
Quadrotor Trajectory Generation in Dynamic Complex
Environments

Ruocheng Li, Bin Xin
School of Automation, Beijing Institute of Technology, Beijing 100081, P. R. China

E-mail: ruochengli@bit.edu.cn

Abstract: Recent advances in trajectory replanning have enabled quadrotors to navigate autonomously in static complex environ-
ments. However, navigation in dynamic environments still remains a significant challenge. In this paper, we present a trajectory
planner that generates collision-free trajectories in environments with static and dynamic obstacles. A velocity obstacle (VO)
based gradient field, called gradient velocity obstacle (GVO), is proposed to solve dynamic obstacles. The main improvement is
that GVO maintains the original feasible set while ensuring computational efficiency. Using the output of GVO as an initial guess,
a trajectory parameterized by a uniform b-spline is derived to avoid static obstacles. Multiple sets of comparative experiments
show the validness and effectiveness of the proposed method.

Key Words: Motion planning, Velocity obstacle, Aerial robotics

1 Introduction

In recent years, quadrotors have received more and more
attention due to its high agility, low cost, and scalabil-
ity, whose applications can be found in many fields, such
as search and rescue, aerial photography, industrial inves-
tigation, and scientific research. Among these tasks, au-
tonomous navigation is a fundamental component, in which
the vehicle can handle environments with static and dynamic
obstacles.

Some existing methods such as [1–4], have already en-
abled quadrotors to autonomously navigate in static environ-
ments, nevertheless it remains a challenge in dynamic envi-
ronments. Difficulties mainly come from the fact that the

Dynamic obstacle Flight trajectory

Fig. 1: Snapshot of dynamic obstacle avoidance in simula-
tion.
quadrotors need to develop a strategy for evading dynamic
obstacles. A class of methods, such as [5],[6], uses predicted
obstacle trajectories to avoid collisions. The core of these
approaches is to ensure that there is no spatial and temporal

This work was supported in part by the National Outstanding Youth
Talents Support Program 61822304, in part by the Basic Science Center
Programs of NSFC under Grant 62088101, in part by Beijing Advanced In-
novation Center for Intelligent Robots and Systems, in part by Shanghai
Municipal Science and Technology Major Project (2021SHZDZX0100),
in part by Shanghai Municipal Commission of Science and Technology
Project (19511132101).

Corresponding author: Bin Xin

overlap between the quadrotor trajectory and the predicted
trajectory. However, these methods either do not consider
the uncertainty brought by the prediction, or gradually inflate
the obstacle volume to offset the uncertainty during predic-
tion. The former may lead to unreliable solutions in practice,
while the latter could yield the conservativeness of the trajec-
tory and result in poor numerical solutions in complex envi-
ronments. Another class of methods is implemented based
on VO, like [7], [8], where they only need positions and ve-
locities of the obstacles. These types of methods leverage in-
formation on current moving obstacles to compute one-step
actions, which makes them more accurate but short-sighted.
Moreover, such methods shrink the initial feasible set for the
computational feasibility, which may suffer from unsolvabil-
ity in the presence of multiple dynamic obstacles.

Motivated by the above facts, this paper proposes a VO-
based trajectory planning framework to achieve autonomous
navigation in dynamic complex environments. Firstly, we
propose a gradient field approach, called Gradient Velocity
Obstacle (GVO), which transforms velocity obstacle sets
into Signed Distance Fields (SDF), within that the current
velocity is modified by gradient descent methods to avoid
collisions. Compared with existing VO-based frameworks,
this method retains the initial feasible domain and is capable
of obtaining solutions within milliseconds. Meanwhile, the
short-sightedness of VO is addressed by gradient based tra-
jectory planning, which constructs a cost function to gener-
ate smooth and collision-free trajectories to avoid static ob-
stacles. Different from methods like [5],[6], the planning
framework developed in this paper does not use prediction
sequences, but changes the initial velocity of the trajectory
in real-time to avoid collisions, which reduces the impact of
perception uncertainty.

We fully exploit the method in simulation. Results show
that our method performs well and is able to traverse en-
vironments with dynamic and static obstacles without prior
information. The contributions of this paper are summarized
as follows:

(1) We propose the Gradient Velocity Obstacle (GVO)
model, a transformative approach to characterizing the set
of infeasible velocities. By transforming the geometric

shape of the conventional Velocity Obstacle (VO) into an
Euclidean signed distance field, GVO not only preserves
the original feasible set but also boosts computational effi-
ciency. This enhancement facilitates more effective detec-
tion of collision-free velocities.

(2) We present a novel static-dynamic decoupled trajec-
tory planning framework. This framework navigates effec-
tively in dynamic environments by using collision-free ve-
locities generated by the GVO model, which serve as ini-
tial conditions in trajectory planning. This approach sig-
nificantly improves navigation success rates by ensuring the
generated trajectories satisfy safety, feasibility, and smooth-
ness constraints.
2 Related Work

2.1 Planning for Dynamic Obstacle Avoidance
Planning for dynamic obstacle avoidance, which aims to

enable robots to avoid dynamic obstacles, has been exten-
sively studied. Some methods are implemented based on
VO [7–14]. The mechanism of the VO-based approach is
that if the relative velocity of the robot and the obstacle falls
into the VO, design algorithms to find a variation of velocity
and change the current velocity to achieve collision avoid-
ance. Most of the existing methods use geometric methods
to find variations. Among these, the optimal reciprocal col-
lision avoidance (ORCA) method [14], which models col-
lision avoidance in terms of quadratic programming (QP),
simplifies the problem sufficiently to be able to solve it on-
line. Some practical applications based on ORCA can be
found in [7, 8, 10]. The drawback of these methods is the
reduction of the original feasible domain, which may lead to
unfeasible solutions in complex environments.

Another type of method relies on position information,
such as [6, 15–17]. In [15, 16], dynamic obstacles are mod-
eled as ellipsoids, and the ellipsoid constraints are linearized
as half-space constraints. Based on the linear constraints,
quadrotors solve model predictive control (MPC) online to
achieve collision avoidance. However, discarding a half-
space in order to avoid an ellipsoid is impracticable when
facing multiple dynamic obstacles. In [6], motions of dy-
namic obstacles are predicted based on the Kalman filter.
The core to avoiding collision is to keep the desired tra-
jectory of the quadrotor and the predicted motion sequence
from overlapping in spatial and temporal terms. In [17],
collision avoidance is achieved based on artificial potential
fields (APFs), which give fast and feasible solutions but still
suffer from short-sightedness.

In this paper, we combine artificial potential fields and VO
to construct gradient fields in velocity space, preserving the
initial feasible domain. We solve an unconstrained gradient
optimization problem and generate collision-free velocities
using proposed gradient fields.

2.2 Quadrotor Trajectory Planning
The study of trajectory planning for quadrotors encom-

passes both hard-constrained and soft-constrained methods
as primary categories. Quadrotors, as demonstrated by
[18], exhibit differential flatness, enabling the generation
of minimum-snap trajectories for control, with these tra-
jectories formulated in terms of QP. Additionally, [19] pro-
vides a closed-form solution for these trajectories. Building

upon [18], [20] delineates convex safe regions to facilitate
the creation of secure trajectories. In pursuit of trajectories
that offer greater maneuverability, [1] introduces a method
grounded in mixed integers, whereas [21] advances a method
based on B-splines for trajectory creation. More recently,
[22] has developed an efficient framework for generating tra-
jectories, with related applications highlighted in [23–25].

Soft-constrained methods often engage in non-linear opti-
mization to balance multiple objectives, such as smoothness,
dynamical feasibility, and safety. The application of these
methods to local replanning has been effectively demon-
strated by [2, 3, 26], showcasing their impressive perfor-
mance. Inspired by [27], [26] introduces a planning frame-
work based on B-splines, ensuring safety through the use
of Euclidean Signed Distance Fields (ESDF). [3] enhances
the trajectory’s initial estimation and its robustness in nav-
igating complex environments. Furthermore, [2] presents a
technique for generating environmental gradients from grid
maps, with applications detailed in [6, 28].

In this paper, we base our trajectory planning on B-spline
and employ ESDF to generate collision-free terms. The ini-
tial velocity of each replanned trajectory is given by GVO,
which makes the quadrotor keep safe distances with dynamic
obstacles, and the resulting trajectory satisfies smoothness,
dynamical feasibility, and safety. The entire planner runs
at a high frequency to adapt to the dynamic changes of the
environment. In this way, the total trajectory is able to be
collision-free with static and dynamic obstacles.

3 Real-time collision avoidance

As presented in the classic VO-based method [14], the
optimal collision-free velocity is obtained by solving a QP
problem with inequality constraints, where the cost func-
tion minimizes the two-norm of the difference between the
collision-free velocity and the current velocity. Tradition-
ally, such methods prune the original solution space and thus
reduce the problem constraints to a linear constraint space.
This operation causes the feasible solution space to be dras-
tically reduced and can lead to unsolvable situations in com-
plex scenarios. Besides, the velocity obstacle-based method
is difficult to deal with static obstacles, and the algorithm can
be challenging to work in environments containing static and
dynamic obstacles. In this work, we transform the velocity
obstacle into a signed gradient field, which allows us to for-
mulate the problem of solving collision-free velocities as a
nonlinear unconstrained gradient descent optimization prob-
lem, which makes it easier to obtain feasible solutions.

3.1 GVO Construction Process
Alg. 1 shows the entire construction process. Assuming

there are n dynamic obstacles in the field of view, with po-
sitions, velocities, and bounding radius denoted as pd ∈ R3,
vd ∈ R3, and rd ∈ R respectively, then for the i-th obstacle,
the Velocity Obstacle (VO) can be defined as follows:

VOi =
{
v|∃t ∈ [t0, tf], tv ∈ D

(
pd
i−pm, rdi + r

m
)}

(1)
where D(p, r) denotes an open disc of radius r centered at p.
Based on this, the boundary equation of VOi can be defined
as follows:

Av = b (2)

where A is a 4 × 3 matrix, with the values in the first
column being [k1, k2, k3, k3],in the second column being
−1, and in the third column being 0; v = v − vd

i and
b = [0, 0,−b1,−b2]. The calculation is as follows:



k1 = (a+
√
∆)/b

k2 = (a−
√
∆)/b

k3 = −pd
ix/p

d
iy

b1 = min(|c+ d|, | − c+ d|)/tf
b2 = max(|c+ d|, | − c+ d|)/t0

(3)

where a = −pd
ixp

d
iy , ∆ = (pd

ixr)
2 + (pd

iyr)
2 − r4, b =

r2−(pd
ix)

2 r = rdi +rm, c = r
√

k23 + 1, d = −k3p
d
ix+pd

iy .
pm ∈ R3, rm ∈ R respectively denote the position and
bounding radius of the quadrotor; t0 and tf represent the
starting and ending moments, during which no collision con-
flict occurs. It is worth noting that the positions and ve-
locities of obstacles are derived from the quadrotor’s local
coordinate system. By using the boundary equation, a set
Av < b can be obtained. Perform the calculations for each
observed dynamic obstacle to obtain the VO (lines 3-4).

Secondly, map the velocity space to grid space, which
can be achieved through the occupancy grid-based approach.
Create a grid plane in the velocity space, record the occupied
part as 1 and the unoccupied part as 0, and get the velocity
grid map VOgrid (lines 8-12). Finally, apply the Signed Dis-
tance Field (SDF) Transform to VOgrid to obtain GVO (lines
15). In GVO, the value of each grid stores the distance to the
nearest obstacle, i.e., if this grid is outside the obstacle, the
distance is positive, and the further away from the obstacle
the larger the value is; if the grid is inside the obstacle, the
distance is negative and the closer to the center of the ob-
stacle the smaller the value is. The construction process of
GVO is illustrated in Fig. 2.

Algorithm 1 GVO construction
Input: pd, vd, rd, n, pm, rm

Output: VO, VOgrid, GVO
1: function SETVO(pd , vd , rd , pm , rm , n)
2: for i = 1 : n do
3: tmp = CalcVObound(pd

i , vd
i , rdi , pm, rm)

4: VO.push back(tmp)
5: end for
6: end function

7: function SETVOGRID(VO)
8: for i = 1 : size(VOgrid) do
9: if indexToPos(i) ∈ VO then

10: VOgrid(i) = 1
11: end if
12: end for
13: end function

14: function SETGVO(VOgrid)
15: SDFTransform(VOgrid, GVO)
16: return GVO
17: end function

3.2 Dynamic Obstacle Avoidance
As depicted in Fig. 2, every time a dynamic obstacle ap-

pears in the FOV, its corresponding GVO will be generated.
According to the typical VO method, we need to find a ve-
locity that is not in VO to avoid collision. That is,

vopt = argmin (∥v − vm∥ /∈ VO). (4)

In GVO, we solve the following optimization problem:

vopt = argmin ∥v − vg∥ , (5)

where vopt represents the optimal collision avoidance veloc-
ity and vg represents the guide velocity. The calculation of
vg is shown in Alg. 2. First, uniformly sample in the ve-
locity space to generate m random points. Then, obtain the
value of all points in GVO. If it exceeds the given threshold
vsafe, store it in the candidate point list. Finally, identify the
point closest to the current velocity as the guidance veloc-
ity vg . As we aim to find a velocity that is optimal in dy-
namic obstacle avoidance, the core of the cost function (5)
is to maintain a safe distance from dynamic obstacles while
minimizing changes to the current velocity, where the safe
distance is determined by the vsafe. Meanwhile, since the
gradient of (5) can be calculated directly, the result can be
obtained by a closed-form solution.

Algorithm 2 Guide velocity calculation
Input: GVO,vsafe
Output: vg

1: function CALCGUIDEVELOCITY()
2: RandPoints = GenerateRandomPoints(m)
3: for i = 1 : m do
4: if GVO(i) > vsafe then
5: GPoints.push back(RandPoints(i))
6: end if
7: end for
8: vg = argmin ∥v − vm∥ ,v ∈ GPoints
9: end function

4 Autonomous Navigation in Complex Environ-
ments

As mentioned in Sect. 3.2, dynamic obstacles can be
avoided by changing the current velocity. However, in the
actual scene, there are static obstacles in the environment
at the same time. Therefore, it is necessary to give a ref-
erence trajectory that enables the quadrotor to navigate au-
tonomously in an environment with static obstacles, which
needs to satisfy smoothness, dynamic feasibility, and safety
[3].

4.1 Uniform B-splines
In this paper, we utilize a B-spline curve as the foun-

dational element for crafting the reference trajectory. This
choice is characterized by its degree p, a set of N + 1
control points {C1,C2, ...,CN−1,CN}, and a knot vector
{u0, u1, u2, ..., uM}. Here, each control point Ci is a vec-
tor in R3, each um is a real number, and the relationship
M = N + p + 1 holds. For our method, we employ a uni-
form B-spline, which means the difference ∆u = ui+1 − ui

remains constant throughout. Echoing the approach of [21],

𝐕𝐕𝐕𝐕𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐆𝐆𝐆𝐆𝐆𝐆

𝐒𝐒𝐒𝐒𝐒𝐒𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢

𝐕𝐕𝐕𝐕 0 1
15 -15

Fig. 2: An explanation of how the GVO is constructed. Firstly, construct the VO by considering the positions and velocities
of dynamic obstacles and represent it as a set of inequalities Av < b. Secondly, build a grid plane in the velocity space and
map the VO set onto this plane to obtain the VOgrid. Finally, transform the VOgrid into GVO using the SDF.

a linear relationship is established between the knot vector
u and the time vector {t0, t1, ..., tM−p} through the equa-
tion t = (u − up)/β, where t ranges from 0 to tM−p, with
tM−p = (M−p)/β. Based on these definitions, the position
is articulated as

p(u(t)) =

N∑
i=0

Ci N
p
i (u(t)), N

p
i ∈ R, (6)

where Np
i represents the differential basis function.

The property of a B-spline curve extends such that its
derivative remains a B-spline. For velocity, we define
control points as {V1,V2, ...,VN−1}, for acceleration as
{A1,A2, ...,AN−2}, and for jerk as {J1,J2, ...,JN−3}.
These control points are derived using Equ. 7, taking into
account that ∆t = ∆u/β:

Vi =
Ci+1 −Ci

∆t
,Ai =

Vi+1 −Vi

∆t
,Ji =

Ai+1 −Ai

∆t
.

(7)

4.2 B-spline trajectory optimization
In our work, a 3rd-degree B-spline is selected for gen-

erating the reference trajectory. The entirety of the tra-
jectory is determined through the optimization of control
points, given that the basis functions remain invariant dur-
ing this optimization phase. Throughout the optimiza-
tion process, our focus is on optimizing the set of con-
trol points {Cp,Cp+1, ...,CN−p}, deliberately excluding
the three control points at both the start and the end. This
exclusion is due to their role in defining the boundary con-
ditions, which are not subject to alteration during the opti-
mization. The optimization problem is thus established as
follows:

min Jtotal = λsJs + λcJc + λfJf , (8)

where Js represents the smoothness cost, Jc the collision
cost, and Jf the feasibility cost, with λs, λc, and λf serving
as the respective weights for these cost terms. The formula-
tion of each term is precisely defined and resolved through
the application of the gradient descent method.

4.2.1 Smooth cost

Building on our preceding research [4], we facilitate tra-
jectory smoothing by minimizing the jerk term. Given that
B-splines possess the convex hull property, optimizing the
control points alone suffices to smooth the entire trajectory.
For the sake of simplicity, we disregard ∆t, leading to the
approach where

Js =

N−3∑
i=0

∥Ji∥22 =

N−3∑
i=0

∥Ci+3 − 3Ci+2 + 3Ci+1 −Ci∥22.

(9)

4.2.2 Collision cost

We utilize Euclidean Signed Distance Fields (ESDF) to
ensure a collision-free trajectory. The formulation is pre-
sented as follows:

Jc =

N−p∑
i=p

F(Ci, dthr), (10)

where

F(Ci, dthr) =

{
(d(Ci)− dthr)

2 , if d(Ci) < dthr

0 , if d(Ci) > dthr
,

(11)
d(Ci) denotes the distance from Ci to the nearest obstacle,
with dthr defining the minimum clearance distance from ob-
stacles. The function F aims to displace the control points
away from proximate obstacles towards a safe region. Lever-
aging the convex hull property of B-splines, this approach
ensures the safety of the entire trajectory.

4.2.3 Feasibility cost

The feasibility cost is designed to ensure the trajectory ad-
heres to dynamic feasibility criteria, specifically not exceed-
ing the limits of maximum velocity and acceleration. The

construction of the feasibility cost is outlined as follows:

Jf =
∑
j

(
N−1∑
i=0

G
(
Vj

i

2
− v2m

)
+

N−2∑
i=0

G
(
Aj

i

2
− a2m

))
,

(12)
where G(x) = max{x, 0}2, vm and am represent the max-
imum velocity and acceleration limits respectively, and j ∈
{x, y, z} denotes each spatial dimension.

We employ A-star for front-end path searching and use the
result as an initial guess for trajectory planning. Since the
initial path is close to the obstacle, it will be pushed away
during the trajectory planning phase. Due to the limited
sensing range, the quadrotor cannot perceive the full envi-
ronment. Assume the unknown environment is empty, when
new obstacles appear, the planner will generate a new tra-
jectory based on the updated local map to meet the safety
requirements, in which the initial state of the new trajectory
is the current position pcurr, velocity vcurr, and accelera-
tion acurr. If there exist dynamic obstacles, the initial state
of the re-planned trajectory is given as follows: 1/6 2/3 1/6

−β/2 0 β/2
β2 −2β2 β2

C0

C1

C2

 =

pcurr

vopt

acurr

 , (13)

where vopt is given by GVO, which ensures that the refer-
ence trajectory can avoid the observed dynamic obstacles.
The entire process is shown in Fig. 3.

Fig. 3: An illustration of autonomous navigation. The blue
dotted line is the initial path and the green curve is the B-
spline after optimization. The red points are the initial path
points and the yellow points are the control points of the B-
spline. The initial path is close to the obstacle while the
B-spline is pushed away by the gradient-based optimization,
which is safer for the quadrotor. The red arrow indicates
the initial velocity, which could avoid the observed dynamic
obstacles.

5 Results

5.1 Benchmark Comparisons in Dynamic Environment
As shown in Fig.1, the first scenario consists of multi-

ple dynamic cylindrical obstacles with a motion velocity
set about 1 m/s. The parameters are set as GVO60×60,
m = 200, and vsafe = 8.0. Additionally, to simulate
real-world scenarios, we define the perception range of the
quadrotor as r = 5m. We compare the proposed method

with several VO-based methods, as shown in Tab. 1. It
should be noted that some of the compared methods were
originally designed for collision avoidance in multi-robot in-
teractions, where the strategy involved distributing the ve-
locity change for collision avoidance equally between two
agents. In our comparison process, the velocity change is
solely borne by the quadrotor directly.

As shown in Tab. 1, we compare GVO with other ap-
proaches in terms of computation time (Comp.t), feasible
set size (Fea.set), and success rate (Su.rate). Approaches
[13] and [9] utilize geometric methods to find feasible so-
lutions, which inherently restrict the feasible solutions to be
around the VO. These methods naturally produce solutions
that are near the surface of obstacles. In the scenario, the
VO-based methods have repeatedly failed, and the chances
of successful traversal are extremely low. ORCA [14] em-
ploys Quadratic Programming (QP) to evade dynamic obsta-
cles by linearizing the feasible set of VO. The velocity feasi-
ble set is represented as a collection of linear inequalities ob-
tained by intersecting multiple half-planes, thereby reducing
the complexity of the problem. However, the linearization of
the feasible set increases the probability of encountering in-
feasible solutions. Similarly, the ORCA-based approach [7]
also encounters similar issues.

Table 1: Comparisons between several VO-based methods

Method Comp.t(ms) Fea.set Su.rate(%)
RVO [13] 0.10 geometric set 59
HRVO [9] 0.16 geometric set 65

ORCA [14] 0.097 half-space 55
DCAD [7] 76.6 half-space 50

Proposed (Ours) 0.18 original 89

Compared to the aforementioned methods, GVO demon-
strates a clear advantage in terms of both success rate and the
existence of solutions. The feasible solutions provided by
GVO maintain a safe distance from the obstacle sets, which
significantly enhances the success rate. The average com-
putation time stands at a mere 0.18 milliseconds, ensuring
real-time performance even in complex environments. Re-
markably, as the number of dynamic obstacles increases, the
solution time remains unaffected. Moreover, GVO directly
operates on the original VO set and leverages the SDF trans-
formation, thereby preserving the original feasible set. Fig.
4 illustrates a successful traversal using GVO.

5.2 Results in Complex Environments
In the second scenario, we set up an area of approxi-

mately 110m × 20m × 5m and placed both static and dy-
namic obstacles simultaneously, as shown in Fig. 5. The
proposed algorithm parameters are set as follows: p = 3,
β = 3, λs = 5, λc = 10, λf = 1, dthr = 0.5,
vm = 1.5m/s, am = 2.5m/s2. The proposed algorithm
utilizes the open-source solver NLOPT. We compare the
proposed algorithm with several state-of-the-art local trajec-
tory replanning methods in terms of replanning time (Re.t),
success number (Su.num), flight time (Fli.t) and dynamic
obstacle avoidance methods (Dyn.obs), and the results are
shown in Tab. 2. Method [3] utilizes an incremental gradi-
ent field approach for local trajectory replanning, with a fre-
quency of up to 20Hz. In scenarios where dynamic obstacles

（1） （2） （3） （4） （5） （6） （7）

Fig. 4: Dynamic obstacle avoidance based on GVO.

Fast-PlannerProposed Ego-Planner based CCNMPC

START

GOAL

WAYPOINT

Fig. 5: Trajectories generated by several methods in dynamic complex environments.

have slow motions, fast updates of the local gradient field
enable effective avoidance of dynamic obstacles. However,
when the velocity of dynamic obstacles is comparable to that
of the quadrotor itself, the failure probability increases sig-
nificantly. Method [6] achieves obstacle avoidance by pre-
dicting the trajectories of dynamic obstacles. The online tra-
jectory replanning module ensures that there is no spatial-
temporal overlap between the quadrotor’s and the obstacle’s
trajectories. This method directly computes gradients on a
grid map, resulting in high computational efficiency. How-
ever, the trajectory prediction approach assumes that the mo-
tion trajectories of obstacles are smooth and do not undergo
sudden changes, which is often difficult to guarantee. In
the given scenario, the dynamic obstacles frequently exhibit
back-and-forth movement between two points, which causes
the prediction module to frequently fail. Method [15] em-
ploys a spatial linearization approach to avoid both static
and dynamic obstacles. However, constructing a linear so-
lution space forcefully discards feasible sets. In the given
scenario, the feasible set constructed by Method [15] is fre-
quently empty, leading to solution failures.

In comparison to the methods mentioned above, our
proposed approach utilizes GVO to avoid dynamic obsta-
cles while employing an incremental gradient field to en-
sure collision-free trajectories with static obstacles in the
environment. As shown in Equ. 13, changing the ini-
tial velocity of each local trajectory segment only modi-
fies the initial state of the trajectory, without the need for
trade-offs in the backend optimization. This strategy al-
lows the quadrotor to prioritize avoidance of observed dy-
namic obstacles, resulting in significantly improved success
rates. Fig. 5 illustrates the trajectories generated by sev-
eral methods in dynamic complex environments. For addi-

Table 2: Comparison of trajectory generation methods

Method Re.t(ms) Su.num Fli.t(s) Dyn.obs
Fast-Planner [3] 8.30 1 90.75 None

Ego-Planner based [6] 6.70 6 94.4 Pre
CCNMPC [15] 11.25 2 97.12 Linear
Proposed (Ours) 8.95 8 88.56 GVO

tional insights, we encourage readers to access our GitHub:
https://github.com/SmartGroupSystems/Dynamic-Planner.

6 Conclusions

In this paper, we propose a method for autonomous
navigation in dynamic complex scenarios. We propose a
gradient-based velocity obstacle set called GVO, which pre-
serves the original solution space and obtains collision-free
velocities more efficiently through optimization techniques.
Furthermore, we design a local trajectory planner based on
an incremental gradient field and improve motion safety in
dynamic complex scenarios by optimizing the initial veloc-
ities of the trajectories. The planning framework is thor-
oughly evaluated through benchmark comparisons. The sim-
ulation results demonstrate that the proposed method is capa-
ble of effectively handling dynamic complex scenarios and
ensuring safe flight. Future work will focus on enhancing
the robustness of the algorithm in dealing with unstructured
dynamic obstacles and expanding its applicability to swarm
robotic systems.

References
[1] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and

safe trajectory planner for flights in unknown environments,”
in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 1934–1940.

https://github.com/SmartGroupSystems/Dynamic-Planner

[2] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner:
An esdf-free gradient-based local planner for quadrotors,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 478–
485, 2020.

[3] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust
and perception-aware trajectory replanning for quadrotor fast
flight,” IEEE Transactions on Robotics, vol. 37, no. 6, pp.
1992–2009, 2021.

[4] R. Li, J. Lyu, A. Wang, R. Yu, D. Wu, and B. Xin, “Flag-
droneracing: An autonomous drone racing system,” Un-
manned Systems, 2023.

[5] J. Tordesillas and J. P. How, “Mader: Trajectory planner in
multiagent and dynamic environments,” IEEE Transactions
on Robotics, vol. 38, no. 1, pp. 463–476, 2021.

[6] Y. Wang, J. Ji, Q. Wang, C. Xu, and F. Gao, “Au-
tonomous flights in dynamic environments with onboard vi-
sion,” in 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2021, pp. 1966–
1973.

[7] S. H. Arul and D. Manocha, “Dcad: Decentralized colli-
sion avoidance with dynamics constraints for agile quadro-
tor swarms,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 1191–1198, 2020.

[8] ——, “Swarmcco: Probabilistic reactive collision avoidance
for quadrotor swarms under uncertainty,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2437–2444, 2021.

[9] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “The
hybrid reciprocal velocity obstacle,” IEEE Transactions on
Robotics, vol. 27, no. 4, pp. 696–706, 2011.

[10] Y. Xu, S. Lai, J. Li, D. Luo, and Y. You, “Concurrent optimal
trajectory planning for indoor quadrotor formation switch-
ing,” Journal of Intelligent & Robotic Systems, vol. 94, no. 2,
pp. 503–520, 2019.

[11] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley,
“Collision avoidance for aerial vehicles in multi-agent scenar-
ios,” Autonomous Robots, vol. 39, no. 1, pp. 101–121, 2015.

[12] S. Roelofsen, D. Gillet, and A. Martinoli, “Collision avoid-
ance with limited field of view sensing: A velocity obsta-
cle approach,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 1922–
1927.

[13] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal ve-
locity obstacles for real-time multi-agent navigation,” in 2008
IEEE International Conference on Robotics and Automation.
IEEE, 2008, pp. 1928–1935.

[14] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Re-
ciprocal n-body collision avoidance,” in Robotics Research.
Springer, 2011, pp. 3–19.

[15] H. Zhu and J. Alonso-Mora, “Chance-constrained colli-
sion avoidance for mavs in dynamic environments,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 776–783,
2019.

[16] J. Lin, H. Zhu, and J. Alonso-Mora, “Robust vision-based ob-
stacle avoidance for micro aerial vehicles in dynamic environ-
ments,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 2682–2688.

[17] N. Malone, H.-T. Chiang, K. Lesser, M. Oishi, and L. Tapia,
“Hybrid dynamic moving obstacle avoidance using a stochas-
tic reachable set-based potential field,” IEEE Transactions on
Robotics, vol. 33, no. 5, pp. 1124–1138, 2017.

[18] D. Mellinger and V. Kumar, “Minimum snap trajectory gener-
ation and control for quadrotors,” in 2011 IEEE international
conference on robotics and automation. IEEE, 2011, pp.
2520–2525.

[19] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory plan-
ning for aggressive quadrotor flight in dense indoor environ-

ments,” in Robotics Research. Springer, 2016, pp. 649–666.
[20] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya,

C. J. Taylor, and V. Kumar, “Planning dynamically feasible
trajectories for quadrotors using safe flight corridors in 3-d
complex environments,” IEEE Robotics and Automation Let-
ters, vol. 2, no. 3, pp. 1688–1695, 2017.

[21] S. Lai, M. Lan, and B. Chen, “Optimal constrained trajec-
tory generation for quadrotors through smoothing splines,”
in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 4743–4750.

[22] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically
constrained trajectory optimization for multicopters,” IEEE
Transactions on Robotics, 2022.

[23] Y. Ren, F. Zhu, W. Liu, Z. Wang, Y. Lin, F. Gao, and F. Zhang,
“Bubble planner: Planning high-speed smooth quadro-
tor trajectories using receding corridors,” arXiv preprint
arXiv:2202.12177, 2022.

[24] Z. Wang, C. Xu, and F. Gao, “Robust trajectory planning for
spatial-temporal multi-drone coordination in large scenes,”
arXiv preprint arXiv:2109.08403, 2021.

[25] Q. Wang, B. He, Z. Xun, C. Xu, and F. Gao, “Gpa-
teleoperation: Gaze enhanced perception-aware safe assistive
aerial teleoperation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 5631–5638, 2022.

[26] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and
efficient quadrotor trajectory generation for fast autonomous
flight,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 3529–3536, 2019.

[27] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa,
“Chomp: Gradient optimization techniques for efficient mo-
tion planning,” in 2009 IEEE International Conference on
Robotics and Automation. IEEE, 2009, pp. 489–494.

[28] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A
fully autonomous and decentralized quadrotor swarm system
in cluttered environments,” in 2021 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 4101–4107.

	Introduction
	Related Work
	Planning for Dynamic Obstacle Avoidance
	Quadrotor Trajectory Planning

	Real-time collision avoidance
	GVO Construction Process
	Dynamic Obstacle Avoidance

	Autonomous Navigation in Complex Environments
	Uniform B-splines
	B-spline trajectory optimization
	Smooth cost
	Collision cost
	Feasibility cost

	Results
	Benchmark Comparisons in Dynamic Environment
	Results in Complex Environments

	Conclusions

