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Abstract: Critical boundary scenarios play a vital role in the comprehensive testing of autonomous vehicles, as they can sig-
nificantly expedite testing processes and reduce economic and time costs. To tackle the intricate, multidimensional, and diverse
nature of intelligent driving scenarios, this paper proposes an innovative bi-level adaptive deep reinforcement learning (BADRL)
approach aimed at generating authentic and diverse critical boundary scenarios. Leveraging naturalistic driving data, background
agents are trained to exhibit naturalistic and realistic driving behaviors using a neural-based naturalistic driving behavior model.
To address the intricacies of multi-interaction, high-dimensional environments, the scenario complexity model is introduced to
evaluate the relative complexity between the traffic environment and the tested autonomous vehicle in real time. By integrating
the scenario complexity model, the naturalistic driving behavior learning, intelligent driving testing, and critical boundary sce-
nario generation are concatenated together to form a closed loop. BADRL facilitates the upper-level neural network in learning
to adaptively increase the complexity of test scenarios, which are then fed into lower-level models to optimize the behavior of
principal traffic participants, thereby generating naturalistic and critical boundary test scenarios. Extensive simulations were car-
ried out to verify the efficacy of the BADRL technique in complex intersection environments. Results indicate that the BADRL
approach boosts the efficiency of critical boundary scenario generation by approximately 10% compared to the state-of-the-art
method.
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1 Introduction

Due to the rapid progress of autonomous vehicle (AV)

technology, expediting the deployment of AVs for real-world

applications has become an issue of broad concern around

the world [1]. The generation of a vast array of long-tailed

critical scenarios is imperative to facilitate comprehensive

testing and evaluation of AVs. Research in critical scenario

generation is divided into two primary domains based on

their intended purposes and applications: collision scenario

generation and critical boundary scenario generation [2, 3].

Collision scenario generation entails the development of var-

ious perilous situations aimed at provoking collisions with

the surrounding environment to assess the safety of AVs.

However, the generated collision scenarios only offer insight

into the accident rate of AVs, presenting a limited perspec-

tive on their comprehensive performance. Furthermore, due

to the curse of dimensionality [4], prevailing methods such

as importance sampling are effective only in relatively sim-

ple, low-dimensional environments [5–7].

Different from collision scenarios, critical boundary sce-

narios pertain to situations situated at the threshold between

safety and collision, serving as a means to expedite the eval-

uation of the performance boundaries of AVs [8]. Neverthe-

less, critical boundary scenarios, often intentionally crafted,

suffer from a deficit in naturalness, diversity, and generaliz-
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ability. Thus, the imperative arises to create naturalistic and

critical boundary scenarios (NCBS) to facilitate a compre-

hensive and impartial evaluation of AV performance. Given

the pivotal role of NCBS in the advancement of AVs, the

generation of NCBS without loss of unbiasedness opens the

door to accelerating AV training and comprehensive per-

formance enhancement [1]. Tuncali et al. [9] introduced

the simulated annealing method to identify critical bound-

ary scenarios linked to lane-changing behavior. Batsch et al.

[10] proposed the Gaussian process classification method to

identify the performance boundary of AVs in traffic jam sce-

narios. Zhu et al. [11] utilized the optimization searching

method to search boundary scenarios in the car-following

scenario. Wang et al. [12] proposed the adaptive sampling

method to construct a multi-layer perception-based surro-

gate model to identify the performance boundary of the in-

telligent driver model in the car-following scenario. These

methods are restricted to identifying existing critical scenar-

ios and are incapable of producing a diverse array of NCBS.

To address these challenges, we propose a bi-level adap-

tive deep reinforcement learning (BADRL) method to ef-

ficiently generate realistic and diverse NCBS in the intri-

cate multi-interaction high-dimensional environment. The

basic idea is to develop a neural-based naturalistic driving

behavior learning (NNDBL) model and scenario complexity

model, and train neural networks to adaptively elevate the

test scenario complexity through closed-loop feedback. To

reproduce realistic naturalistic traffic scenarios and increase

the scenario diversity, we develop an NNDBL model as the

background traffic participant’s agent to perform complex

interaction behaviors with the AV under test. By leverag-



ing the scenario complexity model and the automated test-

ing and evaluation framework, we reframe the challenge of

NCBS generation into the adaptive enhancement of test sce-

nario complexity. The upper level of the BADRL approach

employs neural networks to learn adaptive boosting coeffi-

cients of scenario complexity, while the lower layer focuses

on the generation of naturalistic and pivotal agent behaviors.

Our contributions are manifold and summarized as follows.

1) The BADRL method is designed to transform the NCBS

generation problem into adaptive boosting of test sce-

nario complexity. It overcomes the limitation that exist-

ing methods are only applicable to low-dimensional sce-

narios, enhances the naturalness and realism of critical

boundary scenario generation, and improves the genera-

tion efficiency.

2) Compared to existing trajectory generation methods,

our proposed method is more realistic. The proposed

NNDBL model can generate diverse and realistic natu-

ralistic traffic scenarios for intelligent driving tests.

3) The proposed method facilitates stochastic scenario gen-

eration by merging traffic flow simulation with real-world

data. It allows for the bulk creation of critical boundary

scenarios that not only align with actual traffic conditions

but also adapt to the behavior of the AV under test.

4) We conducted thorough simulations to validate the effec-

tiveness of the BADRL framework. Simulation scenarios

are implemented within the Carla simulator, and two dis-

tinct self-driving models are employed to demonstrate the

efficacy and generalizability of the BADRL method.

The paper is structured as follows: Section 2 elaborates

on the BADRL approach, focusing on the naturalistic back-

ground agent model, the scenario complexity model, and the

bi-level adaptive deep reinforcement learning method. Sec-

tion 3 outlines the experimental setup and presents the re-

sults. Finally, Section 4 provides the conclusion of the paper.

2 Naturalistic and Critical Boundary Scenario
Generation

In this section, the BADRL approach is designed to gen-

erate NCBS to expedite the evaluation and testing process

of AVs from multiple dimensions. The framework of the

BADRL approach is illustrated in Fig. 1. The system com-

prises four key components: NNDBL, scenario complexity

model, automated testing and evaluation, and BADRL algo-

rithm. We utilize the encoder-decoder architecture proposed

in [13] as the backbone of the NNDBL model to reproduce

the behaviors of background traffic participants. Then, we

employ naturalistic driving data within realistic traffic envi-

ronments to conduct unbiased automated testing and assess-

ment for generating NCBS. Moreover, real-world renderings

using Carla are employed to enhance the fidelity of the gen-

erated NCBS, thereby aligning them more closely with ac-

tual traffic scenarios.

2.1 Scenario Complexity Model

To address the complexities of multi-interaction, high-

dimensional environments, the scenario complexity model

is introduced to assess the relative complexity between the

traffic environment and the autonomous vehicle under test

in real time. Building upon studies in [14], we define the

interacting-pair complexity Ci,0 as follows:

Ci,0 = Ω(θi,0, di,0, vi,0)

= f1(θi,0)× f2(di,0)× f3(vi,0),
(1)

where f1(θi,0), f2(di,0), and f3(vi,0) represent the relation-

ships between the encounter angle θi,0, relative distance di,0,

relative velocity vi,0, and the complexity Ci,0 of the interact-

ing pair, respectively.

The complexities associated with encounter angle, relative

distance, and relative velocity can be calculated using the

following equations, respectively:

f1(θi,0) =
1

2
−

1

2
cos (

θi,0π

128.57
+

π

15
), θi,0 ∈ [0, 180), (2)

f2(di,0) = (1−
dmax − di,0

dmax − dmin

)× log(
dmax − dmin

dmax − di,0
), (3)

f3(vi,0) = (1−
vmax − vi,0

vmax − vmin

)× log(
vmax − vmin

vmax − vi,0
), (4)

where di,0 represents the relative distance, dmin and dmax

signify the mutual distance in the least and most challeng-

ing scenarios. vi,0 represents the relative velocity, vmin and

vmax signify the mutual velocity in the least and most chal-

lenging scenarios.

The scenario complexity C(t) can be determined by ag-

gregating all interaction pair complexities in the influence

area. This can be approximated by summing up the com-

plexities of all interaction pairs.

C(t) =

M
∑

i=1

γiCi,0, (5)

where C(t) represents the accumulated scenario complexity,

M represents the count of vehicle pairs, γi represents the in-

fluence of vehicle i, Ci,0 represents the complexity between

vehicle i and AV 0.

2.2 Bi-level Adaptive Deep Reinforcement Learning

To efficiently generate realistic, diverse, transferable, and

controllable critical boundary scenarios, we leverage deep

reinforcement learning to enhance the behavior of BVs adap-

tively based on the NNDBL model. Initially, we utilize the

NNDBL model to generate a wide array of realistic and di-

verse naturalistic traffic scenarios. Subsequently, employing

the scenario complexity model, we assess the complexity in-

herent in each test scenario. This problem of generating crit-

ical boundary scenarios is then formulated as the sequential

Markov decision process. In this context, the actions of BVs

are determined by considering both the current state infor-

mation and the complexity characterization of the scenario.

Our objective is to train a DRL policy, implemented as a

neural network, capable of directing the maneuvers of BVs.

Through adaptive adjustments, this policy aims to elevate

the complexity of test scenarios progressively until critical

boundary scenarios are effectively generated.

To improve the realism of the generated scenarios as much

as possible, we enhance the maneuver of the principal other

traffic participants (POTPs) only at critical moments. The

identification of critical moments and principal other traffic



Fig. 1: BADRL System Architecture. The entire system comprises four components, the neural-based naturalistic driving

behavior model, the scenario complexity model, the automated testing and evaluation model, and the BADRL algorithm. The

actor-critic architecture is proposed to realize realistic, efficient, and diverse critical boundary scenario generation. The actor

mainly consists of NNDBL and reinforcement-based adaptive generation of NCBS, while the critic component focuses on

automated evaluation of the generated scenarios and AV behaviors.

participants is mainly based on the complexity C(t) defined

in the previous section.

After identifying the POTPs, the subsequent challenge lies

in generating NCBS rationally and efficiently. The core con-

cept is to systematically enhance POTPs’ behavior to am-

plify the complexity of traffic scenarios. Indeed, the actions

of POTPs play a crucial role in shaping the complexity of

traffic scenarios, thereby expediting the assessment of AV

performance boundaries and the discovery of NCBS [15].

To be applicable to various high-dimensional intelligent

driving scenarios and to keep the runtime of the BADRL

short, we model the neural network output as the scenario

complexity enhancement factor β ∈ (0, 1]. This factor en-

ables adaptive optimization of intelligent driving scenarios.

Upon successful completion of the current test, the complex-

ity threshold is elevated in preparation for the subsequent

test. This threshold adjustment can be determined as fol-

lows:

Ccrit = (1 + β)C(t). (6)

where C(t) denotes the scenario complexity in the natural-

istic driving scenario.

The goal of BADRL training is to achieve adaptive sce-

nario complexity boosting to generate realistic and diverse

critical boundary scenarios without collisions. Intuitively,

we need to train a policy to adaptively increase the complex-

ity of the test scenarios based on the current traffic partici-

pant state information and road environment information. To

achieve this goal, we derive the reward function in terms of

criticality and collision as:

R =rcrit,t(xAV,t, xPOTP,t, vAV,t, vPOTP,t)

+ rcolli,t − 2.
(7)

where xAV,t and xPOTP,t denote the positions of the tested

AV and the POTP, vAV,t and vPOTP,t denote the veloc-

ity of the tested AV and the POTP, respectively. rcrit,t
serves as a criticality measure, indicating the danger level

between the tested AV and the POTPs. The rcrit,t con-

sists of two terms, the maximum normalized inverse time-to-

collision (mnTTC−1) and the minimal post-encroachment

time (mPET ), which can be calculated as:

rcrit,t = mnTTC−1 − ω ×mPET. (8)

where ω denotes the weight parameter used to balance the

influence of the two terms.

A larger mnTTC−1 implies a more critical interaction

behavior, which can be formulated as:

mnTTC−1 = clip(max
vi(t)− v0(t)

xi(t)− x0(t)− Li

, 0, 2), (9)

where Li denote the length of the POTP i. The clip func-

tion employed here serves as a valuable tool in learning net-

works, setting a threshold for each policy update. This helps

stabilize the learning process and prevents many detrimental

policy updates.



A smaller mPET means a more critical trajectory con-

flict, which can be formulated as:

mPET = clip(min
PET

5
, 0, 2), (10)

When there is no trajectory conflict between the tested AV

and other vehicles, or there are no POTPs, the criticality re-

ward rcrit,t is set to 0.

To avoid active collisions between the tested AV and BVs,

we introduce rcolli,t in Equation (7). In detail, rcolli,t can be

represented as:

rcolli,t =

{

−2, collision occurred,

0, no collision.
(11)

After establishing the complexity threshold of the sce-

nario, the second level is to adjust the action uq to gener-

ate NCBS that fulfill the complexity criteria while deviat-

ing minimally from the naturalistic driving scenarios (NDS).

The trajectories of POTPs obtained from NDS are denoted

as Tnat(t, uq,nat). The enhanced behavioral trajectories are

denoted as Tcrit(t, uq). We aim to minimize the distribu-

tion distance difference between the optimized trajectories

and the naturalistic traffic trajectories by optimizing the ac-

tion of POTPs. The objective function and corresponding

constraints of the BADRL method are presented in Equation

(12).

argmin
uq

κ(uq), κ(uq)

=

∫ t0+tf

t0

(Tcrit(t, uq)− Tnat(t, uq,nat))
2,

s.t. C(t+ 1) ≥ Ccrit,

TTC(t) ≥ TTCmin, ∀t ∈ T,

(12)

where t0 represents the initial time of action optimization, tf
represents the interval during which the POTPs influence the

behavior of the tested AV, TTCi(t) signifies the minimum

collision time, TTCmin represents the minimum safe TTC.

The constraints in Equation (12) make sure that no POTPs

intentionally collide with the tested AV.

Table 1: The Training Parameters of BADRL

Parameter Value

Learning rate 0.001

Reward discount factor 0.99

Buffer size 1000000

Batch size 256

Target network update frequency 10000

3 Performance of BADRL Method

To further demonstrate the validity and unbiasedness of

the BADRL method, we implemented thorough simulation

experiments using data from the real-world intersection,

which is intractable for most existing critical boundary sce-

nario generation methods. To validate the effectiveness and

generalizability of the generated NCBS, we utilized two dif-

ferent types of self-driving vehicle models for simulation

validation. The AV-I model was constructed based on Carla

[18] autopilot model, which can be regarded as a black box.

(a) (b)

Fig. 2: The layout of the simulated intersection scenario. (a)

A photograph depicting the actual intersection [16]. (b) The

simulation intersection reconstructed in Carla to replicate the

real-world scenario depicted in (a).

Fig. 3: Learning curve during training of the BADRL

method. Rewards are calculated with ten trials, each with

four episodes. The shaded area indicates the standard devia-

tion.

The AV-II model was constructed based on the OpenCDA

[17] platform, an open-source rule-based autonomous driv-

ing algorithm platform that supports multi-vehicle coopera-

tive joint simulation testing.

The simulation intersection scenario is illustrated in Fig.

2. Fig. 2(a) depicts an actual photograph of the intersection

from the inD Dataset [16], while Fig. 2(b) showcases the

corresponding environment constructed in Carla, faithfully

replicating the real scenario depicted in Fig. 2(a).

We implemented the BADRL framework using the deep

Q-network (DQN) algorithm [19], a value-based deep rein-

forcement learning method. DQN employs a target network

to derive an unbiased estimator of the mean-squared Bell-

man error, crucial for training the Q-network. Synchroniza-

tion between the target network and the Q-network occurs

after each iteration period, establishing a coupling between

the two networks [20]. The neural network’s output is the

scenario complexity enhancement factor (β), where the ac-

tion space is β ∈ (0, 1] with a resolution of 0.2. We utilized

PyTorch [21] for training BADRL, leveraging the Adam op-

timizer [22] to optimize the network parameters. Following

meticulous fine-tuning of the parameters, we determined the

hyperparameter configurations outlined in Table 1.

The reward curve during DRL training is an important in-

dicator of progress and convergence. The learning curve of

the BADRL method during training is shown in Fig. 3. Re-

wards are calculated with ten trials, each with four episodes.



(a) (b)

(c) (d)

Fig. 4: Performance evaluation of the BADRL-based intelligent testing scenarios. Distribution of time to collision (a) and

relative distance (b) for the Carla self-driving model in BADRL and NDS. Distribution of time to collision (c) and relative

distance (d) for the OpenCDA self-driving model [17] in BADRL and NDS.
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Fig. 5: Comparison of the generation efficiency among the

BADRL method, AGCBS method [15], and NDS for crit-

ical boundary scenarios. The horizontal axis represents the

number of tests, and the vertical axis indicates the proportion

of generated critical boundary scenarios relative to the total

number of scenarios at each test iteration.

The shaded area indicates the standard deviation. From the

figure, it can be seen that the curve tends to stabilize and con-

verge as the training iterates, which reflects the improvement

of the BADRL method in NCBS generation.

To demonstrate the effectiveness of the BADRL method,

we ran 600 simulation experiments of AVs in both NCBS

generated by the BADRL method and NDS, and calculated

the time to collision and relative distance distributions be-

tween the tested AV and the surrounding vehicles. Fig. 4(a),

(b) show the distribution of time to collision and relative

distance for Carla autonomous driving model in NDS and

BADRL. From the figures, it can be seen that the NCBS

generated by BADRL are more hazardous and critical with

shorter time to collision and relative distance compared to

the NDS. In addition, it can be found that the distribution

between BADRL and NDS is highly consistent. This proves

that the BADRL method can effectively and unbiasedly gen-

erate various boundary scenarios. Fig. 4(c), (d) show the

distribution of time to collision and relative distance for the

OpenCDA autonomous driving model in NDS and BADRL.

As can be seen from Fig. 4, the frequency distribution of

the OpenCDA autonomous driving model is notably smaller

than that of the Carla autonomous driving model within in-

tervals where the time to collision is less than ten. Specif-

ically, the peak frequency measures only 0.03, contrasting

with the 0.05 peak frequency observed in the Carla au-

tonomous driving model. Furthermore, the OpenCDA au-

tonomous driving model exhibits a larger relative distance

distribution. These findings provide evidence supporting

the assertion that the OpenCDA autonomous driving model

offers enhanced safety compared to the Carla autonomous

driving model.

The comparison of the generation efficiency among the

BADRL method, AGCBS method [15], and NDS for criti-

cal boundary scenarios is depicted in Fig. 5. The horizon-



tal axis represents the number of tests, and the vertical axis

indicates the ratio of generated critical boundary scenarios

to the total scenarios for the current number of tests. Fig.

5 demonstrates that the proposed BADRL method enhances

the efficiency of critical boundary scenario generation by ap-

proximately 10% compared to the state-of-the-art AGCBS

method.

4 Conclusion

To address the significant challenges stemming from the

economic and temporal costs associated with the compre-

hensive testing and validation of AVs, we propose the

BADRL approach aimed at generating realistic and diverse

critical boundary scenarios. Our methodology leverages

naturalistic driving data to train background agents using

a neural-based naturalistic driving behavior model. Fur-

thermore, we introduced a scenario complexity model to

adaptively adjust the complexity of test scenarios in real-

time. The BADRL approach facilitates real-time adaptive

enhancement of scenario complexity, enabling the genera-

tion of compelling NCBS in high-dimensional complex en-

vironments.

Extensive simulations were conducted in complex inter-

section environments to validate the effectiveness of the

BADRL approach using the Carla simulation. The results

demonstrate that the proposed BADRL method enhances the

efficiency of critical boundary scenario generation by ap-

proximately 10% compared to the state-of-the-art methods.

The simulation results indicate that our method has the po-

tential to address the current limitations in testing and val-

idation processes for AVs, paving the way for accelerated

testing and application of AVs in the future.
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