)
indicates that there exists a positive constant c, which is in-
dependent of k, such that αk ≤ cβk holds for any k ∈ N.
and αk = o(βk) represents limk→∞

αk

βk
= 0.

We utilize an undirected graph G = (V, E ,Λ) to model
the communication links between agents, where V =
{1, 2, · · · , n} is the agent set, the edge set E denotes denotes
the edges that signify communication between agents and Λ
is the adjacency matrix. Let aij be the element located in
the i-th row and j-th column of Λ. If agent j can receive
information from agent i, then (i, j) ∈ E and aij > 0, oth-
erwise (i, j) /∈ E and aij = 0. In this paper, we assume
that the topology of the agent network is undirected, that is,
aij > 0 if and only if aji > 0. The neighbor set of agent
i is defined as Ni = {j|(j, i) ∈ E}. A graph is said to be
connected if there exists at least one path for any two agents.
The diameter of a graph is defined as the maximum value
of the shortest path length between any two agents, which is
denoted by DG . For ease of analysis, the adjacency matrix
Λ is assumed to be symmetric and doubly stochastic, i.e.,
aij = aji and

∑n
i=1 aij = 1 for all j.

2.2 Stochastic large model
Consider a network of n interconnected agents, where

each agent operates under local sensing and communication.
At every time instant t, each agent i ∈ {1, · · · , n} is as-
sumed to obey the following large model with infinite un-
known parameters:

yt,i =

∞∑
k=1

(Akyt−k,i +Bkut−k,i) + ωt,i, t ≥ 0;

yt,i = ut,i = ωt,i = 0, ∀t < 0, (1)

where yt,i ∈ Rm and ut,i ∈ Rp denote the m-dimensional
output and the p-dimensional input of agent i at time in-
stant t respectively, wt,i ∈ Rm is the noise process. Ak ∈
Rm×m, Bk ∈ Rm×p(k = 1, 2, 3 . . . ) are the unknown ma-
trices to be estimated and satisfy the following summability
condition:

∞∑
k=1

(∥Ak∥+ ∥Bk∥) <∞. (2)

It is worth noting that the model (1) can include the cases
of finite, increasing or varying system order, and in these
cases, the condition (2) will be satisfied naturally because
Ak and Bk will be zero for all suitably large k.

Let z be the backwards-shift operator and introduce:

A(z) ≜ −
∞∑
k=1

Akz
k, (A0 ≜ −I), Ak ∈ Rm×m, (3)

B(z) ≜
∞∑
k=1

Bkz
k, Bk ∈ Rm×p. (4)

Denote the “transfer function” matrix associated with (1) as
G(z) = [A(z), B(z)].

In this paper, we aim to design a distributed adaptive es-
timation algorithm where all the agents cooperatively esti-
mate or approximate G(z) by the local observed process
{yt,l, ut,l}l∈Ni

and the incresing lag (denoted by ht). Then
the following norm for measuring the accuracy of the trans-
fer function approximation is used:

∥F (z)∥∞= ess supx∈[0,2π]

{
λmax

[
F (eix)F ∗(eix)

]} 1
2 , (5)

where (5) is the H∞-norm of a complex matrix F (z) ana-
lytic in |z| < 1 and bounded almost everywhere on he unit
circle.

2.3 Algorithm design
Let {ht} be any non-decreasing sequence of positive inte-

gers, ht ≤ t, ∀t. Set

θ⊤(t) = [A1, · · · , Aht
, B1, · · · , Bht

]. (6)

Inspired by [13], we propose a distributed recursive least
squares algorithm with increasing lag ht to estimate θ(t).
The details can be seen in Algorithm 1.

Algorithm 1 is designed using the ATC strategy. To be
specific, for any fixed time t, we first choose the regres-
sion vectors φk,i(t) whose order is only related to ht (or
t). Then in Step 1, each agent i uses the recursive least
squares to update the middle estimate θ̄k+1,i(t) and matrix
P̄k+1,i(t). Finally in Step 2, the covariance intersection fu-
sion rule (cf., [15, 16]) is used to diffuse the information
vector P̄−1

k+1,j(t)θ̄k+1,j(t) and information matrix P̄−1
k+1,j(t)

in the form of convex combination for neighbor agents to ob-
tain the matrix P−1

k+1,i(t) and estimate θk+1,i(t). Unlike the
conventional distributed least squares algorithm tailored for
finite-order systems (cf. [13]), this paper focuses on a large
model characterized by infinite parameters. Consequently,
the variables in Algorithm 1 exhibit time-varying increasing
order. This situation poses significant challenges in conduct-
ing a rigorous convergence analysis. To simplify analysis,
we take the initial positive definite matrix P0,i(t) = βiI(t),
where I(t) is a square identity matrix of appropriate dimen-
sions and βi > 0 for all i.

Let us then write θ̂i(t) in its component form

θ̂⊤i (t) = [A1,i(t), · · · , Aht,i(t), B1,i(t), · · · , Bht,i(t)],
(12)

and set

Ât,i(z) = I −
ht∑
k=1

Ak,i(t)z
k, B̂t,i(z) =

ht∑
k=1

Bk,i(t)z
k.

Then the estimate Ĝt,i(z) for G(z) at time t and agent i can
be formed as

Ĝt,i(z) = [Ât,i(z), B̂t,i(z)]. (13)



Algorithm 1 Distributed recursive least squares algorithm
with increasing lag

Initialization. For each agent i ∈ {1, · · · , n} and any t > 0,
define the following regressors:

φ⊤
k,i(t)=[y

⊤
k,i, · · · , y⊤

k−ht+1,i, u
⊤
k,i, · · · , u⊤

k−ht+1,i], 1 ≤ k ≤ t,

and begin with an initial vector θ̂0,i(t) and an initial positive def-
inite matrix P0,i(t) > 0.
for each time k = 0, 1, · · · , t− 1 do

for each agent i = 1, · · · , n do
Step 1. Generate θ̄k+1,i(t) and P̄k+1,i(t) based on

θ̂k,i(t), Pk,i(t), φk,i(t):

bk,i(t) = [1 + φ⊤
k,i(t)Pk,i(t)φk,i(t)]

−1 (7)

θ̄k+1,i(t) = θ̂k,i(t) + bk,i(t)Pk,i(t)φk,i(t)

(y⊤
k+1,i − φ⊤

k,i(t)θ̂k,i(t)), (8)

P̄k+1,i(t) = Pk,i(t)− bk,i(t)Pk,i(t)φk,i(t)φ
⊤
k,i(t)Pk,i(t),

(9)

Step 2. Generate P−1
k+1,i(t) and θ̂k+1,i(t) by a convex

combination of θ̄k+1,j(t) and P̄−1
k+1,j(t):

P−1
k+1,i(t) =

∑
j∈Ni

aijP̄
−1
k+1,j(t), (10)

θ̂k+1,i(t) = Pk+1,i(t)
∑
j∈Ni

aijP̄
−1
k+1,j(t)θ̄k+1,j(t). (11)

Output. θ̂i(t) ≜ θ̂t,i(t).

3 Convergence Results

Assumption 1 The undirected graph G is connected.

Remark 1 Denote Λl = Λ · · ·Λ︸ ︷︷ ︸
l

= [a
(l)
ij ], i.e., a(l)ij is the i-

th row, j-th column entry of the matrix Λl. According to the
theory of the product of stochastic matrices, if Assumption 1
hold and l is at least as large as the diameter of the graph,
then a(l)ij ≥ amin > 0 for all i and j.

Assumption 2 For any i ∈ {1, · · · , n}, the input ut,i is an
Ft-measurable input, and the noise sequence {ωt,i,Ft} is
a martingale difference sequence satisfying

sup
t≥0

E[∥wt+1,i∥2|Ft] <∞, lim inf
t→∞

1

t

t−1∑
k=0

∥ωk,i∥2 ̸= 0 a.s.

and ∥wt,i∥2 = o(di(t)), a.s., where {Ft} is a non-
decreasing σ-algebras family and {di(t)} is a positive, de-
terministic, nondecreasing sequence and satisfies

sup
t
di(e

t+1)/di(e
t) <∞.

In Assumption 2, the term “∥wt,i∥2 = o(di(t))” charac-
terizes the growth rate of the noise. This implies that the
double array martingale estimation theory (Lemma 1 be-
low) can be employed to handle the cumulative effect of the
noise in the form of max1≤m≤ht

∥∥∥∑t
k=1 fk(m)wk+1

∥∥∥. It
is straightforward to verify that commonly used bounded or
white Gaussian noises can satisfy this assumption.

Lemma 1 [14] Let {vt,Ft} be an s-dimensional martin-
gale difference sequence satisfying ∥vt∥ = o(ρ(t)) a.s.,
suptE(∥vt+1∥|Ft) < ∞ a.s., where the properties of ρ(t)
is described as same as di(t) in Assumption 2. Assume
that ft(m), t,m = 1, 2, ..., is an Ft-measurable, r × s-
dimensional random matrix satisfying ∥ft(m)∥ ≤ C < ∞
a.s. for all t, m and some deterministic constant C. Then for
ht = O([log t]α) (α > 0), the following property holds as
t→ ∞,

max
1≤m≤ht

max
1≤j≤t

∥∥∥∥∥
j∑

k=1

fk(m)vk+1

∥∥∥∥∥
=O

(
max

1≤m≤ht

t∑
k=1

∥fk(m)∥

)
+ o(ρ(t) log log t), a.s.

Lemma 2 Let {vk,i} and {ψk,i(t)} be any m- and ht-
dimensional random sequences respectively. Then we have

∥∥∥∥∥Q− 1
2

t,i (t)

n∑
j=1

t−1∑
k=0

a
(t−k)
ij ψk,j(t)v

⊤
k,j

∥∥∥∥∥
2

≤
n∑

j=1

t−1∑
k=0

∥vk,j(t)∥2,

where Qt,i(t) =
∑n

j=1

∑t−1
k=0 a

(t−k)
ij ψk,j(t)ψ

⊤
k,j(t) + γI(t)

with γ > 0 being a positive constant.

The proof of this lemma can be derived by following the
proof line of Lemma 4.7 in [14] and Lemma 3.3 in [17], it is
complicated and we omit it here due to the limit of the space.

In the following, we establish the convergence of Algo-
rithm 1.

Theorem 1 Consider the model (1)-(2) and Algorithm 1
with ht = O(logα t), α > 0. Under Assumptions 1 and
2, then as t→ ∞, we have the following estimate for all i:

∥θ̂i(t)− θ(t)∥2

=O

(
1

λmin(t)

[
ht log rt + δtrt + o

(
[dt log log(t)]

2
)])

,

where rt, δt, λmin(t) and d(t) are defined by

rt ≜ 1 +

n∑
i=1

t−1∑
k=0

(∥yk,i∥2 + ∥uk,i∥2),

δt ≜

( ∞∑
k=ht+1

∥Ak∥

)2

+

( ∞∑
k=ht+1

∥Bk∥

)2

,

λmin(t) ≜ λmin

(
n∑

i=1

t−DG∑
k=0

φk,i(t)φ
⊤
k,i(t) +

n∑
i=1

1

βi
I(t)

)
,

d(t) ≜

(
n∑

i=1

d2i (t)

) 1
2

.

Proof of sketch. Set

ϵk,i(t) =

∞∑
l=ht+1

[Alyk+1−l,i +Bluk+1−l,i]. (14)



From Algorithm 1 and [3], we have

θ̂i(t) = Pt,i(t)

 n∑
j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)y

⊤
k+1,j

 , (15)

P−1
t,i (t) =

n∑
j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)φ

⊤
k,j(t) +

n∑
j=1

a
(t)
ij P

−1
0,j (t).

(16)

Hence by (14)-(16) we can obtain the following equation:

∥θ̂i(t)− θ(t)∥2

=

∥∥∥∥∥∥Pt,i(t)

 n∑
j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)y

⊤
k+1,j

− θ(t)

∥∥∥∥∥∥
2

=

∥∥∥∥∥Pt,i(t)

(
n∑

j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)

[
y⊤k+1,j − φ⊤

k,j(t)θ(t)
]

−
n∑

j=1

a
(t)
ij P

−1
0,j (t)θ(t)

)∥∥∥∥∥
2

=

∥∥∥∥∥Pt,i(t)

(
n∑

j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)

[
ω⊤
k,j + ϵ⊤k,j(t)

]
−

n∑
j=1

a
(t)
ij P

−1
0,j (t)θ(t)

)∥∥∥∥∥
2

.

Furthermore by Cr-inequality, it can be obtained that

∥θ̂i(t)− θ(t)∥2

≤3
∥∥∥P 1

2
t,i(t)

∥∥∥2{∥∥∥∥∥P 1
2
t,i(t)

n∑
j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)ω

⊤
k,j

∥∥∥∥∥
2

+

∥∥∥∥∥P 1
2
t,i(t)

n∑
j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)ϵ

⊤
k,j(t)

∥∥∥∥∥
2}

+

∥∥∥∥∥P 1
2
t,i(t)

n∑
j=1

a
(t)
ij P

−1
0,j (t)θ(t)

∥∥∥∥∥
2

. (17)

Now let us estimate the three terms on the right-hand side of
(17). Thus we denote

Mt,i(1) ≜

∥∥∥∥∥P 1
2
t,i(t)

n∑
j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)ω

⊤
k,j

∥∥∥∥∥
2

,

Mt,i(2) ≜

∥∥∥∥∥P 1
2
t,i(t)

n∑
j=1

t−1∑
k=0

a
(t−k)
ij φk,j(t)ϵ

⊤
k,j(t)

∥∥∥∥∥
2

,

Mt,i(3) ≜

∥∥∥∥∥P 1
2
t,i(t)

n∑
j=1

a
(t)
ij P

−1
0,j (t)θ(t)

∥∥∥∥∥
2

.

For Mt,i(1), by (16) and following the proof of Lemma 3.3
in [17] and using Lemma 1 we have

Mt,i(1) =O
(
ht log

+ λmax(P
−1
t,i (t))

)
+ o

(
[dt log log(t)]

2
)

=O
(
ht log

+(htrt + ht)
)
+ o

(
[dt log log(t)]

2
)

=O(ht log rt) + o
(
[dt log log(t)]

2
)
, (18)

where the last inequality holds due to the fact that
limt→∞ rt/t > 0 a.s. and ht < t.

For Mt,i(2), by Lemma 2 and the definition of ϵk,i(t) in
(14), we have the following inequality

Mt,i(2) ≤
n∑

j=1

t−1∑
k=0

∥ϵk,j(t)∥2

=

n∑
j=1

t−1∑
k=0

∥∥∥∥∥
∞∑

l=ht+1

[Alyk+1−l,j +Bluk+1−l,j ]

∥∥∥∥∥
2

≤2

n∑
j=1

t−1∑
k=0

(∥∥∥ ∞∑
l=ht+1

Alyk+1−l,j

∥∥∥2+∥∥∥ ∞∑
l=ht+1

Bluk+1−l,j

∥∥∥2)

≤2

∞∑
l=ht+1

∥Al∥ ·
∞∑

l=ht+1

∥Al∥
n∑

j=1

t−1∑
k=0

∥yk+1−l,j∥2


+ 2

∞∑
l=ht+1

∥Bl∥ ·
∞∑

l=ht+1

∥Bl∥
n∑

j=1

t−1∑
k=0

∥uk+1−l,j∥2


≤2

( ∞∑
l=ht+1

∥Al∥

)2
 n∑

j=1

t−1∑
k=0

∥yk,j∥2


+2

( ∞∑
l=ht+1

∥Bl∥

)2
 n∑

j=1

t−1∑
k=0

∥uk,j∥2
 ≤ 2δtrt. (19)

For Mt,i(3), by the summability condition (2), we have

sup
t

∥θ(t)∥2 = sup
t
λmax

{
ht∑
k=1

(AkA
⊤
k +BkB

⊤
k )

}

≤ sup
t

ht∑
k=1

(∥Ak∥2 + ∥Bk∥2)

≤ sup
t

(
ht∑
k=1

∥Ak∥+ ∥Bk∥

)2

<∞. (20)

Hence by (16) and Remark 1, we can conclude that for any t,
the following inequality holds with c0 > 0 being a positive
constant:

P−1
t,i (t) ≥

n∑
j=1

a
(t)
ij P

−1
0,j (t) ≥ c0I(t). (21)

and λmin(P
−1
t,i (t)) ≥ aminλmin(t). Combining (20) with

(21), we have

Mt,i(3) = O(1). (22)

Substituting (18), (19) and (22) into (17) we get the result of
Theorem 1, which completes the proof of the theorem. ■

Remark 2 Under some additional conditions, the above re-
sult can be refined and articulated in a more concise form.
For example, if the noise process {ωk,i} is a Gaussian white
noise (i.i.d.) sequence for all i and

∥Ak∥+ ∥Bk∥ = O(λk), 0 < λ < 1, k ≥ 0

n∑
i=1

t−1∑
k=0

(∥yk,i∥2 + ∥uk,i∥2) = O(tb), for some b > 0,



then by taking the non-decreasing integers ht = [logα t] with
some α > 1, and taking account of ωk,i = O(log1/2 k) for
all i, we see from Theorem 2 that

∥θ̂i(t)− θ(t)∥2 = O

(
ht log t

λmin(t)

)
. (23)

Note that the related result in [13] is a special case of (23)
when ht is taken as a fixed upper bound for the finite order
of the system.

Theorem 2 Under the conditions of Theorem 1, then as t→
∞, the following asymptotic expansions hold for all i:

∥Ĝt,i(z)−G(z)∥2∞ =O

(
ht

λmin(t)
[ht log rt + δtrt]

)
+ o

(
ht[d(t) log log t]

2

λmin(t)

)
a.s.,

where rt, δt, λmin(t) and d(t) are defined in Theorem 1.

Proof. Let us denote

Gt(z) = [At(z), Bt(z)]

At(z) = I −
ht∑
k=1

Akz
k, Bt(z) =

ht∑
k=1

Bkz
k.

Then by (12)-(13) and Cr-inequality, we know that

∥Ĝt,i(z)−G(z)∥2∞
≤2∥Ĝt,i(z)−Gt(z)∥2∞ + 2∥Gt(z)−G(z)∥2∞

=2

∥∥∥∥∥
[

ht∑
k=1

(Ak −Ak,i(t))z
k,

ht∑
k=1

(Bk,i(t)−Bk)z
k

]∥∥∥∥∥
2

∞

+ 2

∥∥∥∥∥
[ ∞∑
k=ht+1

Akz
k,

∞∑
k=ht+1

Bkz
k

]∥∥∥∥∥
2

∞

≤2

{
ht∑
k=1

∥∥[Ak −Ak,i(t), Bk,i(t)−Bk]
∥∥}2

+ 2

{ ∞∑
k=ht+1

(∥Ak∥+ ∥Bk∥)

}2

.

≤2ht

ht∑
k=1

∥∥[Ak −Ak,i(t), Bk,i(t)−Bk]
∥∥2

+ 4

( ∞∑
k=ht+1

∥Ak∥

)2

+ 4

( ∞∑
k=ht+1

∥Bk∥

)2

≤2httr

{
ht∑
k=1

[Ak −Ak,i(t), Bk,i(t)−Bk]

[Ak −Ak,i(t), Bk,i(t)−Bk]
⊤

}
+ 4δt

=2httr{[θ̂⊤i (t)− θ(t)]⊤[θ̂⊤i (t)− θ(t)]}+ 4δt

≤2mht∥θ̂⊤i (t)− θ(t)∥2 + 4δt. (24)

Then by Theorem 1 and (24) we obtain the desired result of
Theorem 2, which completes the proof. ■

Remark 3 Under the conditions of Remark 2, we have
∥Ĝt,i(z) − G(z)∥2∞ = O

(
h2
t log t

λmin(t)

)
. If the cooperative de-

caying excitation condition

h2t log t

λmin(t)

t→∞−−−→ 0, a.s., (25)

is satisfied, then we can get the strong convergence of
Algorithm 1. The condition (25) is much weaker than
the excitation condition (cf.,[14]) designed for the non-
cooperative case (i.e., A = In): for any agent i,

h2
t log t

λmin(
∑t−1

k=0 φk,i(t)φ⊤
k,i(t)+γI(t))

t→∞−−−→ 0. It also implies

that even if any individual agent can not estimate the un-
known parameter matrix accurately by the traditional non-
cooperative algorithm, the whole multi-agent system is likely
to fulfill the estimation task by using the distributed algo-
rithm, see the example in Section 4.

From Theorems 1 and 2, it is evident that our results are de-
rived without invoking the assumptions of independence or
stationarity for the regression signals φk,i(t). This relaxed
condition significantly broadens the applicability of our find-
ings, including their use in practical feedback systems.

4 Simulation Results

To validate the estimation performance of Algorithm 1
proposed in the paper, this section provides a simulation ex-
periment. We consider a network consisting of n = 6 agents,
where each agent exchanges information with its neighbor-
ing agents based on a weighted adjacency matrix Λ, which
is constructed by using the following Metropolis rule:

aℓi =


1−

∑
j ̸=i

aij , if ℓ = i ,

1/max{ni, nℓ}, if ℓ ∈ Ni \ {i} ,

where aℓi is the weight of the edge connecting the agent i and
the agent ℓ, and ni is the number of neighbors of the agent
i. The network topology generated by this rule is shown in
Fig. 1.
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1

6

Fig. 1: Network topology of 6 agents.

In this experiment, we estimate a target parameter θ (t) ∈
R2ht at each time instant t, where ht = O(log t). To satisfy
the summability condition (2), the parameter θ (t) is gener-
ated as follows:

θ⊤ (t) =
(
1, 0.5, · · · , 0.52ht−1

)
(1× 2ht) .

Also, each agent i follows the observation model:

yk,i = φ⊤
k,i (t) θ (t) + wk,i, 1 ≤ k ≤ t,



where φk,i (t) ∈ R2ht is the regression vector, and wk,i ∼
N (0, 1) is the noise term. To ensure that different agents
have distinguishable distribution characteristics and sat-
isfy the cooperative information conditions (25), we select
φk,i (t) satisfying φk,i (t) ∼ N (0, 0.1i, 2ht, 1) and the i-th
number in the array φk,i (t) is set to 0, which causes each
agent i to fail to meet the individual excitation condition.

At time instant t, P0,i(t) for each agent i is chosen
as the identity matrix, with initial estimates θ̂0,i(t) ∼
N (0, 1, 2ht, 1). The experiment is repeated for s = 100
trials under the same initial conditions, so that each agent i
can obtain the following estimation error sequence:

{∥θ̂i,j(t)− θj (t) ∥2, t = 1, ..., 50}, i = 1, ..., 6, j = 1, ..., s.

As shown in Fig. 2, it can be observed that when each
agent uses the non-cooperative algorithm to estimate the un-
known parameter, i.e., Λ = I , the estimation error cannot
converge to 0, indicating that these agents are unable to es-
timate θ (t) individually, since the agents do not satisfy the
excitation condition mentioned earlier. However, when all
agents cooperate with their neighbors by using Algorithm 1
with a connected network, the estimation error converges to
0 at a faster rate and remains stable, which demonstrates the
superior estimation performance of Algorithm 1 proposed in
this paper.
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Fig. 2: Performance results for the cooperative and the
non-cooperative algorithms.

5 Concluding Remarks

In this paper, we have investigated the distributed adaptive
identification for large models with infinite unknown param-
eters. A distributed recursive least squares algorithm with
increasing order is proposed to estimate the unknown invari-
ant parameters in large models. The strong consistency of
the parameter estimates in our algorithm is established under
a cooperative decaying excitation condition for the random
regression vectors, without requiring assumptions of inde-
pendence, stationarity, or ergodicity. This relaxation enables
our theoretical results applicable to the feedback systems.
Future research includes the estimation of the time-varying
unknown parameters in large models and the combination of
the distributed adaptive estimation with the distributed con-
trol.
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