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Abstract: Solving Nash equilibrium (NE) is a fundamental problem in game theory. However, for general non-zero-sum games,
computing NE remains challenging (in fact, it is PPAD-hard), and there are no known efficient algorithms so far. Apart from
classical combinatorial methods, learning-based approaches offer an alternative for approximating NE. However, for general
non-zero-sum games, the dynamics of learning algorithms turns out to be intricate, and often fail to converge. In this paper, we
give a novel method to solve NE from the trajectory of fictitious play (FP), a classical learning algorithm in repeated games. By
leveraging the equalization principle of NE, we demonstrate that hidden NE can be unveiled via the trajectory data. Specifically,
we focus on two scenarios. For the 3 × 3 game with interior equilibrium when FP exhibits non-convergent behavior, such as
cyclic or erratic trajectories, we can obtain an approximate NE by estimating the indifferent lines and solving their intersection
points. For the games without an interior equilibrium, by identifying the intersection points between the indifferent lines and
the edges of the players’ strategy simplexes, and proposing a label-matching principle, we can still find the approximate NE.
Hence via this method, we can solve all 3 × 3 games from finite trajectory date of FP no matter how complicated the dynamics
is. Further experiments show that the method can be extended to more general normal form games and special kind of stochastic
games. This paper reveals that there is more information hidden in the behavior of learning dynamics, and thus indicating a
promising way to utilize trajectory data.
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1 Introduction

As stated in [1], "The Nash equilibrium, defined and
shown universal by John F. Nash in 1950[2], is paramount
in game theory." Therefore solving Nash equilibrium (NE) is
a fundamental problem, and there have been a lot of attempts
from different perspectives in the history.

Early methods include Lemke-Howson algorithm [3],
Sperner’s lemma [4], support enumeration or vertex enumer-
ation [5], and some topological methods [6, 7]. It turns out
that these methods are useful for small-scale games, while
the complexity would increase exponentially as games be-
come larger and larger, since they could not avoid enumera-
tion and searching in the whole space. In fact, later research
on computational complexity reveals that such difficulty is
essential and intractable. Solving NE is generally PPAD-
hard [8] for normal form game [9–12] and stochastic game
[13] .

On the other hand, almost from the same time with the
birth of NE, researchers try to approximate it via learning in
repeated games [14, 15]. Much progress has been made in
this area.

One of the most classical learning algorithms is fictitious
play(FP) [16]. It have been proved that FP can converge
to NE in zero-sum games [17], 2 × 2 games [18], potential
games [19], 2 × n games [20] and other games with special
properties, such as games solvable by iterated strict domi-
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nance [21], non-degenerate quasi-supermodular games with
diminishing returns or of dimension 3×n or 4×4 [22]. Here
2×n means one player has only two actions available while
the other could have any number of choices. The other fa-
mous and popular learning framework is based on the idea
of regret minimization [23–27]. It has been proved that these
algorithms could converge to NE in zero-sum games and
CE(correlated equilibrium) or CCE(coarse correlated equi-
librium) in non-zero-sum games [28].

Recently with the rapid development of artificial intelli-
gence in the past decade, learning in games has received
much more attention, often appearing in MARL. For exam-
ple, many variants of FP were proposed to adapt to more
complex situations by combining with neural network [29]
and Q-learning [30]. Regret-based algorithms are extended
to CFR(counterfactual regret minimization) in order to deal
with extensive form games [31], and successfully solve the
Hold’em Poker game etc. [32, 33].

Unfortunately, learning algorithms still suffer from a lot of
disadvantages. The convergence relies strongly on the spe-
cial structure of games. For generic structures, the algorithm
would only converge to some broader set, like the set of CE
or CCE, making it hard to use in practice.

In fact, deeper research indicates that convergence to NE
is even impossible in many scenarios [34]. As early as 1964,
Shapley proposed the first counterexample of 3× 3 game in
which FP has cyclic behavior and never converges no matter
what the initial point is [35]. Until recently, Shapley game
is extended to a group of games by incorporating one param-
eter. As the parameter changes, bifurcation would emerge,
and for some parameter, more complicated pattern and even



erratic behavior appears [36, 37]. Similar results are also
found in 4×4 game [39]. Latest research finds that Poincaré
recurrence happens in some learning dynamics, which pre-
vents the convergence to NE [40]. And more passively, [1]
proves an impossiblility theorem that there exists such game
that all learning algorithms cannot converge to NE.

As a result, now questions arise naturally: Can we acquire
reasonable desicion suggestions when the learning algorithm
yields non-convergent result? Is there any information hid-
den beneath the dynamics which can be utilized? We aim to
answer these questions in this paper.

The key idea is to investigate the geometrical features of
the trajectory of learning dynamics and combine it with the
basic property of NE. We will focus on 3× 3 games and FP
dynamics in this paper, although the idea can be extended to
more general cases.

To this end, we highlight the concepts of switching point
and indifferent line. On the FP trajectory, players incessantly
change their actions. When one player recognizes his oppo-
nent changing action from one to another, he could record
his current mixed strategy as a switching point. By collect-
ing sufficient data of switching points, we can approximate
the indifferent lines where the opponent’s two actions gain
the same payoff. Then the classical equalization principle of
NE indicates that the intersection point of these indifferent
lines is just the NE of 3× 3 games with interior equilibrium
including Shapley game.

As for the 3 × 3 games without interior equilibrium, the
indifferent lines could still help us to find NE with partial
support. In fact, with the absence of interior equilibrium, the
intersection points between indifferent lines and the edges
of strategy simplex are all candidates of NE. For this case,
we propose a labeling rule to these points and a matching
principle to check, by which we can still solve these 3 × 3
games and avoid extra computation or enumeration.

This paper is organized as follows. Section 2 gives the
problem formulation and some necessary preliminary knowl-
edge about the non-convergent dynamics. Section 3 presents
our method and proves its feasibility. Section 4 draws the
conclusion and gives further discussion.

2 Problem Formulation and Preliminaries

2.1 Problem Formulation
Consider 2-player n × n normal form game. Player A

and Player B have actions i = 1, · · · , n and j = 1, · · · , n
respectively. When Player A chooses his i-th action and
Player B chooses his j-th action, the payoff to each player
is uA(i, j) = aij and uB(i, j) = bij , forming corresponding
payoff matrices A = (aij) and B = (bij).

A mixed strategy for Player A is denoted by x =
(x1, · · · , xn)

T ,
∑n

i=1 xi = 1, xi ≥ 0, and Player B’s mixed
strategy is denoted by y. Denote the sets of mixed strate-
gies as two n-dimentional simplexes ∆A = ∆B = {x ∈
Rn|

∑
i=1 xi = 1, xi ≥ 0}, and let ∆ := ∆A × ∆B be

their product. In particular, the i-action of Player k = A,B
can be represented by the vertex of simplex ∆k, i.e. eki =
(0, · · · , 0, 1, 0, · · · , 0), only the i-th component of eki is 1.

When Player A uses a mixed strategy x and Player B
uses y, the expected payoffs are uA(x,y) = xTAy and
uB(x,y) = xTBy. Specifically, the expected payoff for

Player A using action eAi against Player B’s strategy y is
(Ay)i, and these values constitute a n-dimensional payoff
vector Ay. Analogously, xTB is Player B’s payoff vector
against x.

Given the mixed strategy of the opponent, one can choose
those strategies with the highest payoff, which can form a set
called best response set. Formally,

Definition 2.1. Given a mixed strategy profile (x,y), the
best response of one player against the opponent is

BRA(y) := {x ∈ ∆A | xTAy ≥ (x′)TAy, ∀x′ ̸= x},
BRB(x) := {y ∈ ∆A | xTBy ≥ xTAy′, ∀y′ ̸= y}.

When the best response set is not a singleton, some liter-
ature would set tie-breaking rules in prior to determine one
specific pure action, espicially in learning theory. For exam-
ple, players would always choose the action with the lowest
or highest index. In our setting we incorporate but not spec-
ify a tie-breaking rule, then both players can determine a
certain action to choose when there are several alternatives.

Definition 2.2. A mixed strategy profile σ = (x̄, ȳ) is called
a Nash equilibrium in normal form game (A,B), if

x̄TAȳ ≥ (x′)TAȳ, ∀x′ ∈ ∆A,x
′ ̸= x̄;

x̄TBȳ ≥ x̄TBy′, ∀y′ ∈ ∆B ,y
′ ̸= ȳ.

And σ = (x̃, ỹ) is called a ε-Nash equilibrium, if

x̃TAỹ ≥ (x′)TAỹ − ε, ∀x′ ∈ ∆A,x
′ ̸= x̃;

x̃TBỹ ≥ x̃TBy′ − ε, ∀y′ ∈ ∆B ,y
′ ̸= ỹ.

Generally speaking, finding NE is complicated[9]. To cap-
ture the property of NE, we need to define the support of a
strategy.

Definition 2.3. For some player’s mixed strategy x, its sup-
port is defined as the set of all pure actions which the player
would choose with a non-zero probability, i.e.

supp(x) = {i | xi > 0, for x = (x1, · · · , xn)}.

And we say the support of a strategy profile (x,y) has size
l×m, if the support of Player A’s mixed strategy x contains
l actions, and the support of y contains m actions. Based on
this concept, we have the following equalization principle.

Lemma 2.1. (Equalization Principle[41], Theorem 7.1
[42]) Given a normal form game (A,B), the mixed strat-
egy profile (x,y) is a Nash equilibrium iff for any player
k = A,B, given the opponent’s mixed strategy y, his own
strategy x satisfies

1) uk(e
k
j ,y) is the same for all ekj ∈ supp(x), and

2) uk(e
k
j ,y) ≥ uk(e

k
j′ ,y), where ekj ∈ supp(x) and ekj′ /∈

supp(x).

Now we can consider the repeated game in which both
players adopt fictitious play (FP) as their learning dynam-
ics. At time t = 1, 2, · · · , Player A chooses action a(t) =
1, · · · , n and Player B chooses action b(t) = 1, · · · , n. With
slight abuse of notation, the empirical distribution x(T ) of
Player A is defined as

xi(T ) =
#{a(t) | a(t) = i, t = 1, · · · , T}

T
.



The empirical distribution y(T ) of Player B can be defined
similarly.

Based on the opponent’s empirical distribution, each
player will take the best response against it, i.e.

a(t+ 1) = BRA (y(t)) , b(t+ 1) = BRB (x(t)) . (1)

Given the initial point (x(0),y(0)) ∈ ∆, the whole dynam-
ics can be represented by the following recursive equations x(t+ 1) = 1

t+1

(
BRA (y(t)) + t · x(t)

)
,

y(t+ 1) = 1
t+1

(
BRB (x(t)) + t · y(t)

)
.

(2)

In the dynamical system (2), (x(t),y(t)) is the state of
system and evolves in the phrase space ∆ = ∆A×∆B . The
sequence {(x(t),y(t)) | t = 1, 2, · · · } forms the trajectory
of FP.

Remark 1. Some literature also consider the continuous-
time version of FP (CFP) in which time t belongs to [0,∞)
[20, 36, 37], then the evolution of (x(t),y(t)) is driven by or-
dinary differential equations. Although CFP "often produces
a clearer analytical picture which can subsequently serve as
a scaffolding for the discrete-time analysis" [38], this paper
concentrates on the original discrete-time FP, since our goal
is to find NE of a game by analysing data on the trajectory
of a learning algorithm, which can only be implemented by
FP rather than CFP.

Given the dynamical system (2) and initial point
(x(0),y(0)), FP is said to converge, if there is some strat-
egy profile (x∗,y∗) ∈ ∆ such that the empirical distribution(
x(t),y(t)

)
→ (x∗,y∗) as t → ∞. In the literature, it is a

central question to distinguish the classes of games in which
FP would converge, however Shapley’s counterexample shat-
ters this hope for general non-zero-sum games.

2.2 Phenomena in FP Dynamics: Preliminaries
As stated in Section 1, FP is very likely to not converge.

Shapley has constructed a simple 3 × 3 game [35], whose
payoff matrices are

A =

1 0 0
0 1 0
0 0 1

 , B =

0 1 0
0 0 1
1 0 0

 . (3)

Game (3) has an unique equilibrium
(
( 13 ,

1
3 ,

1
3 ), (

1
3 ,

1
3 ,

1
3 )
)
.

Shapley proved that for this game, under dynamics (2)
(x(t),y(t)) does not converge, and the evolution is shown
in Figure 1.

By Figure 1, we can see that only six action profiles would
appear in the process. Meanwhile, x(t), y(t) and the empiri-
cal distribution of action profiles follow a pattern similar to a
limit cycle yet with quickly increasing consecutive time for
each action or action profile.

Recently, the results of Shapley game are extended to a
class of games by introducing a parameter β ∈ (−1, 1) to
the payoff matrices as below [36, 37].

A =

1 0 β
β 1 0
0 β 1

 , B =

−β 1 0
0 −β 1
1 0 −β

 . (4)

Fig. 1: Evolution of FP in Shapley game.

If β = 0, the game (4) is actually Shapley game. [36, 37]
carefully analyze CFP dynamics for games in this class, and
find that burification emerges as parameter β changes. For
some particular β, even more complicated dynamics would
appear. Among all the games, CFP dynamics will not con-
verge to NE except only one specific game. In details,

• For β ∈ (−1, 0], there exists a periodic closed orbit
similar as in Shapley game. And from any initial point,
the trajectory would tend to the orbit.

• For β ∈ (0, σ), the periodic orbit still exists, while from
different initial points, the trajectory would tend to ei-
ther the orbit or NE.

• For β = σ, the orbit no longer exists and the trajectory
converges to NE.

• For β ∈ (σ, τ), there also exists a periodic closed orbit,
yet its orientation is converse to the orbit in Shapley
Game. And the orbit now is of saddle-type, leading to
erratic behavior of the system.

• For β ∈ [τ, 1), the anti-Shapley periodic orbit becomes
attractive again.

Here σ ≈ 0.618, τ ≈ 0.915, both are roots of some particu-
lar algebraic equations. Figure 2 illustrates CFP for Shapley
game where β = 0.

Fig. 2: Trajectory of CFP in ∆A ×∆B of Shapley Game
[36]: The trajectory spirals away from NE lying in the center
of each simplex towards a periodic orbit, and hence does not
converge.

For more general games, the trajectory of FP would be
much more complicated. [43] gives an example, whose pay-



off matrices are

A =

−1.353259 −1.268538 2.572738
0.162237 −1.800824 1.584291
−0.499026 −1.544578 1.992332

 ,

B =

−1.839111 −2.876997 −3.366031
−4.801713 −3.854987 −3.758662
6.740060 6.590451 6.898102

 .

(5)

For this game, the trajectory of CFP is showed in Figure 3.
We can see that the state of system changes in a tiny range,
while the orbit behaves like a butterfly. We will investigate
this system further, and show that even erratic pattern would
emerge in this system, see Figure 6.

Fig. 3: Trajectory of CFP in ∆A ×∆B of Game (5) [43]:
The two pictures below are partial enlargements of the two
pictures above.

3 Methods and Results

As described above, the trajectory of FP dynamics in 3×3
game turns out to be much more complex. So a question
arises now: if the FP dynamics i.e. system (2) does not con-
verge or behaves in a complicated pattern such as a limit cy-
cle, how can the players make decisions in the original stage
game (A,B)? Is there any extra information in the trajec-
tory?

In this section, we will show that the answer is YES. To
this end, we need to investigate the trajectory of FP in more
details. Besides, we need to incorporate the geometrical
property of NE. Then we can suggest a new method and
prove its effectiveness to calculate the approximate NE from
the trajectory of FP for all 3× 3 games.

We first give some necessary concepts for our method. Ac-
cording to system equation (2), the best response plays a
central role in FP dynamics. We define the best response
polygon as below.

Definition 3.1. The best response polygon for Player A’s i-
th action is the set

ZA
i = {y ∈ ∆B | (Ay)i ≥ (Ay)k, ∀k = 1, · · · , n}. (6)

And the best response polygon for Player B’s j-th action is
the set

ZB
j = {x ∈ ∆A | (xTB)j ≥ (xTB)k, ∀k = 1, · · · , n}.

(7)

By Definition 3.1, ZA
i depends totally on Player A’s pay-

off matrix and includes all the strategies of Player B which
make Player A’s i-th action to be the best response against
them. Since the set ZA

i is defined by linear inequalities, it is
a polygon in mathematics and characterized by the bounded
intersection of a series of half spaces in Rn.

We only need to consider the following non-trivial games.

Definition 3.2. We say a game is non-trivial, if ∀k = A,B
and for any action i,

µ(Zk
i ) > 0.

Here µ is Borel measure in Euclidean space.

Otherwise, if for some k and i, µ(Zk
i ) = 0, then either

the i-th action of Player k is never the best response against
any strategy of his opponent, or the best response polygon
Zk
i is at most a line segment. For the latter case, according

to the continuity of payoff function xTAy or xTBy, there
must be another action i′ which is also the best response to
opponent’s strategy in that line. As a result, the i-th action
is weakly dominated. Hence this game is reduced to a lower-
dimention game.

For some strategies of the opponent, among those inequal-
ities in (6), if one equality holds, then there are more than
one action being the best response. Such strategies form a
line, called an indifferent line and defined formally below.

Definition 3.3. The indifferent lines of Player A and B are
defined as

lAjk := {y ∈ ∆B | (Ay)j = (Ay)k > (Ay)i, ∀i ̸= j, k},
lBjk := {x ∈ ∆A | (xTB)j = (xTB)k > (xTB)i, ∀i ̸= j, k}.

(8)

Figure 4 shows the best response polygons and indifferent
lines for Shapley game.

Fig. 4: Best response polygons and indifferent lines of
Shapley game

Given these concepts, we can look closer to FP from a ge-
ometrical standpoint. For instance, if at time t the trajectory
of FP (x(t),y(t)) falls in the interior of some best response
polygon profile ZB

j × ZA
i , the best response in (2) is (i, j).

In this case, by the recursive equation, the trajectory will
move closer with step size 1

t+1 to the vertex profile (eAi , e
B
j )

along the line connecting (x(t),y(t)) with (eAi , e
B
j )in the

phrase space ∆. Such movement would continue until the
trajectory crosses one indifferent line and enters a new best
response polygon.



3.1 Games with Interior Equilibrium
First we consider those games in which the FP dynamics

behave like in Shapley game. Then on the trajectory we can
get at least two indifferent lines, which intersect in the inte-
rior of the simplex. Indeed, this intersection point is just an
interior NE.

To see this, denote the interior equilibrium by (x̄, ȳ), and
supp(x̄, ȳ) has size 3×3. Accoding to equalization principle
Lemma 2.1, x̄ makes all the actions of Player B gain the
same payoff, and vice versa. Hence x̄ should lie in all the
indifferent lines lBjk. Once the lines are available, we can
calculate their intersection point and get (x̄, ȳ).

So from the trajectory, how can we get the indifferent
lines? In fact, the switching point on the FP trajectory in-
dicates where the indifferent lines locate. Specifically, if one
player, say Player A, changes his action from i to j at time
t, then we can infer that Player B’s frequency y(t) no longer
makes i-th action to be A’s best response. Correspondingly
in ∆B , the trajectory crosses the indifferent line lAij between
best response polygons ZA

i and ZA
j . Collect all the points

y(t) satisfying a(t− 1) = i while a(t) = j, such points are
called switching points. Since the indifferent lines is defined
by linear equations in Definition 3.3, we could get the esti-
mation l̂ijB by these switching points. Consequently, we get
the first main result as Theorem 3.1.

Fig. 5: Trejectory of FP in Shapley Game: Here we omit
the last component x3 of x by x3 = 1 − x1 − x2. The gray
lines represent indifferent lines while they are also the bound-
aries of best response polygons. Different colored lines rep-
resent different stage action profiles (a(t), b(t)) on the trajec-
tory. The initial point is x(0) = y(0) = (0.3, 0.5, 0.2)T .

Theorem 3.1. For 3 × 3 game (A,B) with interior equilib-
rium (x̄, ȳ) ∈ ∆, if the trajectory of FP does not converge,
then (x̂, ŷ), the intersection point of {l̂ijB} and {l̂ijA} respec-
tively, is an approximate NE.

Proof. First, according the definition of interior NE, (x̄, ȳ)
has support size 3 × 3. And by the equalization principle
(Lemma 2.1), x̄ makes Player B’s three actions have the
same payoff, hence x̄ must belong to all the indifferent lines
based on (8), i.e. it is the intersection point of {lBij} . Simi-
larly ȳ is the intersection point of {lAij}.

Next, since the trajectory of FP does not converge, on the
trajectory, the three actions of each player must appear in-
finitely. Otherwise, if after certain times, some action would
never appear on the trajectory for Player A or B, then the

game would be reduced to a 2× n game. Then by the previ-
ous work [20], FP would converge. Contradiction.

Now from the trajectory of FP, we can get at least two
estimations of indifferent lines {l̂Bij} and {l̂Aij}. Hence we
can calculate their intersection point (x̂, ŷ). We prove that it
is an approximate NE.

Apparently as the step size 1
t+1 in (2) approaches to zero,

we can make the estimation of indifferent lines by arbitrary
accuracy, which further makes the intersection point (x̂, ŷ)
approach to (x̄, ȳ). Denote x̂ = x̄+ ε1, ŷ = ȳ+ ε2. We can
make ε = max{∥ε1∥, ∥ε2∥} sufficiently small.

Then for any x′ ̸= x̂,y′ ̸= ŷ

x̂TAŷ =x̄TAȳ + εT1 Aȳ + x̄TAε2 + εT1 Aε2

≥x′TAȳ + εT1 Aȳ + x̄TAε2 + εT1 Aε2

=(x′TAȳ + x′TAε2)− x′TAε2

+ εT1 Aȳ + x̄TAε2 + εT1 Aε2

≥x′TAŷ − 4∥A∥ · ε.

Similarly we have x̂TBŷ ≥ x̂TAy′− 4∥B∥ · ε. That proves
the theorem.

Remark 2. The colored lines in Figure 5 and Figure 6 il-
lustrate the trajectory of FP in Shapley game (3) and game
(5). The gray lines are the actual indifferent lines, and their
intersection is the interior NE. For the stages when play-
ers take different stage action profiles (a(t), b(t)), we distin-
guish them with different colors. As t increases, the switch-
ing points between two segments with different colors ap-
proach to the indifferent line. For both games, we could get
at least two indifferent lines, and hence are able to calculate
NE.

Remark 3. In some sense, Theorem 3.1 responds to the im-
possibility result in [1], which claims that "It is incapable
of capturing the long-term behaviors of the players in all
games". Our result indicates that sufficient but finite inter-
mediate data of the learning dynamics is enough to solve NE,
since the evolution of the dynamical system can provide ade-
quate and extra information about the game structure, which
can be further utilized.

Fig. 6: Trejectory of FP in Game (5): The initial point is
x(0) = y(0) = (0.3, 0.5, 0.2)T . We can see the trajectory
crosses two indifferent lines, but the switching points still
approach the indifferent lines. The upper right corner shows
the enlarged local details.



3.2 Games without Interior Equilibrium
Section 3.1 gives a method to solve the NE for the games

with interior equilibrium and thus Shapley-game-like FP dy-
namics. For the games without interior NE, two possible
behaviors may happen for FP dynamics: either the intersec-
tion point of three indifferent lines does not belong to the
phrase space ∆; or the intersection point does not exist at all.
In this section, we will propose a label-matching priciple and
show that one can still utilize the FP trajectory to solve NE in
these cases. Besides, we need to examine the edges of each
simplex in more details. For convenience, we still use (x̄, ȳ)
to denote the intersection point of indifferent lines, and sup-
pose there is no x̄ in ∆A, but ȳ may or may not belong to
∆B .

If there exists a point in ∆A which is the intersection of the
edge EA

ij := {x ∈ ∂∆A | xi + xj = 1} and the indifferent
line lBkl, we mark the point with a label [ai, aj , bk, bl]. The
first two symbols [ai, aj ] indicate which edge it belongs to
and the last two symbols [bk, bl] represent which indifferent
line goes through the point. As for the point in ∆B , it can
also be labelled with [ai, aj , bk, bl] as the intersection of edge
EB

kl ⊆ ∂∆B and lAij .
For example, we consider game (9) below. Figure 7 shows

its best response polygons, indifferent lines and all the in-
tersection points of the edges and them, as well as the la-
belling. Obviously, there are no intersection points of indif-
ferent lines in both ∆A and ∆B , i.e. x̄ /∈ ∆A, ȳ /∈ ∆B . On
the other hand, for each ∆k, there are four intersection points
of indifferent lines and edges. For example, in ∆A, the edge
EA

21 intersects with lB13, so we label their intersection point
with [a1, a2, b1, b3], which is colored red in Figure 7.

A =

0 2
3 1

2
3 0 2

3
1
3

1
3 0

 , B =

0 1 −1
2 0 5

2
1
2 − 1

2 0

 (9)

Fig. 7: Best response polygons, indifferent lines and la-
belled points of Game (9)

This labelling operation may encounter two special cases
where a point may have more than one label. First, if
the indifferent line, say lBkl, happens to go through the ver-
tex eAk , then this vertex should be marked with two labels
[ak, ak′ , bk, bl], k

′ = 1, 2, 3, k′ ̸= k since the vertex belongs
to two edges. Second, if two indifferent lines intersect ex-
actly at one point on an edge, this intersection point should
also have two labels corresponding to the two indifferent
lines. Figure 8 shows the first case and we discuss it in Re-
mark 4 with more details.

Once the labels [ai, aj , bk, bl] from ∆A and [ai, aj , bk, bl]
from ∆B are collected, it is enough to solve NE by the fol-
lowing label-matching principle.

Theorem 3.2. For the 3 × 3 game without interior equilib-
rium, suppose we have collected all the labels of the inter-
section points p ∈ ∆A,q ∈ ∆B of all the indifferent lines
l̂kij , k = A,B and all the edges of simplex ∆k. Then for
the points p and q, if they have the same label, (p,q) is an
approximate NE of the game.

Proof. By the proof of Theorem 3.1, once the estimation of
indifferent line, l̂kij , becomes more and more accurate, the
intersection point would approach to the accurate one. On
the other hand, if a strategy profile (p,q) is NE, then any
point within its neighborhood is an approximate NE. Hence,
we only need to prove that if the accurate intersection points
p and q have the same label, they constitute a NE.

According to the definition of best response polygon ZB
j ,

it is a connected, convex subset of ∆A since it is defined by
a group of linear inequalities in (7), and

∪3
j=1 Z

B
j = ∆A.

On the other hand, since there is no x̄ in ∆A, i.e. the three
polygons do not admit a common intersection point, there
are only two indifferent lines partioning ∆A into three poly-
gons. So for the two lines, either their intersection point x̄
does not lie inside ∆A, or they are parallel to each other.

First we consider the ideal case where every point has
only one label. Without loss of generality, suppose two la-
belled points p ∈ ∆A and q ∈ ∆B have the same label
[a1, a2, b2, b3]. The first two symbols [a1, a2] means Player
B’s strategy q belongs to indifferent line lA12. In other words,
against q,

(Aq)1 = (Aq)2 > (Aq)3.

And since the label of p also has [a1, a2], this ensures it lies
on the edge EA

12. Hence p satisfies the equivalization princi-
ple in Lemma 2.1. Similarly, q also satisfies the equivaliza-
tion principle according to [b2, b3]. Hence (p,q) is a NE.

Now we consider the two special cases where some point
has more than one label. Without loss of generality, suppose
(p,q) has a matched label [a1, a2, b2, b3], but p is the vertex
eA1 , hence p has another but unmatched label [a1, a3, b2, b3].
We now prove (p,q) is still a NE.

Since the matched label is [a1, a2, ·, ·], the 1-st and 2-nd
actions of Player A would have the same payoff against q, i.e.
(Aq)1 = (Aq)2. For any strategy p′ = (p′1, p

′
2, p

′
3)

T ̸= p,
i.e. p′1 < 1, if p′3 = 0, we have

(p′)TAq =

3∑
i=1

p′i · (Aq)i = p′1 · (Aq)1 + p′2 · (Aq)2

= (Aq)1 = pTAq.

If p′3 > 0, we have

pTAq− (p′)TAq = (1− p′1 − p′2) · (Aq)1 − p′3 · (Aq)3

= p′3[(Aq)1 − (Aq)3] > 0.

Hence p satisfies the equalization principle in Lemma 2.1.
Similarly, q also satisfies the principle. Thus (p,q) is a NE.

By similar arguments, we can prove for the other special
case where two indifferent lines and one edge intersect ex-
actly at the same point, if p and q have a matched label, they
constitute a NE. That proves the theorem.



Remark 4. Consider a game with payoff matrices

A =

0 − 4
3

1
3

1
3 0 − 2

3
2
3 − 1

3 0

 , B =

0 1 −2
2 0 −3
0 −1 0

 . (10)

In Figure 8, we illustrate the special case where some indif-
ferent line goes through one vertex of the simplex. For this
game, eA3 has two labels [a1, a3, b1, b3] and [a2, a3, b1, b3],
implying that when Player A use his 3-rd action, Player B’s
1-st and 3-rd are both best response against it, i.e. there are
more than one best response for some pure action.

Such game is called degenerate in the literature [5, 20].
Many results are obtained under non-degenerate assumption
[20, 22], while such degenerate game seems to be ignored.
However, our analysis does not eliminate such degenerate
game but incorporate it into an unified consideration.

Fig. 8: Best response polygons, indifferent lines and la-
belled points of Game (10).

Remark 5. Label-matching principle in Theorem 3.2 uti-
lizes the geometrical feature of FP dynamics and labelling
operation, and makes the computation and verification of
NE easier than tranditional combinational methods, like
support enumeration etc. [5]. In computation, now
there is no need to enumerate all the possible forms of
support of potential NE, such as ((x1, x2, 0), (y1, y2, 0)),
((x1, x2, 0), (y1, 0, y3)). In verification, given the intersec-
tion points p and q of the indifferent lines and the edges of
the simplexes, labelling can help us quickly check whether
(p,q) is a NE. Otherwise, we need to solve the optimal pay-
off of Player A against q and optimal payoff of Player B
against p. In other words, label-matching principle itself
contains the information of optimization, hence we do not
need extra computation.

Remark 6. We note that the method relies solely on the tra-
jectory of the learning dynamics, eliminating the need for
prior knowledge about the opponent’s payoff matrix. This is
the same with FP. In this sense, the process still constitutes
an uncoupled dynamics [34].

As a summary of Section 3, Theorem 3.1 and Theorem 3.2
together provide a geometrical method in solving all the 3×3
games. Our method is based on the trajectory of FP dy-
namics. Different from common interest which focuses on
whether the latest iteration (x(t),y(t)) converges or not, we
highlight the switching points where one player finds that the
opponent’s action changes from one to another. By collect-
ing these switching points, we can establish the estimation of

indifferent lines and hence calculate their intersection points.
If the intersection point exists in ∆, by Theorem 3.1, it is
the approximate NE according to equalization principle; if
the intersection point does not exist in ∆, the labelling op-
eration and label-matching principle in Theorem 3.2 ensure
that we can find NE in the intersection points of the indiffer-
ent lines and the edges of the simplexes. The procedures are
summarized in Algorithm 1.

Algorithm 1 Calculate NE in 3× 3 Normal Form Game
Require: The (x(0),y(0)), iteration time T , threshold t0

1: for t = 1, 2, · · · , T do
2: a(t)← BR(x(t))
3: b(t)← BR(y(t))
4: if player k ∈ {A,B} finds his oppoent changes action from

i to j and t ≥ t0 then
5: append the player k’s frequnecy into set Dk

ij

6: end if
7: x(t)← 1

t
a(t) + t−1

t
x(t)

8: y(t)← 1
t
b(t) + t−1

t
y(t)

9: end for
10: for each data set Dk

ij do
11: calculate the indifferent set l̂kij = wT z + b, where w, b ∈

argmaxw,b

∑
zj∈Dk→l

i
d(zj , w

T z + b)

12: end for
13: calculate the intersection point (x̄, ȳ) of all indifferent lines l̂kij

for each player
14: if (x̄, ȳ) lies in the phrase space then
15: return the approximate NE (x̄, ȳ)
16: else
17: Label each intersection point with support 2 × 2, do label-

matching, and return the matched point pair.
18: end if

4 Conclusions

In the framework of learning in games, NE is often re-
garded as a steady state of learning dynamics. This paper
is motivated by the question how we can make decisions
when the learning dynamics does not converge or even has
erratic long-term behavior, which is often the case according
to recent literature. By leveraging the equalization princi-
ple of NE and distinguishing the special opponent’s-action-
switching-point, this paper breaks the seemingly existing im-
passe and proposes a novel geometrical method to solve NE
for the general non-zero-sum games.

To provide a complete description, we studied 3 × 3 non-
zero-sum games. By dividing them into two classes and com-
bining equalization principle with the points on FP trajectory,
this paper provides a new perspective to deal with data gen-
erated from the learning algorithms, which may shed some
light on general problems. Our further experiments show
that for some 4× 4 non-zero-sum games [44] and 2× 2× 2
stochastic games with special structure [45], the method in
this paper does still work, see our following complete paper.

On the other hand, the implementation of this idea in
general large scale games still faces many challenges, due
to exponential explosion of dimensions, invisibility to high-
dimensional space by human mind and the lack of theoret-
ical research on high-dimensional dynamical systems. We
need to reconstruct the indifferent hyperplanes for high-
dimensional games, and solve large-scale linear equations.



We leave them as future work.
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