
Tensorized Timeline Alignment for Neural Dynamical Systems
in Irregularly Sampled Time Series Prediction

Linxiao Qin1, Tao Sun1,2, Shuo Zhang1, Xi-Ming Sun1

1. School of Control Science and Engineering, Dalian University of Technology, Dalian, 116024
E-mail: qinlinxiao@mail.dlut.edu.cn; shuozhang@dlut.edu.cn; sunxm@dlut.edu.cn

2. Department of Automation, Tsinghua University, Beijing, 100084
E-mail: suntao2022@tsinghua.org.cn

Abstract: For many real-world scenarios, time series prediction needs to be performed on irregularly sampled data. Neural
ordinary differential equations have successfully introduced neural dynamical system (NDS) methods into such tasks. However,
these models suffer from a large computational cost, and cannot effectively utilize the temporal information in mini-batches, due
to mismatched timestamps of samples. In this work, a unified architecture for NDS is developed, with two novel implementa-
tions on discrete input sequences (named TDINDS) and continuous sequences (named TCINDS). The reuse of network modules
effectively reduces the scale of parameters and time consumption, while maintaining accuracy. In addition, a tensorized timeline
alignment method is proposed, which preserves the temporal information of each training sample via reversible mappings, im-
proving prediction performance and reducing time complexity by at least one order of magnitude. Experiments are conducted
on the GoogleStock dataset, where we evaluate model accuracy and computational cost by predicting irregular future sequences.
The model robustness is tested using incomplete inputs. The results demonstrate the superior performance of TDINDS and
TCINDS, with mean square error reduced by 44% and 50% respectively. Robustness evaluation shows that tensorized timeline
alignment is also a key factor to enhance irregular time series prediction ability.

Key Words: Tensorized deep learning, neural ordinary differential equations, time series prediction, continuous neural networks

1 Introduction

Time series, also known as historical plural or dynamic
sequence. It is to arrange the values of certain statistical in-
dicators in chronological order to form a series of numbers.
In particular, time series prediction refers to the analysis of
the direction and degree of change based on the time series
data arranged in chronological order, so as to speculate on
the possible goals in the future. Thus, the time series pre-
diction is essentially a regression forecasting and belongs
to quantitative forecasting. In life and economic activities,
the time interval between each two records could vary a lot,
resulting irregularly sampled time series. For example, the
spiking events of neurons, medical records and unscheduled
production scheme changes. Time series prediction of such
data is one of the most challenging problems in the context
of regression forecasting [1].

In fact, time series prediction methods are mainly di-
vided into traditional time series prediction methods and
deep learning methods. The traditional time series method
refers to the idea of predicting the trend development of fu-
ture time series only according to the trend development of
historical time series. Such methods fit the historical time
trend curve by establishing appropriate mathematical model,
and predict the trend curve of future time series according
to the established model. Therefore, traditional time series
models mainly include autoregressive integrated moving av-
erage model, autoregressive conditional heteroscedasticity
model, etc. However, the traditional time series prediction
method relies on relatively simple data, and only the histori-
cal time series trend curve can be used to design the model.
In addition, the prediction method often faces the lag prob-

This work was supported in part by the National Science and Tech-
nology Major Project under Grant J2019-V-0010-0105, and in part by
the China Postdoctoral Science Foundation Funded Project under Grant
2022TQ0179. (Corresponding authors: Shuo Zhang, Tao Sun)

lem, that is, the predicted value is several time units later
than the true value [2].

In order to further improve the prediction accuracy of time
series, deep learning algorithm is generally introduced into
time series prediction. Such methods are usually modeled on
the features that may affect the predicted value according to
specific application scenarios, and introduce these features
into the artificial neural network of deep learning to predict.
Neural ordinary differential equations (Neural ODEs) can
capture the dynamical properties in the form of ODEs and
solve them at arbitrary steps, making such model competi-
tive for irregularly sampled time series prediction [1]. How-
ever, the computational burden of these models is catastroph-
ically high. They also cannot utilize the temporal informa-
tion of training data in mini-batches, due to different times-
tamps of each sample.

In this paper, a unified architecture for predictive neural
dynamical system is developed, with two novel implemen-
tations on discrete input sequences (named TDINDS) and
continuous input sequences (named TCINDS). The reuse of
network modules effectively reduces the scale of parameters
and time consumption, while maintaining accuracy. In ad-
dition, a tensorized timeline alignment method is proposed,
which preserves the temporal information of each training
sample via reversible mappings, improving prediction per-
formance and reducing time complexity by at least one or-
der of magnitude. The model accuracy and computational
cost are evaluated on the GoogleStock dataset, via multivari-
ate and irregular future sequences prediction. The model ro-
bustness is tested using incomplete input sequences. The re-
sults demonstrate the superior performance of TDINDS and
TCINDS, with mean square error reduced by 44% and 50%
respectively. Robustness evaluation shows that tensorized
timeline alignment is also a key factor to enhance irregular
time series prediction ability.



2 Related Work and Preliminaries

2.1 Neural ODEs
Neural ODEs [1] was originally introduced as a continu-

ous version of ResNet [3]. It regards the residual module (1)
of ResNet as the discretization of ODEs (2):

xj+1 = xj +Net(xj | θj), (1)

dx(t)

dt
= F (t,x(t) | θF ). (2)

Neural ODE aims to obtain the final state x(tN ) through
a numerical ODE solver, and further maps it to the data do-
main label ŷ for tasks such as dynamical modeling and im-
age classification [1]. Unfortunately, the model directly fits
x to the actual data, which has defects in capturing latent
dynamical characteristics.

Considering the problem introduced by direct fitting
method in the above model, the variants of Neural ODEs use
a set of hidden variables h to form (2), and input acquired
sampling data X in the solver to obtain prior distribution of
hidden parameters P(θ | X). In this way, over parameteriza-
tion can be avoided in dynamical modeling, and a sequence
is output in the process of ODE solving. Such models for se-
quence data need to consider estimation error of all sample
points.

ODE-RNN [4] and Neural CDE [5] are the representatives
of this class. In the implementation of ODE-RNN, recurrent
neural network inputs sample data when solving the ODE up
to sample timestamps, introducing additional time overhead
due to the interruption of solution process. Neural CDE uses
spline interpolation method to convert discrete sampling val-
ues into continuous input trajectories x̂ :

dh(t)

dt
= F (h(t) | θF )

du

dt
, (3)

where F ∈ RDh×(Dx+1),u(τ) = [τ, x̂(τ)T ]T ∈ RDx+1.
However, the computational cost of Neural CDE is still

very high. This is because it outputs a large-scale vector
field F . Besides, the tensor multiplication of F and du is
computed, which also limits the ability of Neural CDE to
deal with large-scale time series data.

2.2 Timeline Mismatch and Reparameterization
Mini-batch is a method dividing train dataset into sev-

eral subsets for parallel training. These subsets are called
batches, which are usually composed of a fixed number of
samples (with batch size B). Each iteration will select one
from the subsets and train B samples (with sequence length
N ) together. Mini-batch not only overcomes the difficulty to
converge in single sample iteration, but also avoids the phe-
nomenon for training all samples at the same time with huge
resources, becoming an iconic method for deep learning.

However, different samples in mini-batches may have
mismatched time stamps, while the mainstream ODE numer-
ical solvers only support solving [1] on a unique time axis.
If each sample is solved on its corresponding time axis, the
time complexity increases from O(N) to O(BN), which is
especially unacceptable for tasks that need to set large B.

Nickel et al. [6] provides a method to introduce original
timestamps into the ODE solver, which is called reparame-
terization. It maps the timestamps t ∈ [t1, tN ] of the sample

i = 1, 2, . . . , B to the same variable s ∈ S through a re-
versible function φ. For convenience, S is set to [0, 1], and
the mapping is a linear function:

t = φ(s) = s(tN − t1) + t1, s =
t− t1
tN − t1

. (4)

Then the original ODE dh/dt = F (h(t), t) can convert
the integral variable to s:

h̃(s) = h(s(tN − t1) + t1), (5)

dh̃(s)

ds
=

dt

ds

dh(t)

dt

∣∣∣∣
t=s(tN−t1)+t1

= (tN − t1)F (s(tN − t1) + t1, h̃(s)).

(6)

However, this method is not applicable to the samples with
nonlinearly changing timestamps. This is because the linear
function only records the information of the interval end-
point j = 1, N , and for the timestamps tj , j = 2, . . . , N−1,
φ cannot map them to the corresponding s, unless repeating
reparameterization process for N − 1 times.

3 Method

3.1 Problem Statement
We define irregularly sampled time series prediction as the

following supervised learning task. Given matrices for the
sequence inputs X and predicting targets Y :

X = [x(t1), . . . ,x(tN )] ∈ RDx×N ,

Y = [y(t′1), . . . ,y(t
′
M )] ∈ RDy×M ,

(7)

and a loss function L : RDy×M × RDy×M → R. Find
a function F : RDx×N → RDy×M , called a model, that
minimizes the expected loss:

minE
(
L
[
Y , Ŷ = F (X)

])
. (8)

3.2 Predictive Neural Dynamical Systems (NDS)
Unified Architecture. Based on the characteristics of

Neural ODE models, we propose NDS (Fig. 1, upper) as
a unified architecture for predictive continuous neural net-
works. First, for t ∈ [t1, tN ], the input signal flow u(t) is
computed:

u(t) = U(t,X | θU ), (9)

where θU is the possible parameters.
Then, the model obtains the dynamic latent vector h ∈

RDh at t1 through an initialization method F 1:

h(t1) = F 1(t1,u(t1) | θF 1
), (10)

where θF 1 denotes the possible network parameters. The
dynamic trajectory of the latent variable is modeled by a net-
work cell F with the parameters θF and gotten using a nu-
merical solver:

h(t) = h(t1) +

∫ t

t1

F (u(τ),h(τ) | θF ) dτ

= ODESolver(F ,u,h(t1), t1, t),

(11)

In the following models, the tsit5 numerical method is ap-
plied as ODESolver for each time step from t to t+∆t:

k1 = ∆tF (u(t),h(t) | θF ), (12)



Input Output

ODE Solver: tsit5

NLL Loss

Init

Event MLP

ODE Solver: tsit5

NLL Loss

LSTM

Spline MLP

ODE Solver: tsit5

NLL Loss

LSTM

Unified Architecture:

TDINDS:

TCINDS:

Fig. 1: The proposed unified architecture of predictive neural dynamical system, TDINDS and TCINDS.

k2 = ∆tF (u(t+∆t/2),h(t) + k1/2 | θF ), (13)
k3 = ∆tF (u(t+∆t/2),h(t) + k2/2 | θF ), (14)

k4 = ∆tF (u(t+∆t),h(t) + k3 | θF ), (15)

k5 = h(t) +


1/6
1/3
1/3
1/6


T 

k1

k2

k3

k4

 , (16)

h(t+∆t) = h(t) +


5/48
1/3
23/48
1/3
5/48


T 

k1

k2

k3

k4

k5

 , (17)

Finally, on the specified time step t = t′1, . . . , t
′
M , the

corresponding prediction values are obtained by means of
the output network G :

ŷ(t) = G(h(t) | θG), (18)

where θG is network parameters. The following NDS aim
to minimize the negative log-likelihood (NLL) function as L
in (8) by optimizing all network parameters θ:

min
θ

t′M∑
τ=t′1

− logP
[
y(τ) | N (ŷ(τ), σ2)

]
, (19)

where σ = 0.02 is the Gaussian standard deviation.
Discrete-Input NDS. The model is built on the assump-

tion on a sequence of discrete events as the input signal, that
is, when t = tj , j = 1, . . . , N , the input uj = x(tj) = xj ,

otherwise u = 0. For enabling the model to learn long-term
dependencies, the long short-term memory (LSTM) module
[7] is used to update the hidden variables and additional cell
memory c:

f j+1 = sigmoid(W f [hj ;uj+1] + bf ), (20)

ij+1 = sigmoid(W i[hj ;uj+1] + bi), (21)
oj+1 = sigmoid(W o[hj ;uj+1] + bo), (22)
cj+1 = tanh(W c[hj ;uj+1] + bc), (23)
cj+1 = f j+1 ◦ cj + ij+1 ◦ cj+1, (24)

hj+1 = oj+1 ◦ tanh cj+1, (25)

where ◦ is element-wise multiplication. bf , bi, bo, bc ∈
RDh ,W f ,W i,W o,W c ∈ RDh×(Dh+Dx) are parameters.
This model utilizes the same LSTM cell (parameterized by
θLSTM) in initializing F 1 and after solving the ODEs F :[

h1

c1

]
= LSTM

(
u1,

[
0
0

])
, (26)

hj+1 = hj +

∫ tj+1

tj

F (h(τ) | θF ) dτ , (27)[
hj+1

cj+1

]
= LSTM

(
uj+1,

[
hj+1

cj

])
, (28)

where j = 1, . . . , N − 1. F is implemented by multilayer
perceptron (MLP) cell with parameters W 1, . . . ,Wm and
b1, . . . , bm:

F (h | θF ) = MLP(h,m, σ)

=ReLU(Wmσ(. . . σ(W 1︸ ︷︷ ︸
m layers

h+ b1)) + bm), (29)



where σ denotes the activation function and m is the number
of layers. The selected values σ = sigmoid and m = 2 can
balance the computational cost and accuracy for the tasks in
Section 4.

The output module enjoys another MLP cell with m = 1:
G(h(t) | θG) = MLP′(h(t), 1, sigmoid).

Continuous-Input NDS. The model assumes the inputs
as continuous signals, and the sequence X is the sam-
pling values for t = t1, . . . , tN . u(t) at timestamp t ∈
[tj , tj+1), j = 1, 2, . . . , N − 1 is gotten by Hermite spline
interpolation of the samples x:

u(t) =


x(tj)

x(tj+1)
δjzj

δjzj+1


T 

1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1



1
p
p2

p3

 , (30)

where δj = tj+1 − tj , p = (t− tj)/δj and

zj =

0, if j = 1, N,
x(tj+1)− x(tj−1)

2(tj+1 − tj−1)
, otherwise.

(31)

The hidden variable initialization F 1 is obtained using a
LSTM network:[

h1

c1

]
= LSTM

(
u(t1),

[
0
0

])
. (32)

The ODEs are modeled utilizing a LSTM network. After
solving them up to the prediction time t ∈ t′1, . . . , t

′
M , the

outputs are obtained using an MLP module designed simi-
larly to the discrete-input NDS:[

h(t)
c(t)

]
=

[
h1

c1

]
+

∫ t

t1

LSTM

(
u(τ),

[
h(τ)
c(τ)

])
dτ , (33)

ŷ(t) = MLP(h(t), 1, sigmoid). (34)

3.3 Tensorized Timeline Alignment
Aiming at the timeline mismatch problem in a mini-batch,

tensorized timeline alignment is proposed to obtain the map-
ping t = φ(s) for each sample. First, for any sample i, a
reversible function φi must be determined to satisfy the fol-
lowing conditions in order to restore timestamp information
t in the ODEs:

1) Monotonicity: Monotonicity of the function is a suffi-
cient condition for reversibility, and it also ensures the
advancing of time steps;

2) First-order continuity: Ensures that φ′(s) = dt/ds al-
ways exists;

3) Interpolation: For each timestamp tij in the sample i =
1, . . . , B, there exists sj such that tij = φi(sj), and all
tij can be mapped to the same set of s via φ−1

i .
Suppose the timestamp tij is stored in the tensor T ∈

RB×N×1. In theory, the final interpolation nodes can be ar-
bitrarily set using a monotonic S ∈ RN . However, since
its elements will be used as divisors, it is best to set S =
[0, 1, . . . , N − 1]T for numerical stability, where sj = j. In
this case, the tensor ∆ storing ∆ij is simplified to the first-
order difference of T.

According to the optimal parameters proposed by [8] for
such interpolation method, an initial value tensor A0 is de-
fined as follows:

A0 =

1 5 · · · 1 5
...

...
. . .

...
...

1 5 · · · 1 5


B×N×1

, (35)

Set the slice-wise ratio tensor ∆r = ∆[: −1]/∆[1 :] and
the iterative tensor:

∆rj =
[
1B×j×1 ∆r[j/2− 1] ∆r[j/2] · · ·

]
, (36)

where [·] denotes slicing operation on the second dimension
of tensor. j = 2, 4, . . . , P . P is the biggest even number
under P < N .

Then, calculate the element-wise product ◦ to obtain the
tensor A that stores αij for ⌊(N − 1)/2⌋ times:

A = A0 ◦∆r2 ◦∆r4 ◦ · · · ◦∆rP , (37)

where ⌊x⌋ denotes the largest integer less than or equal to x.
Since in S, sj = j, sj+1 − sj ≡ 1, it follows that λj =

s− sj = s− j. Substitute αi0 = 1, αi1 = 5:

φ(s) =
C0 ◦T[j + 1]−C0 ◦T[j]

C0 −C1
, (38)

φ′(s) =
5∆[0]

(C0 −C1)2
, (39)

where C0 = (s− j)A[j + 1] and C1 = (s− j − 1)A[j].
Finally, use the obtained tensors T,∆,A to extract the

corresponding components into (38) to obtain the mapping
function φ and its derivative φ′, and thus restore the time
information in the corresponding ODE.

dh̃(s)

ds
= φ′(s)F (φ(s), h̃(s)). (40)

Tensorized Timeline Alignment is utilized in the NDS
models with discrete and continuous inputs, named TDINDS
(Fig. 1, middle) and TCINDS respectively (Fig. 1, lower).

4 Experiments

4.1 Dataset
The GoogleStock dataset is used as the benchmark for

model evaluation and comparison. It has four features: open
prices, the highest prices, the lowest prices and close prices
for the stock of Google company, daily from 2004 to 2019.
The goal for time series prediction is set to predict each fea-
ture on the randomly selected 7 of the next 14 days, given
past 30 days of data.

The data are cut by a sliding window and randomly recom-
bined with a batch size B of 32. All mini-batches are then
transformed into the range [0, 1] by min-max normalization.
30% of the data (120 mini-batches) are partitioned to the test
dataset. Besides, to verify the effectiveness of timeline align-
ment method for incomplete temporal information, the daily
data are discarded randomly at the ratio of 10%, 20%, 30%,
40% and 50%, respectively. The model performance is eval-
uated with such irregularly sampled input sequences.



4.2 Experimental Designs
ODE-RNN [4] and Neural CDE [5] are introduced as

the baseline models for evaluation. The implementation of
TDINDS, TCINDS and them is based on PyTorch platform.
For all models, the dimension Dh of latent variable vector h
is set to 10. The adjustment of parameters θ is carried out
by Adamax optimizer, with a learning rate of 0.02. Xavier’s
initialization is used for these parameters [9]. The maximum
number of training epochs is 200, with early stopping pa-
tience of 10 epochs.

Besides NLL as the loss function mentioned in Sec-
tion 3.2, the mean square error (MSE) is also applied in
model evaluation, which is defined as follows:

MSE =
1

BM

B∑
i=1

M∑
j=1

(y(t′ij)− ŷ(t′ij))
2 (41)

where y is the true value of open price, the highest price,
the lowest price or close price. ŷ is the model prediction
corresponding to it.

4.3 Evaluation Results
The results with regularly sampled input sequences.

Fig. 2 shows the relative errors for 120 mini-batch pre-
dictions using ODE-RNN, Neural CDE, TDINDS and
TCINDS, respectively. It can be found that the errors for
TDINDS and TCINDS are restricted to the range [−0.4, 0.4],
while errors of the other models have exceeded this limit.

Table 1 lists the number of network parameters (Params),
MSE, NLL and total training time for all models evaluated
in this work. TDINDS and TCINDS reduce the MSE by
44% and 50% respectively, exhibiting high prediction per-
formance. TCINDS achieves the smallest network scale and
the best accuracy, while training time is slightly higher than
TDINDS, the fastest trained model, due to the computation
of the Hermite interpolation.

Table 1: Evaluation results for different models.
Models Params MSE NLL Training time

ODE-RNN 41.6k 0.2846 19.24 0.8h
Neural CDE 23.0k 0.2408 17.47 1.1h

TDINDS 16.9k 0.1355 12.89 0.6h
TCINDS 11.4k 0.1212 11.03 0.7h

As demonstrated in the evaluation results, tensorized time-
line alignment could reduce the training time, by reducing
time complexity of models from O(BN) to O(N) on the
mini-batches of B sequences with length of N . After per-
forming this operation, the accuracy of models is also im-
proved, since the temporal information could be fully recov-
ered by the mapping function φ. This experiment also proves
that the proposed models have high fitting performance even
if the number of parameters is limited.

The results with irregularly sampled input sequences.
Fig. 3 shows the increase of MSE and NLL for all evalu-
ated models, as the inputs are discarded under an ascending
proportion. It can be found that all four models are resistant
to irregularly sampled data, since the rise of MSE and NLL
tends to be gentle. However, TDINDS and TCINDS can
take advantage of the incomplete timestamps via tensorized
timeline alignment, and are more robust to such data, as their

error increase is lower than the baseline models. Since there
is no need for TDINDS to recover the continuous input sig-
nals, getting rid of the estimation error in this process, its
error increase is the lowest.

5 Conclusion

To reduce the computational burden of neural ordinary
differential equations in irregularly sampled time series pre-
diction, and make use of the timestamps contained in the
samples of mini-batches, this paper proposes a unified ar-
chitecture for predictive neural dynamical system, with two
models implemented for discrete and continuous input se-
quences, respectively. In addition, a tensorized timeline
alignment method is proposed to preserve temporal informa-
tion of each training sample via reversible mappings. The
evaluation results on the GoogleStock dataset demonstrate
the superior performance of the two models. Robustness test
shows that tensorized timeline alignment method is the key
factor for enhancing irregular time series prediction ability.

References
[1] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David

Duvenaud. Neural ordinary differential equations. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
6572–6583, 2018.

[2] Minhao Liu, Ailing Zeng, Zhijian Xu, Qiuxia Lai, and
Qiang Xu. Time Series is a Special Sequence: Forecasting
with Sample Convolution and Interaction. ArXiv preprint,
abs/2106.09305, 2021.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
770–778. IEEE Computer Society, 2016.

[4] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. La-
tent ODEs for Irregularly-Sampled Time Series, pages 1–13.
Curran Associates Inc., Red Hook, NY, USA, 2019.

[5] Patrick Kidger, James Morrill, James Foster, and Terry J.
Lyons. Neural controlled differential equations for irregular
time series. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[6] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel.
Neural spatio-temporal point processes. In International Con-
ference on Learning Representations, 2021.

[7] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning
long-term dependencies with gradient descent is difficult. IEEE
transactions on neural networks, 5(2):157–166, 1994.

[8] Ruzhong Tang, Qianjin Zhao, and Yuwu Zhang. Linear rational
spline interpolation. Journal of Anhui Institute of Architecture
& Industry, 18(1):76–78,82, 1 2010.

[9] Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In Proceedings
of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pages 249–256, 2010.



Fig. 2: The relative errors in GoogleStock dataset using ODE-RNN, Neural CDE, TDINDS and TCINDS.

Fig. 3: The MSE and NLL increase with incomplete input sequences for each model.


	Introduction
	Related Work and Preliminaries
	Neural ODEs
	Timeline Mismatch and Reparameterization

	Method
	Problem Statement
	Predictive Neural Dynamical Systems (NDS)
	Tensorized Timeline Alignment

	Experiments
	Dataset
	Experimental Designs
	Evaluation Results

	Conclusion

