Paper ID: 2076

Fast Iterative Learning Control Algorithms Based on Heavy Ball with Adaptive Stepsize

ZHANG Zeyi, JIANG Hao, SHEN Dong

School of Mathematics, Renmin University of China, Beijing 100872, P. R. China E-mail: {zhzy, jiangh, dshen}@ruc.edu.cn

1. Introduction

Iterative Learning Control (ILC): Heavy ball (HB) strategy:

- Repetitive systems
- High transient performance
- Fast convergence

- First-order method
- Reduce oscillation
- Speed up convergence

Contributions:

- Apply the HB strategy to first-order ILC
- Modify Proportional (P)-type ILC by HB
- Give an adaptive stepsize for HB

2. Method

 Two fast ILC algorithms

Convergence conditions

First-order ILC + Heavy ball:

- Sufficient condition (1) for first-order ILC
- The greater $||I \alpha HL||_Q$, the smaller θ should be. If $||I - \alpha HL||_Q + ||\alpha HL||_Q < 1$, $\theta < 1/2$ is enough.
- Suitable for MIMO systems.

P-type ILC + Heavy ball:

- A necessary and sufficient condition (2)
- An easily verifiable sufficient condition (3)

Adaptive stepsize:

- Stepsize θ can be replaced by adaptive stepsize θ_k (4)
- Mitigate forward direction rotation

3. Simulation

P-type ILC, P-type ILC + HB, P-type ILC + HB + adaptive stepsize are tested. Each figure corresponds to a gain and a stepsize. Findings:

- The error linearly converges to zero.
- Condition (3) is not necessary for error convergence, nor for faster speed.
- HB can speed up the P-type ILC.
- Adaptive stepsize does not slow down the speed, and enhances HB.

4. Acknowledgement

- National Natural Science Foundation of China (62173333, 12271522)
- Beijing Natural Science Foundation (Z210002).

