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Abstract: Strict effluent quality standards and physical limitations of the equipment make accurately controlling dissolved 

oxygen (DO) concentration in wastewater treatment processes (WWTPs) a challenging task. In this paper, a data-driven model 

predictive control strategy with performance constraint (PC-MPC) is proposed to ensure accurate tracking of DO concentration 

set-point. First, a data-driven model is established using the fuzzy neural network, effectively addressing the problem of complex 

nonlinear modeling of WWTPs and providing accurate predictive output for the control process. Second, a model predictive 

control (MPC) strategy with performance constraint is designed, in which tracking error is considered as a performance 

constraint index within the MPC framework, enabling accurate tracking of the DO concentration to the desired set-point. Third, 

an adaptive constraint optimization algorithm based on the Levenberg-Marquardt (L-M) method is developed. By utilizing the 

exponential penalty function to reformulate the system constraints, the finite horizon optimization control problem can be 

directly solved to determine the optimal control sequence. Finally, the stability of the proposed PC-MPC strategy is proven 

through theoretical analysis and its effectiveness is validated on the benchmark simulation model No. 1. 
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1 Introduction 

With the acceleration of urbanization, a high volume of 

domestic and industrial wastewater is discharged, which 

brings enormous pressure to the environment [1], [2]. The 

activated sludge method, as an efficient and economical 

biological wastewater treatment technology, is widely used 

in wastewater treatment processes (WWTPs) [3]. This 

technology degrades pollutants in water through the 

metabolic process of microorganisms, where dissolved 

oxygen (DO) is a necessary condition for microbial 

metabolism in the activated sludge process, and its 

concentration directly affects the activity and treatment 

efficiency of microorganisms [4], [5]. Low DO 

concentration may lead to weakened microbial metabolic 

activity and affect the degradation efficiency of pollutants. 

Excessive DO concentration may lead to energy waste and 

increased operating costs [6], [7]. Therefore, developing an 

intelligent control method to maintain the DO concentration 

within an appropriate range is of practical significance for 

improving treatment efficiency and ensuring the effluent 

quality of WWTPs. 

Given the importance of controlling the DO concentration 

in the activated sludge WWTP, numerous control methods 

have been proposed to accurately regulate the DO 

concentration [8]. For example, Qiao et al. proposed a 

pipelined recurrent wavelet neural network (PRWNN) 

control method for controlling the DO concentration in 

WWTPs [9]. In this method, an online growth strategy was 

designed to automatically regulate the number of controller 

modules, and the controller structure was determined to 

adapt to different operating conditions. The simulation 
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results showed that the PRWNN controller can improve the 

control accuracy. Stebel et al. introduced the idea of a 

boundary-based predictive controller (BBPC) for the 

laboratory activated sludge device with an ON-OFF actuator 

[10]. In this method, the dynamic parameters of the DO 

concentration model were identified and the adaptability 

was provided when the process load disturbance changes 

significantly. The experimental comparison with traditional 

controllers demonstrated the superiority of the proposed 

BBPC. The aforementioned controllers demonstrated 

remarkable control accuracy, enabling the DO concentration 

to be maintained within the desired range. However, while 

striving for efficient control, it is imperative to fully 

consider and address the constraints posed by the physical 

performance of the equipment to maintain the safety and 

stability of the system [11], [12]. 

Model predictive control (MPC) is a sophisticated 

approach that comprehensively considers system control 

objectives and constraints [13], [14]. By employing iterative 

optimization, the control sequence that satisfies the 

constraints and optimizes system performance can be 

obtained [15]. Xu et al. proposed a constrained model 

predictive direct speed control strategy for permanent 

magnet synchronous motor speed control [16]. This design 

reduced the computational burden by introducing the 

Laguerre function and achieved long-horizon MPC 

optimization with constraints. Yan et al. developed a 

stochastic MPC strategy for linear systems with 

disturbances [17]. This method utilized the Chebyshev 

inequality to handle the chance constraint of the sum of 

discounted violation probabilities over an infinite horizon. 

By dynamically adjusting feedback gains in real-time, the 

conservatism associated with constraint processing was 

reduced, thereby enhancing the control performance. The 

aforementioned methods exhibit certain innovation and 

effectiveness in handling system constraints. However, they 

rely on the exact system model, which poses challenges for 

their application in WWTPs. In order to provide accurate 



  

predictive output for the control process and ensure the 

control accuracy of DO concentration, identifying the 

system model based on data-driven methods is a practical 

and feasible approach. 

Based on the above analysis, a data-driven MPC strategy 

with performance constraint (PC-MPC) is developed to track 

the DO concentration to the desired set-point in WWTPs. 

The main contributions are outlined below. 

1) A data-driven prediction model based on a fuzzy neural 

network (FNN) is established. The model parameters are 

corrected based on the prediction error to accurately identify 

the WWTP and provide precise predicted outputs for the 

control process. 

2) A MPC strategy with performance constraint is 

designed. Apart from considering the physical limitation of 

the aeration equipment and the constraint on the DO 

concentration, the tracking error is also incorporated as a 

performance constraint within the MPC framework. This 

approach improves the accuracy of the system response, 

ensuring that control objectives are achieved more safely 

and effectively. 

3) An constraint optimization algorithm based on the 

Levenberg-Marquardt (L-M) method is designed. By 

reformulating system constraints with the exponential 

penalty function, the finite horizon optimal control problem 

is reconstructed, which can be directly solved to determine 

the optimal control sequence. 

2 Problem Formulation 

The DO concentration of unit 5 (SO5) in the biochemical 

reaction tank is the key variable affecting the treatment 

efficiency and effluent quality of the WWTP control system. 

The accurate tracking of SO5 to the set-point is achieved by 

modifying the oxygen transfer coefficient of the fifth unit 

(KLa5). The WWTP control system involves numerous 

complex biochemical reactions, exhibiting highly nonlinear, 

and uncertain dynamic characteristics. The system can be 

expressed as follows 

 ( 1) ( ( ), ( ))y k f y k u k+ = , (1) 

where f(‧) represents the unknown nonlinear function, y(k) 

represents the SO5 at time k, u(k) represents the KLa5 at time k. 

To ensure the effective operation of the WWTP control 

system, the input and output constraints are set to 

 min max( )u u k u  , (2) 

 min max( )y y k y  , (3) 

where umin and umax stand for the minimum and maximum 

values allowed for KLa5, ymin and ymax represent the minimum 

and maximum values of SO5, respectively. 

In addition, to ensure accurate regulation of SO5 to the 

predetermined range, optimize treatment efficiency, and 

avoid resource waste caused by excessive aeration, the 

tracking error of SO5 is constrained as follows 

 min max( )e e k e  , (4) 

where e(k)=y(k)-yr(k), yr(k) is the set-point at time k, emin and 

emax stand for the minimum and maximum values allowed 

for the tracking error, respectively. 

This paper aims to develop a data-driven MPC method for 

WWTP control systems with unknown dynamics to achieve 

accurate control of SO5 and satisfy constraints (2)-(4). 
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Fig. 1 The structure diagram of PC-MPC strategy. 

3 Data-driven PC-MPC strategy  

In this section, a PC-MPC method is developed to achieve 

accurate control of SO5. As shown in Fig. 1, the PC-MPC 

strategy consists of three parts: data-driven system 

identification, PC-MPC framework formulation, and 

adaptive constraint optimization. 

3.1 Data-Driven System Identification 

FNN has the ability to deal with complex nonlinear 

relations and optimize internal parameters through 

continuous learning [18], a data-driven prediction model 

based on the FNN is established to learn the pattern from the 

operating data and realize the accurate identification of the 

WWTP control system with unknown dynamic and complex 

nonlinearity. The input vector of the FNN at time k is 

x(k)=[x1(k), ..., xq(k)], and the output of the FNN at time k is 

represented as 
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where ŷ(k) represents the predicted SO5 at time k, p 

represents the number of neurons in the normalized layer, 

wn(t) represents the connection weight between the n-th 

normalized neuron and output neuron, vn(t) represents the 

output of the n-th normalized neuron, expressed as 
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where xm(k) represents the m-th input, q represents the 

number of neurons in the input layer, αj(t)=[α1j(t), ..., αqj(t)]T 

and βj(t)=[β1j(t), ..., βqj(t)]T stands for the center vector and 

width vector of the j-th RBF neuron, respectively. 

To effectively train and optimize the FNN model, the loss 

function is set as 

 21
ˆ( ) ( ( ) ( ))

2
lossJ k y k y k= − . (7) 

The gradient descent algorithm is used to update the 

weight, center, and width 
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where η is the learning rate. 

The constructed prediction model is trained based on 

historical data and updated with gradient descent algorithm 

to ensure accurate prediction output during the control 

process. Then, based on the current system output y(k) and 

future control input sequence u(k)=[u(0|k), u(1|k), ..., 

u(N-1|k)]T, recursively calculate the system prediction 

output ŷ(k)=[ŷ(1|k), ŷ(2|k), ..., ŷ(N|k)]T within the prediction 

horizon N, the detailed process is as follows. 

In the first step of prediction, the input vector of the FNN 

is x(k)=[y(k), u(0|k)], and the predicted output is ŷ(1|k). In 

the second step of prediction, the input vector of the FNN is 

x(k)=[ŷ(1|k), u(1|k)], and the predicted output is ŷ(2|k). The 

prediction output of the current step is taken as the input of 

the FNN for the next prediction to obtain the prediction 

output of the next step. Iterate this process until the N-th step 

predicted output ŷ(N|k) is obtained. 

3.2 PC-MPC Strategy 

The PC-MPC strategy strives for accurate DO 

concentration tracking to the set-point while satisfying 

system constraints. To this end, the finite horizon 

optimization control problem (FHOCP) with system 

constraints is defined as 
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 min max( )u u i k u  , (14) 

 min max
ˆ( )y y i k y  , (15) 

 min max
ˆ( )e e i k e  , (16) 

where ê(i|k)=ŷ(i|k)-yr(k+i) represents the i-step ahead 

tracking error at time k, yr(k+i) is the set-point at time k+i, 

u(i|k)=u(i|k)-u(i|k-1) denotes the i-step ahead control input 

increment at time k, u(i|k) is the i-step ahead control input at 

time k, u(i|k-1) is the i-step ahead control input at time k-1, ρ 

represents the weight parameter, N is the planning horizon. 

3.3 Adaptive Constraint Optimization 

The existence of constraint conditions (14)-(16) limits the 

range of values for the output variable and the control 

variable, thereby affecting the value of the cost function (11). 

Usually, iterative algorithms are used to solve the FHOCP, 

which requires repeatedly calculating the objective function 

(11) and determining the constraints (14)-(16), consuming a 

large amount of computing resources. To address this 

problem, exponential penalty terms are constructed based on 

the characteristics of the constraint conditions and added to 

the cost function, thereby transforming the constrained 

optimization problem into an unconstrained optimization 

problem. Then, the L-M algorithm is utilized to minimize 

the cost function, obtaining the optimal solution that 

satisfies the constraints and has good performance. 

For constraint (14), an exponential penalty function with 

a sharpness variable is designed as 
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where variable su is the sharpness of the function fp(u), 

ū=(umin+umax)/2, sign(‧) represents a symbolic function, 

 

1, ,

( ) 0, ,

1, .

u u

sign u u u u

u u




− = =
− 

 (18) 

The penalty term fp(u) remains constant when the 

predicted output ŷ is between the bounds umin and umax, but it 

increases exponentially when the predicted output ŷ is far 

from its bounds. 

Similarly, for constraints (15)-(16), the exponential 

penalty terms are constructed as follows 
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where variables sy and se are the sharpness of the function 

fp(ŷ) and fp(ê), ȳ=(ymin+ymax)/2, ē=(emin+emax)/2. 

Then, the cost function J(k) (11) is reconstructed as 
1
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The cost function (21) is minimized at time k to obtain the 

optimal control sequence using the L-M algorithm 

 ( ) ( 1) ( )k k k= − + u u u , (22) 
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where δ is the learning rate, J(̃k)/u(k) is the gradient of the 

cost function, 2J(̃k)/u2(k) is the Hessian matrix, μ(k) is the 

regularization parameter, and I is the identity matrix. By the 

receding horizon principle, the MPC control law is 

determined from the first element of the optimal control 

sequence. 

For the sake of presentation, the following definitions are 

provided 
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The Hessian matrix of the cost function (21) is calculated 

as 
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By solving the FHOCP, the optimized control sequence 

u*(k)=[u*(0|k), u*(1|k), ..., u*(N-1|k)]T is obtained. According 

to the MPC principle, the first element of the optimal control 

sequence u(k)=u*(0|k) is applied to the WWTP system. 

3.4 Feasibility and Stability Analysis 

In this section, the feasibility of the proposed PC-MPC 

strategy and the stability of the WWTP system (1) are 

analyzed. Before moving on, the following assumption is 

given. 

Assumption 1: There exists a terminal control law uf(k) 

for system (1), a terminal cost function (ê(N|k)), a terminal 

constraint set ={ê(N|k)(ê(N|k)), >0}, such that the 

following conditions hold 

1) Y; 

2) ufU for y; 

where (0, ∞) represents a constant, Y and U represent the 

set of output and input constraints, respectively. 

Theorem 1: For the WWTP system (1) with the control 

law u(k)=u*(0|k), the FHOCP is recursively feasible and the 

WWTP system (1) is asymptotically stable. 

Proof: The optimization control sequence of the FHOCP 

at time k is ū*(k)=[ū*(0|k), ū*(1|k), ..., ū*(N-1|k)]T satisfying 

the input constraint (2). Correspondingly, the predicted 

output sequence at time k is ŷ*(k)=[ŷ*(1|k), ŷ*(1|k), ..., 

ŷ*(N|k)]T, satisfying the output constraint (3). 

The output of system (1) at time k+1 is y(k+1) and a 

candidate solution is selected as u(k+1)=[u(0|k+1), 

u(1|k+1), ..., u(N-1|k+1)]T=[u*(1|k), u*(2|k), ..., u*(N-1|k), 

u(N-1|k+1)]T. Obviously, the first N-1 elements of u(k+1) 

are the same as the final N-1 elements of u*(t), 

u(i|k+1)=u*(i+1|k)，i[0, N-2], and they all satisfy the input 

constraint (2). Due to ŷ*(N|t), according to Assumption 1, 

there can be u(N-1|k+1)=uf(k)U. Thus, the candidate 

solution satisfies the input constraint (2). The predicted 

output sequence at time k+1 is ŷ(k+1)=[ŷ(1|k+1), ŷ(2|k+1), ..., 

ŷ(N|k+1)]T=[ŷ*(2|k), ŷ*(3|k), ..., ŷ*(N|k), ŷ(N|k+1)]T. The first 

N elements of ŷ(k+1) satisfy the output constraint (3)，

i[0, N-1] and form uf(k+1) have ŷ(N|k+1). Therefore, 

the FHOCP is recursively feasible. 

A Lyapunov function is constructed as 
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The difference of V(k) is calculated as 
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where ê(k)=ê(k+1)-ê(k), calculated as 
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where =∂ê(k)/∂u(k). 

According to (23), one can get 
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where H=∂2J(̃k)/∂u2(k). 

Substituting (39), (40) into (38), it can be derived 
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From (41), it can derive ∆V̂(k)<0, then the trajectory of 

the system (1) is asymptotically stable. 

4 Simulation Validation 

In this section, the designed PC-MPC strategy and two 

comparison algorithms: OG-PRWNN [9] and FNN-MPC 

[19] are applied to the benchmark simulation model No.1 

(BSM1) [20] of the activated sludge WWTP to 

comprehensively evaluate their control performance. 

4.1 Simulation Conditions 

In this study, the inflow data of BSM1 is sampled from 

the wastewater treatment plant at a sampling interval of 15 

minutes. The constraint for SO5 is set to 1.8 mg/L<SO5<2.2 

mg/L, and the constraint for KLa5 was set to 40 

day-1<KLa5<240 day-1. The performance constraint for 

tracking error is set to -0.1 mg/L<e(k)<0.1 mg/L. 

The parameters are selected as: ny=11, nu=11, η=0.1, 

Hy=2, Hu=1, =10-6. The input of the FNN model is 

x(t)=[y(k-2), ..., y(k-12), KLa5(k-2), ..., KLa5(k-12)]T. To 

comprehensively evaluate control performance, control 

strategies are used for fixed set-point tracking and dynamic 

set-point tracking. The fixed set-point is yr(k)=2 mg/L. The 

dynamic set-point is set as 

 

2.2 mg/L, 0 day time 3.5 day,

2 mg/L, 3.5 day time 7 day,
( )

1.8 mg/L, 7 day time 10.5 day,

2 mg/L, 10.5 day time 14 day.

ry k

 


 
= 

 
  

 (42) 



  

The performance evaluation indicators of control strategies 

are selected as the integral of absolute error (IAE), integral of 

square error (ISE), and maximum absolute error (DEVmax) 

 
0

1
IAE ( ) ( )

M

ry k y k
M

= − , (43) 

 
2

0

1
ISE ( ) ( )

M

ry k y k
M

= − , (44) 

  maxDEV max ( ) ( )ry k y k= − , (45) 

where M represents the sampling number. 

4.2 Control Results 

The tracking control results of three control methods 

under the fixed set-point are plotted in Figs. 2-3. Fig. 2 

shows the tracking curves and tracking errors of SO5 under 

the fixed set-point. Fig. 3 presents the trend of control input 

changes during the tracking process of SO5 under the fixed 

set-point. In Fig. 2, the tracking error of the FNN-MPC 

method is kept in a stable range due to the design of the 

parameter adaptive mechanism, which can update the 

parameters of the FNN model according to the prediction 

error. The tracking error of OG-PRWNN is relatively large 

at the beginning of the simulation and tends to be stable and 

kept in a small range after 1 day of learning and training. In 

contrast, the tracking error of the proposed PC-MPC method 

can be stably maintained within ±0.03 mg/L, due to its 

proper handling of performance constraint. In Fig. 3, for 

these three methods, the trend of the input signal under the 

fixed set-point is similar. 

The tracking control results of three control methods 

under the dynamic set-point are plotted in Figs. 4-5. Fig. 4 

plots the tracking curves and tracking errors of SO5 under the 

dynamic set-point. Fig. 5 shows the curves of control input 

for three methods under the dynamic set-point. In Fig.4, the 

OG-PRWNN method shows higher control accuracy than 

the FNN-MPC method in the dynamic set-point tracking. 

This is due to the online growth strategy designed by the 

OG-PRWNN method, the structure of the controller can be 

adapted to the system conditions, showing superior learning 

ability. In contrast, the proposed PC-MPC method not only 

adapts to different operating conditions but also maintains 

high tracking accuracy under system constraints. The 

tracking error of the proposed PC-MPC method remains 

stable within ±0.02 mg/L. Fig. 5 illustrates that compared 

with the OG-PRWNN and FNN-MPC methods, the input 

signal of the PC-MPC method is relatively stable, which is 

beneficial for the protection of aeration equipment. 

Furthermore, three control strategies are evaluated using 

IAE, ISE, and DEVmax to quantify their accuracy, stability, and 

response speed. The results of the comparison are outlined in 

Table 1. Compared with the other two control methods, the 

minimum IAE (0.0034), ISE (2.6332×10-5), and Devmax 

(0.0332) are obtained under the fixed set-point tracking, 

while the minimum IAE (0.0039), ISE (4.1508×10-5), and 

Devmax (0.0275) are acquired under the dynamic set-point 

tracking. The comparison results of IAE and ISE indicate 

that the proposed PC-MPC strategy presents high control 

accuracy and can accurately follow the set-point. The results 

of Devmax demonstrate that even under unfavorable 

conditions, the PC-MPC strategy can maintain small errors. 

 

Fig. 2 Tracking results under the fixed set-point. 

 

 

Fig. 3 Control inputs under the fixed set-point. 

 

 

Fig. 4 Tracking results under the dynamic set-point. 

 

 

Fig. 5 Control inputs under the dynamic set-point. 

 



  

Table 1: Comparison results of three control methods 

Case Controller IAE ISE DEVmax 

fixed  

set-point 

PC-MPC 0.0034 2.6332×10-5 0.0332 

FNN-MPC 0.0109 3.1861×10-4 0.0717 

OG-PRWNN 0.0135 0.0058 1.3478 

dynamic  

set-point 

PC-MPC 0.0039 4.1508×10-5 0.0275 

OG-PRWNN 0.0065 6.9803×10-4 0.4131 

FNN-MPC 0.0335 0.0031 0.2261 

 

5 Conclusion 

In this paper, the PC-MPC control strategy was proposed 

for the accurate control of DO concentration in WWTPs. By 

constructing a data-driven model based on fuzzy neural 

network, the difficulty of complex nonlinear identification 

of wastewater treatment system was addressed, and the 

prediction error was reduced by combining the model 

parameter optimization mechanism. On this basis, the MPC 

strategy with performance constraint was designed to limit 

the DO concentration tracking error to a predefined 

acceptable range by dynamically adjusting the control input. 

Furthermore, a constrained optimization strategy based on 

L-M algorithm was proposed, which successfully solved the 

FHOCP problem under multiple constraints and achieved 

the real-time optimization of the control sequence. The 

simulation results demonstrated that PC-MPC strategy was 

superior to the comparison method in both control accuracy 

and constraint treatment ability, providing theoretical 

support and technical scheme for the intelligent operation of 

WWTPs. 

References 

[1] G. M. Wang, J. Bi, Q. S. Jia, J. F. Qiao, and L. Wang, 

Event-driven model predictive control with deep learning for 

wastewater treatment process, IEEE Trans. Ind. Inf. 19(5): 

6398–6407, 2023. 

[2] H. G. Han, Y. S. Wang, Z. Liu, H. Y. Sun, and J. F. Qiao, 

Knowledge-data driven optimal control for nonlinear systems 

and its application to wastewater treatment process, IEEE 

Trans. Cybern., 54(10): 6132–6144, 2024. 

[3] H. G. Han, C. C. Feng, H. Y. Sun, and J. F. Qiao, 

Self-organizing fuzzy terminal sliding mode control for 

wastewater treatment processes, IEEE Trans. Autom. Sci. 

Eng. 21(4): 5421–5433, 2024. 

[4] P. Zhou, X. A. Wang, and T. Y. Chai, Multiobjective 

operation optimization of wastewater treatment process 

based on reinforcement self-learning and knowledge 

guidance, IEEE Trans. Cybern., 53(11): 6896–6909, 2023. 

[5] H. G. Han, Y. Q. Xing, and H. Y. Sun, Adaptive robust fuzzy 

sliding mode control for wastewater treatment processes, 

IEEE Trans. Fuzzy Syst., 32(8): 4787–4798, 2024. 

[6] P. H. Du, W. M. Zhong, X. Peng, L. L. Li, and Z. Li, 

Self-healing control for wastewater treatment process based 

on variable-gain state observer, IEEE Trans. Ind. Inf. 19(10): 

10412–10424, 2023. 

[7] H. G. Han, Y. M. Xu, Z. Liu, H. Y. Sun, J. F. Qiao, 

Knowledge-data-driven robust fault-tolerant control for 

sludge bulking in wastewater treatment process, IEEE Trans. 

Ind. Inf. 20 (8): 10280–10291, 2024. 

[8] H. G. Han, S. J. Fu, H. Y. Sun, and C. Y. Wang, Robust 

model free adaptive predictive control for wastewater 

treatment process with packet dropouts, IEEE Trans. Cybern., 

54(10): 6069–6080, 2024. 

[9] J. F. Qiao, Y. Su, and C. L. Yang, Online-Growing neural 

network control for dissolved oxygen concentration, IEEE 

Trans. Ind. Inf., 19(5): 6794–6803, 2023. 

[10] K. Stebel, J. Pospiech, W. Nocon, J. Czeczot, and P. Skupin, 

Boundary-based predictive controller and its application to 

control of dissolved oxygen concentration in activated sludge 

bioreactor, IEEE Trans. Ind. Electron., 69(10): 10541–10551, 

2022. 

[11] P. Hang, X. Xia, G. Chen, and X. B. Chen, Active safety 

control of automated electric vehicles at driving limits: A 

tube-based MPC approach, IEEE Trans. Transp. Electrif., 

8(1): 1338–1349, 2022. 

[12] D. P. Li, H. G. Han, and J. F. Qiao, Fuzzy-approximation 

adaptive fault tolerant control for nonlinear constraint 

systems with actuator and sensor faults, IEEE Trans. Fuzzy 

Syst., 32(5): 2614–2624, 2024. 

[13] R. Q. Chai, A. Tsourdos, H. J. Gao, Y. Q. Xia, and S. C. Chai, 

Dual-loop tube-based robust model predictive attitude 

tracking control for spacecraft with system constraints and 

additive disturbances, IEEE Trans. Ind. Electron., 69(4): 

4022–4033, 2022. 

[14] P. Zhou, X. Y. Sun and T. Y. Chai, Enhanced NMPC for 

stochastic dynamic systems driven by control error 

compensation with entropy optimization, IEEE Trans. 

Control Syst. Technol., 31(5): 2217–2230, 2023. 

[15] H. G. Han, S. J. Fu, H. Y. Sun, and J. F. Qiao, Data-driven 

model-predictive control for nonlinear systems with 

stochastic sampling interval, IEEE Trans. Syst. Man Cybern.: 

Syst., 53(5): 3019–3030, 2023. 

[16] Y. Xu, S. Li, W. Zhang, G. Yu, and J. Zou, Long-horizon 

constrained model predictive direct speed control for PMSM 

drives based on Laguerre functions, IEEE Trans. Control Syst. 

Technol., 32(3): 1002–1014, 2024. 

[17] S. Yan, P. J. Goulart, and M. Cannon, Stochastic MPC with 

dynamic feedback gain selection and discounted probabilistic 

constraints, IEEE Trans. Autom. Control, 67(11): 5885–5899, 

2022. 

[18] C. C. Feng, H. Y. Sun, H. G. Han, Z. Cheng, and F. Y. Li, 

Robust dynamic surface control with fixed time observer for 

wastewater treatment processes, in 2024 43rd Chinese 

Control Conference (CCC), 2024: 2227–2232. 

[19] H. G. Han, Z. Liu, J. F. Qiao, Fuzzy neural network-based 

model predictive control for dissolved oxygen concentration 

of WWTPs, Int. J. Fuzzy Syst. 21 (5), 1497–1510, 2019. 

[20] A. Khurshid, A. K. Pani, Machine learning approaches for 

data-driven process monitoring of biological wastewater 

treatment plant: A review of research works on benchmark 

simulation model No. 1(BSM1), Environ. Monit. Assess. 195 

(8), 1–19, 2023. 

 


