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Abstract: In this paper, we investigate multi-agent systems with heterogeneous constraints, which can represent the heuristic
beliefs of the agents towards an issue or the physical constraints of the agents. Heterogeneous constraints are frequently observed
however have rarely been characterized. As a result of the heterogeneity of the constraints, an equilibrium point may not exist and
is presumably to be a dissensus point when it exists. We investigate the existence of equilibrium points from the perspective of
Kakutani’s fixed point theory for a set-valued map. We also prove the local/global stability of certain equilibrium points. Then,
a special case that the constraints are homogeneous is taken into account. The constrains are assumed to take interval forms with
nonempty intersection. It is proved that consensus can be achieved globally and asymptotically for this case. Numerical examples
are designed to illustrate our theoretical findings.
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1 Introduction
Multi-agent systems (MASs), which can be seen to under-

lie various fields including distributed coordination and so-
cial network modeling and analysis, have been extensively
studied over the past decades [1–5]. To some extent, con-
straints of the agents are indispensable for MASs. They
are intended to characterize specific properties of the agents.
In general, the constraint can be any form that regulates or
guides the collective behavior of the agents.

One popular kind of the constraints frequently observed
is that imposed on agents’ states, which arises probably due
to, e.g., the physical requirement (e.g., storage capacity of
an agent) or heuristic belief of an agent towards an issue [6–
10, 20]. To achieve constrained consensus, each agent sim-
ply discards the states of its neighbors that are not in its own
constraint interval [7]. Ref. [8] designs a potential function
incorporating an explicit constraint term and uses its gradi-
ent to seek consensus while guarantee state constraint. Time-
varying state constraints for a group of full state coupled non-
linear MASs are considered in [9]. It is shown via auxiliary
variables that constrained consensus is equivalent to bounded
consensus [9]. Projection-based method commonly used in
optimization is also applied to the state constrained consen-
sus problem, see for instance [10]. The above works [7–10]
impose strict constraint on states. In contrast, ref. [6] pro-
poses an elastic interval consensus model, which is later re-
visited in [20]. By being elastic means that the agents are
guaranteed to satisfy their constraints in the limit.
Beyond existing constraints that have been widely inves-

tigated, there exist many others that are held by the agents
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on states but have not been fully characterized, one of which
can be observed from the following facts. (i) Before a deci-
sion making or issue discussing process, an agent may have a
heuristic preference or belief [11–14] towards the final deci-
sion or opinion. Such a heuristic belief/preference has multi-
ple origins, one of which is probably the stereotype of an in-
dividual, which represents each individual’s stored category-
level information that greatly influences the judgment. (ii)
During a discussion of an issue, there might exist very con-
vinced individuals with extreme opinions, called extremists,
and also moderate individuals being less certain on the is-
sue [18]. (iii) In addition, in the seeking for a common point
of a group of sets, it is usually the case that the sets consist
of convex and non-convex ones. This motivate the agents to
impose heterogeneous constraints on their states.

With the above observation as a motivation, we de-
velop amulti-agent system having heterogeneous constraints.
Specifically, each agent maps the combination of its neigh-
bors’ states into a set, which can be either an interval or a
set with finite number of elements. Different kinds of the
sets reflect the heterogeneity of the constraints for the agents.
Moreover, the states of agents do not need to satisfy their
constraints all the time. We only require that the converged
values of the states satisfy their constraints. Thus, the pro-
posed model can be seen as imposing elastic constraints on
states.

The following contributions are made in this paper. (i)
First, since the mapped sets can be either an interval or
a set of discrete points, the agent dynamics involves non-
continuous and non-contractive terms. In view of this, the
Kakutani’s fixed point theory is applied to describe the equi-
librium points. An interesting observation is that heterogene-
ity of the constraints makes it more likely that dissensus of
the agents appears. (ii) Second, local stability for a class of
continuous equilibrium point is proved. We also discuss a di-



rected ring communication graph and show that an equilib-
rium point exists uniquely and is globally stable under cer-
tain conditions. (iii) Finally, we deal with the case that the
constraints are homogeneous and take interval forms. It is
shown that if the intersection of the intervals is non-empty
and the agents communicate over a strongly connected graph,
then they reach an agreement asymptotically. This indicates
that consensus is possible provided that the constraints have
certain similarities. The constrained MAS proposed in this
paper can be seen as an alternative for interval consensus of
multi-agent systems, which has been investigated in [6].

The remainder of the paper consists of five sections. Some
notations and definitions are provided in Section 2. The prob-
lem is formulated and the model of the MAS with heteroge-
neous constraints is proposed in Section 3. Section 4 presents
the main results, followed by numerical examples in Section
5. The paper is finally concluded in Section 6.

2 Preliminary

2.1 Notation
Let ‖ ⋅ ‖ be the Euclidean norm of a finite dimensional

vector. ℝ is the set of real numbers. Denote by In the identity
matrix inℝn×n (if the subscript is dropped, then I denotes the
identity matrix of a compatible dimension) and by 0m×n the
zero matrix in ℝm×n. For two scalar-valued functions g1 and
g2, g2◦g1 = g2(g1). [a, b]N denotes the Cartesian product
ofN intervals [a, b]’s. �(M) represents the spectral radius of
M ∈ ℝN×N .

2.2 Algebraic Graph Theory
Let  = ( ,  ,A) be a weighted directed graph with a

set of nodes  = {1, 2,⋯ , N}, a set of edges  ⊂  ×  .
If (i, j) ∈  , then j can receive the information from i. A
weighted adjacency matrix A = [aij] ∈ ℝN×N is defined
such that aij is the weight of the directed edge (j, i) and aij ≠
0 if (j, i) ∈  ; aij = 0 otherwise. Assume that aii = 0, ∀i ∈
 . If (j, i) ∈  , j is said to be a neighbor of i. Denote by
i = {k|(k, i) ∈ } the set of node i’s in-neighbors in .
A directed path from node i to node j in the graph

 is a sequence of distinct edges of the following form:
(i, s1), (s1, s2),… , (sn, j) ∈  . If between any distinct nodes
i and j of , there is a directed path from i to j, then we call
 strongly connected.

2.3 Kakutani’s Fixed Point
Consider a map X ∶ ℝd → ℝd , which can be discontin-

uous. The Filippov set-valued map F[X] with respect to the
map X is defined by [16]

F[X](x) ≜ ∩�>0 ∩�(S)=0 c̄o{X(B(x, �) ⧵ S)}, x ∈ ℝd ,

where c̄o denotes the convex closure, � is the Lebesgue mea-
sure, and B(x, �) = {y ∈ ℝd

|‖y − x‖ ≤ �}.

Example 1 (Filippov set-valued map of the sign function
[16]). Consider the sign function X ∶ ℝ → ℝ

X(x) = sign(x) =
⎧

⎪

⎨

⎪

⎩

1, x > 0
0, x = 0
−1, x < 0.

The Filippov set-valued map of X is as follows

F[X](x) =
⎧

⎪

⎨

⎪

⎩

1, x > 0
[−1, 1], x = 0
−1, x < 0.

Lemma 1 (Kakutani’s Fixed Point [15]). For any given posi-
tive integer n, letΩ be a nonempty, closed, bounded and con-
vex subset ofℝn. IfF is a convex-valued self-correspondence
on Ω that has a closed graph, then F has a fixed point, that
is, there exists an x ∈ Ω with x ∈ F (x).

3 Problem Formulation
3.1 System Model

Consider a group of N agents evolving according to the
following rule:

xi(k + 1) = �xi(k) + �fi
⎛

⎜

⎜

⎝

∑

j∈i

aijxj(k)
⎞

⎟

⎟

⎠

, i = 1,… , N.

(1)

The variable xi(k) ∈ ℝ denotes the state of the i-th agent.
fi ∶ ℝ → ℝ is a nonlinear function, which represents the
constraint of agent i. � ≥ 0 and � > 0 are update parameters
satisfying � + � = 1. The edge weights are normalized such
that

∑N
j=1 aij = 1 for all i.

Two types of constraints, i.e., two forms of fi, are consid-
ered. One maps its argument into an interval and the other
maps its argument into a set with finite number of elements.
They are specified as follows (refer to Figure 1 for a simple
illustration).
1) fm = �m is continuous and piecewise linear:

�m(z) =

⎧

⎪

⎨

⎪

⎩

qm, if z > qm
z, if pm ≤ z ≤ qm
pm, if z < pm.

2) fm = �m is discontinuous:

�m(z) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if z > �m1
�m1 ∈ [0, 1], if z = �m1
0, if z ∈ (−�m2, �m1)
�m2 ∈ [−1, 0], if z = −�m2
−1, if z ≤ −�m2,

where �m1, �m2 > 0.
�m maps the argument into an interval Ψm = [pm, qm]. In

contrast, �n maps its argument to a set with finite number of
elements, which is Ψn = {1, �n1, 0, �n2,−1}. That Ψn can be
a set of finite points has the following interpretation. If xi rep-
resents the opinion of an individual and lies in [−1, 1], then
−1, 0, 1 can be seen to denote the negative, neutral, and pos-
itive attitudes, respectively, of individual i towards an issue.
The final decision or judgment of agent i (a convinced indi-
vidual with extreme opinions [18]) towards an issue is driven
to one of {−1, 0, 1} based on the observation

∑

j aijxj(k) at
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Fig. 1: Subfigure (a): the graph of �i; subfigure (b): the graph of �i; subfigure (c): an example where a fixed point does not
exist for a discontinuous function g(x).

time k and its preference represented by function fi. There
also exist many other choices of Ψi, i = 1,… , N, according
to the context. �m1, �m2, �m1, and �m2 are parameters making
MAS (1) more flexible.
For simplicity, we call the agents with interval constraints

moderate agents while the rest extreme agents. Without loss
of generality, let −1 ≤ pm ≤ qm ≤ 1 for all m.
Problem of Interest. Characterize the equilibrium points of

multi-agent system (1) and prove their global/local stability.

3.2 Concepts of Stability and Consensus
We present the definitions of consensus and stability

for subsequent analysis in what follows. Let x(k) =
[x1(k),… , xN (k)]⊤.

Definition 1 (Stability of an Equilibrium Point). An equilib-
rium point x∗ of (1) is globally asymptotically stable if for
any initial value x0 ∈ ℝN , there holds that limk→∞ x(k) −
x∗ = 0; locally asymptotically stable if there exists a � such
that whenever ‖x0−x∗‖ ≤ �, there holds that limk→∞ x(k)−
x∗ = 0.

Definition 2 (Global Consensus). Consensus is said to be
achieved for system (1) globally and asymptotically if for
any initial value x0 ∈ ℝN , there holds that limk→∞(xi(k) −
xj(k)) = 0 for all i, j ∈  .

4 Equilibrium Points and Stability
In this section, fi can be either �i or �i for agent i and both

extreme and moderate agents exist. That is, the constraints of
the agents are heterogeneous. We will characterize the equi-
librium points of MAS (1) from the viewpoint of Kakutani’s
fixed point theory since fi can be discontinuous. Then, we
investigate the stability of certain equilibrium points.

By � + � = 1 and � > 0, the equilibrium point x∗ of the
multi-agent system (1) satisfies that

x∗i = �x
∗
i + �fi

⎛

⎜

⎜

⎝

∑

j∈i

aijx∗j
⎞

⎟

⎟

⎠

, ∀i

⟺ x∗i = fi
⎛

⎜

⎜

⎝

∑

j∈i

aijx∗j
⎞

⎟

⎟

⎠

, ∀i.

Consequently, x∗ is a fixed point of

X(x) = f (Ax) =
[

f1([Ax]1),… , fN ([Ax]N )
]⊤ ,

where [Ax]i denotes the i-element of Ax. However, fi is
discontinuous for some i. This suggests that an equilibrium
point may not exist (refer to an illustration in Fig. 1). In view
of this fact, we introduce a concept of generalized equilib-
rium point, with fi replaced by a set-valued map at the dis-
continuous points.

Definition 3 (Generalized Equilibrium Point). A point x∗ is
termed a generalized equilibrium point (GEP) of system (1)
if x∗ ∈ F[X](x∗), i.e., x∗ is a fixed point of the Filippov set-
valued map F[X] of X.

With F[X], a generalized equilibrium point is guaranteed
to exist.

Theorem 1 (Generalized Equilibrium Points). Consider the
multi-agent system (1) with fi being either �i or �i for all i.
Then, xi(k) are bounded for all i and for any initial state, and
there exists at least one GEP.

Proof. (i) We first show that xi(k) are bounded for i =
1,… , N . It follows from (1) that

x(k) = �kx(0) +
k−1
∑

j=0
�j�f (∗ (k − j − 1)), (2)

where ∗ (k− j − 1) are unspecified and bounded terms. The
above equality gives ‖x(k)‖ ≤ �k‖x(0)‖+ b

∑k−1
j=0 �

j , where
b is a positive constant satisfying that b ≥ �‖f (⋅)‖. Therefore,
‖x(k)‖ is bounded as a result of the fact that 0 ≤ � < 1.

(ii) Now, we show the existence of at least one
GEP using Kakutani’s fixed point theory. We need
to show that F[X](x) has a closed graph and is a
convex-valued self-correspondence on [−1, 1]N , where
X(x) = [X1(x),…XN (x)]⊤ ∈ ℝN and

Xi(x) = fi([Ax]i) = fi
⎛

⎜

⎜

⎝

∑

j∈i

aijxj
⎞

⎟

⎟

⎠

.

Suppose that x is not a continuous point of X and further
the i-th component Xi of X is not continuous at x. Then,



Xi(x) = �i([Ax]i), where [Ax]i denotes the i-component of
Ax.

According to definitions of �i and the Filippov set-valued
map, given a sufficiently small � > 0, by calculation, one
has Xi(y) ∈ [ai, bi] for y ∈ B(x, �). For instance, ai = 1 and
bi = 0when [Ax]i = �i1. Moreover, ai and bi can be attained
for some y ∈ B(x, �). Hence, one can write F[Xi](x) =
[ai, bi], where ai = bi if x is a continuous point of Xi or
[ai, bi] is a nontrivial closed interval as specified above if x
is a discontinuous point of Xi. Consequently, one concludes
that F[X] is convex-valued.
By the definition, for a discontinuous point x of Xi, the

Filippov set-valued map F[Xi](x) is the intersection of a col-
lective of closed set and is closed as well. By the two pos-
sible forms of fi, i.e., �i and �i, it is easily verified that for
(vn,wn) ∈ ([−1, 1]N ,F[X]([−1, 1]N )) and vn → v,wn → w
as n→ ∞, one has

(v,w) ∈
(

[−1, 1]N ,F[X]([−1, 1]N )
)

.

Therefore, F[X] has a closed graph on [−1, 1]N .
We proceed to show that F[X] is a self-correspondence on

[−1, 1]N . Let x be any point in [−1, 1]N . Then,−1 ≤ xi ≤ 1.
This implies that

−1 = −
∑

j∈i

aij ≤
∑

j∈i

aijxj ≤
∑

j∈i

aij = 1.

Hence, −1 ≤ fi([Ax]i) ≤ 1. This yields that F[fi]([Ax]i) ⊂
[−1, 1]. We prove that F[X] is a self-correspondence on
[−1, 1]N .
According to Lemma 1, there exists a point z ∈ [−1, 1]N

such that z ∈ F[X](z). That is to say, there exists at least one
GEP.

Let x∗ be aGEP.Due to heterogeneity of the constraints, an
equilibrium point probably does not exist. Note that if agent
i is moderate, x∗i = fi([Ax∗]i); while x∗i ∈ F[fi]([Ax∗]i) for
an extreme agent i. Hence, the existence of extreme agents
generally causes that an equilibrium point does not exist. An
intuitive explanation of Theorem 1 is as follows. If some
agents have the preference to be extreme towards an issue,
then it is likely that the discussion of the agents on that issue
may never end with a meaningful result, unless the extreme
agents change their preference. In addition, even if an equi-
librium point exists, it is more likely to be a dissensus point,
as a result of heterogeneity of Ψm or the emptiness of the in-
tersection of Ψm. Finally, note that we do not impose any
connectivity condition on  in Theorem 1.
The function �i is neither contractive or non-expansive.

This makes the analysis of global behavior of the agents chal-
lenging. In what follows, we analyze the local behavior of
the agents around the continuous equilibrium points. A con-
tinuous equilibrium point is defined as an equilibrium point
where X(x) = f (Ax) is continuous.

Theorem 2 (Local Stability of Continuous EPs). Consider
the multi-agent system (1) with fi being either �i or �i for all
i and there exists at least one extreme agent. Suppose that
 is strongly connected. Then, any continuous equilibrium
point is locally stable.

We need some intermediate results for the proof of Theo-
rem 2.

Definition 4. [19] Given M ∈ ℝn×n, Γ(M) is defined to be
the directed graph on n nodes such that there is a directed
edge in Γ(M) from node i to node j if and only if Mij ≠ 0.

Lemma 2. [19, Theore 8.3.1] If M ∈ ℝn×n is nonnegative,
then �(M), the spectral radius of M, is an eigenvalue of M
and there is a nonnegative nonzero vector v such that Mv =
�(M)v.

Lemma 3. [19, Corollary 6.2.9, Theorem 6.2.14] Given
M ∈ ℝn×n, if the directed graph Γ(M) underlying M is
strongly connected,M is diagonally dominant, and there is a
k such that

Mkk >
N
∑

j=1,j≠k
|Mkj|,

then M is nonsingular.

Proof of Theorem 2. Let x∗ be a continuous equilibrium
point. Then, there exists a � > 0 such that X is smooth on
B(x∗, �) = {y ∈ ℝN

| ‖y − x∗‖ ≤ �}. Linearizing X around
x∗ gives a Jacobian matrix

DXx∗ =

⎡

⎢

⎢

⎢

⎣

� ��12 … ��1N
��21 � ⋯ ��2N
⋮ ⋯ ⋱ ⋮

��N1 ⋯ ��N,N−1 �

⎤

⎥

⎥

⎥

⎦

,

where �ij =
dfi([Ax∗]i)

dxj
and dfi([Ax∗]i)

dxj
∈ {0, aij}. All we need

is that DXx∗ is Schur stable [19].
Note that �ij are nonnegative. The i-th row sum of DXx∗

is

N
∑

j=1
[DXx∗ ]ij = � + �

N
∑

j≠i,j=1
�ij ≤ � + �

N
∑

j≠i,j=1
aij ≤ 1.

Hence,DXx∗ is a nonnegative matrix with each row sum be-
ing not greater than 1. As a result, the norm of any eigenvalue
of DXx∗ is not greater than 1 [19]. We require that at least
one agent, say k, exists such that fk = �k. By definition, �k
must be constant around x∗. Then, dfk([Ax

∗]k)
dxj

= 0, j ≠ k, j =
1,… , N . Consequently,

N
∑

j=1
[DXx∗ ]kj = � + �

N
∑

j≠k,j=1
�kj = � < 1.

Next, we show that any eigenvalue � of DXx∗ has a norm
strictly less than 1, i.e., |�| < 1. By Lemma 2, suppose
that there is an eigenvalue of DXx∗ having norm 1, then
�(DXx∗ ) = 1 and there exists a nonnegative nonzero vector
v such that DXx∗v = v. Let B = I −DXx∗ whose spectrum
consists of 1 − �(DXx∗ ). Then, B has an eigenvalue 0 and is
a singular matrix.

Recall thatDXx∗ is nonnegative with each row sum being
not greater than 1. As a result, B has nonnegative diagonal
entries and nonpositive off-diagonal entries. Moreover, B is
diagonally dominant, i.e.,

1 − � ≥ �
N
∑

j≠i,j=1
�ij , ∀i ≠ k,



and

1 − � > �
N
∑

j≠k,j=1
�kj .

We have that  is strongly connected by the conditions in
the theorem. Assume that Γ(B) is also strongly connected.
By Lemma 3, B is nonsingular – a contradiction. If Γ(B)
is not strongly connected, then Γ(B) consists of multiple
strongly connected components. Similar analysis can be ap-
plied to each strongly connected component by writing B in
the Frobenius normal form [17] as follows:

B =
⎡

⎢

⎢

⎢

⎣

B1
B21 B2
⋮ ⋱ ⋱
Bk1 ⋯ ⋯ Bk

⎤

⎥

⎥

⎥

⎦

.

Note that Bi, i = 1,… , k, are all diagonally dominant and
for each i, there exists l such that [Bi]ll >

∑

j[Bi]lj , where
[⋅]ij denotes the (i, j)-th entry of a matrix. Thus we prove
that the norms of all the eigenvalues ofDXx∗ are strictly less
than 1. The proof is complete.

4.1 Directed Ring Communication Graph
In this subsection,  is assumed to be a directed ring graph

as shown in Fig. 3, i.e., the neighbor of the (i + 1)-th agent
is i for i = 1,… , N − 1 and the neighbor of agent 1 isN . In
this case, we characterize the equilibrium point and its global
stability.
Assume without loss of generality that f1 = �1. In a di-

rected ring graph, if an equilibrium point exists, then

f1◦fN◦⋯◦f2(x) = x, x ∈ [p1, q1].

In what follows, let f◦ = f1◦fN◦⋯◦f2 be defined on [p1, q1].
According to the definition of an equilibrium point and the
network structure, one can further conclude that f◦ has a fixed
point belonging to the interval [p1, q1] if and only if an equi-
librium point exists. Following this idea, we have

Theorem 3. Consider the multi-agent system (1) communi-
cating over graph  and both moderate and extreme agents
exist.1 Let �mi = 0.5 and �mi = 0 for i = 1, 2 and any ex-
treme agent m. Assume that  is a directed ring graph. If
[pi, qi] ∩ {±0.5} = ∅ for any moderate agent i, then there
exists a unique equilibrium point and it is globally asymptot-
ically stable.

Before presenting the proof of Theorem 3, we first show
that xi(k) approaches a certain interval as k tends to infinity.

Lemma 4. Consider the multi-agent system (1) with fi being
either �i or �i for all i. Then, for any i, xi(k) → [pi, qi] if
fi = �i; while xi(k)→ [−1, 1] if fi = �i.

Proof. Let agent i be endowed with �i. One obtains from (2)
that

xi(k + 1) = �k+1xi(0) +
k
∑

j=0
�j��i (∗ (k − j)) .

1If all the agents are extreme, then more than one equilibrium point ex-
ists, e.g., ±1N and 0N , under the conditions of this theorem.

Recall that pi ≤ �i (∗ (k)) ≤ qi. By letting �i(∗ (k − j)) be
any fixed value in [pi, qi], one easily has xi(k) → [pi, qi] as
k→ ∞.

The case that agent i is endowed with �i can be analyzed
similarly by noting that �i(⋅) ∈ [−1, 1]. We omit the details
for brevity.

Proof of Theorem 3. (Existence & Uniqueness) We start by
proving that f◦ has a unique fixed point.
Without loss of generality, assume that f1 = �1 is a con-

tinuous function and let x1 ∈ [p1, q1]. If f2 is a continuous
function, then f2(x1) ∈ [p2, q2]. Otherwise, x1 is mapped to
{−1, 0, 1}, e.g., f2(x1) = −1 if [p1, q1] ⊂ [−1,−0.5). In the
latter case, f2(x1) has the same value for any x1 ∈ [p1, q1] ac-
cording to [pm, qm] ∩ {±0.5} = ∅ for any moderate agent m.
Continuing this analysis and by the condition in the theorem
statement, xi is a continuous point of fi+1 for i = 1,… , N−1
with x1 ∈ [p1, q1]. That is to say, f◦ is continuous on [p1, q1].
Moreover,

f◦ = f1◦fN◦⋯◦f2([p1, q1]) ⊂ [p1, q1].

As a result, f◦ is a self-correspondence on [p1, q1]. By Kaku-
tani’s fixed point theorem in Lemma 1, there exists at least
one equilibrium point.

We now further prove that the equilibrium point is unique.
Let x∗ and y∗ be two equilibrium points. Let the k-th agent be
an extreme one with fk = �k and the j-th agent be endowed
with �j for 1 ≤ j < k. Since [pm, qm] ∩ {±0.5} = ∅ for any
moderate agent m, one has

fk◦fk−1◦⋯◦f2(x∗1) = fk◦fk−1◦⋯◦f2(y∗1).

This is because fk = �k maps any xk−1 ∈ [pk−1, qk−1] to
the same value belonging to {−1, 0, 1}. As a result, x∗i = y∗i
for N ≥ i ≥ k. Since  is a directed ring graph, f1(x∗N ) =
f1(y∗N ). Repeating this procedure to k−1, one concludes that
x∗i = y∗i for i = 1,… , k − 1. To summarize, x∗ = y∗. There
is a unique equilibrium point.

(Stability) Next, we prove that for system (1), x(k) → x∗
as k→∞ given any initial point x(0). By Lemma 4, xi(k)→
[pi, qi] as k→ ∞ for moderate agent i. Then, for some suffi-
ciently small � > 0, there exists K > 0 such that for k > K ,
one has xi(k) ∈ [pi − �, qi + �] ∩ {−0.5, 0.5} = ∅ for any
moderate agent i. Hence, given an extreme agent, say agent
s, with a moderate neighbor, there holds that�s(xs−1(k)) = x̂
for all k > K , where x̂ ∈ {−1, 0, 1}. By the idea in the proof
of Lemma 4, this implies that xs(k)→ x̂ as k→ ∞.
Further, if agent s + 1 is a moderate agent, then

xs+1(k + 1) = �xs+1(k) + ��s+1(x̂ + �(k))

= �k−Kxs+1(K + 1) +
k
∑

j=K+1
�k−j

[

��s+1(x̂) + ��(j)
]

with k > K and �(k)→ 0 as k→∞. Write

�s+1(x̂ + �(k)) = �s+1(x̂) + �(k).

Thus, �(k)→ 0 as k→ ∞ due to the continuity of �s+1. Note
that inf j≤k �(j) ≤ �(k) ≤ supj≥k �(j). By letting k→ ∞, one



has

lim sup
k→∞

xs+1(k + 1) ≤ �s+1(x̂) + lim
K→∞

sup
j≥K+1

�(j).

Since �(k)→ 0 as k →∞, limk→∞ supj≥k �(j) = 0. Hence,

lim sup
k→∞

xs+1(k + 1) ≤ �s+1(x̂).

Similarly,

lim inf
k→∞

xs+1(k + 1) ≥ �s+1(x̂).

As a result,

xs+1(k)→ �s+1(x̂) as k→∞.

The proof for agent s + 1 being extreme and xs+1(k) →
�s+1(x̂) as k→ ∞ can be completed in a similar way.
Following the above idea, it can be easily obtained that

limk→∞ x(k) = x∗ with x∗ being the unique equilibrium
point and taking the following form:

x∗i = fi◦⋯◦f1◦fN◦fN−1◦⋯◦fs+1(x̂)

if i < s, and
x∗i = fi◦fi−1◦⋯◦fs+1(x̂)

if i > s, and x∗s = x̂. The proof is complete.

4.2 Homogeneous Interval Constraints
In this subsection, we take into account the case that all the

agents are moderate. We will show that in this case, if the in-
tersection of Ψm is non-empty and the agents communicate
over a strongly connected graph, then they reach consensus
asymptotically and globally. As a result, the multi-agent sys-
tem (1) can be seen as an alternative for achieving interval
consensus, which has been investigated in [6].

Theorem 4 (Constrained Consensus). Consider the multi-
agent system (1) communicating over graph . Suppose that
all the agents are moderate. If  is strongly connected and
∩Nj=1Ψj ≠ ∅, then consensus can be achieved globally asymp-
totically.

Proof. Let p∗ = maxj pj and q∗ = minj qj . One has p∗ ≤ q∗

because ∩Nj=1Ψj ≠ ∅. We first show that

lim
k→∞

dist
(

xi(k),
[

p∗, q∗
])

= 0

for all i, where

dist
(

xi(k), [p∗, q∗]
)

= inf
y∈[p∗,q∗]

|xi(k) − y|.

Define Γmin(k) = mini xi(k) and Γmax(k) = maxi xi(k). Note
that if Γmin(0),Γmax(0) ∈ [p∗, q∗], then it follows directly
from (1) that Γmin(k),Γmax(k) ∈ [p∗, q∗] for all k ≥ 0.

Let Γmax(k) = xm(k) > q∗. [If this is not the case, we can
consider the case that Γmin(k) < p∗.] Then, for any i,

xi(k + 1) = �xi(k) + ��i
⎛

⎜

⎜

⎝

∑

j∈i

aijxj(k)
⎞

⎟

⎟

⎠

≤ xm(k),

where the inequality follows from that �i is non-decreasing
and

∑

j aijxj(k) ≤ xm(k). Consequently, Γmax(k) is non-
increasing. In what follows, we prove that

lim
k→∞

dist(Γmax(k), (−∞, q∗]) = 0.

Suppose that limk→∞ Γmax(k) = Γ∗max > q∗. Note that
xi(k) are bounded for all i. Hence,

lim
k→∞

dist(x(k),Ω) = 0,

where Ω is the positive limit set of x(k) and is bounded [21].
Moreover, Ω is invariant with respect to system (1). Since
limk→∞ Γmax(k) = Γ∗max > q∗, there exists x0 ∈ Ω and w ∈
 such that x0w = Γ

∗
max.

It follows from system (1) that the evolution of xi(k) in
reverse time can be implicitly written as follows for i =
1,… , N,

�xi(k − 1) + �fi
⎛

⎜

⎜

⎝

∑

j∈i

aijxj(k − 1)
⎞

⎟

⎟

⎠

= xi(k). (3)

Let x(0) = x0. As a result of the invariance of Ω, xi(−1) ≤
xw(0) = x0w for all i. Recall that �w is non-decreasing.
To guarantee xw(0) = x0w = Γ∗max, it follows from (3) that
xj(−1) = xw(−1) = xw(0) for all j ∈w and

∑

j∈w
awjxj(−1) ∈ [pw, qw].

Since  is strongly connected, there exists s ∈ w such
that s ⧵w ≠ ∅. Applying the same arguments to xs(−1)
and xw(−1), it is reached that xj(−2) = xw(0) for j ∈
w ∪s and

∑

i ajixi(−3) ∈ [pj , qj]. Continuing the above
analysis, one finally concludes that for some 0 < ℎ ≤ N ,
xi(−ℎ) = xj(−ℎ) = xw(0) for all i, j and xi(−ℎ) ∈ [pi, qi]
for any i. This gives that xi(−ℎ) ∈ [p∗, q∗], which in turn
yields that x0i ∈ [p

∗, q∗] for all i. This is against the fact that
x0w > q∗. Therefore, limk→∞ dist

(

xi(k), (−∞, q∗]
)

= 0.
Similarly, one has limk→∞ dist

(

xi(k), [p∗,+∞]
)

= 0. As a
result,

lim
k→∞

dist
(

xi(k),
[

p∗, q∗
])

= 0, i = 1,… , N.

The above analysis suggests that for i = 1,… , N ,

�i
⎛

⎜

⎜

⎝

∑

j∈i

aijxj(k)
⎞

⎟

⎟

⎠

=
∑

j∈i

aijxj(k) + �i(k)

where limk→∞ �i(k) = 0. Then, system (1) can be written in
a compact form as follows:

x(k + 1) =Wx(k) + �(k), (4)

where Wij = �aij , i ≠ j, Wii = � for all i, and �(k) =
[�1(k),… , �N (k)]⊤.
Let

Δx(k) =
[

x1(k), x1(k) − x2(k),⋯ , x1(k) − xN (k)
]⊤

with
Δ =

[

1 01×(N−1)
1N−1 −IN−1

]

.
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Fig. 2: Local stability of a continuous equilibrium point 05.
In each round, an initial value near 05 is chosen.

Moreover,

ΔWΔ =
[

1 ∗
0 W̃

]

.

Note thatW is a stochastic matrix and Γ(W) (refer to Defini-
tion 4) is strongly connected. Then, W̃ is Schur stable [17].
Let �(k) = [0N−1, IN−1]Δx(k) be the agreement error and
note that Δ2 = I. One has

�(k + 1) = W̃�(k) + [0N−1, IN−1]Δ�(k),

which gives

�(k) = W̃k�(0) +
k
∑

j=1
W̃k−j[0N−1, IN−1]Δ�(j)→ 0,

as k→∞. This finishes the proof.

5 Numerical Examples
In this section, we present three examples to illustrate the

findings of Theorems 2–4.

Example 2 (Local stability). This example is designed to il-
lustrate Theorem 2. Consider a network of six agents with
constraints being defined as follows. Let the first three agents
be extreme with the same set of discrete points. Specifically,
�i1 = −�i2 = 0.5 and �i1 = �i2 = 0.5 for i = 1, 2, 3. In
addition, let the last three agents be moderate, and Ψ4 =
[−0.2, 0.7], Ψ5 = [−0.6, 1.6], Ψ6 = [−2, 8]. The adjacency
matrix of the graph  that is strongly connected is given fol-
lows

A =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 2∕3 1∕3
1 0 0 0 0
0 1∕4 0 3∕4 0
0 0 1∕6 0 5∕6
0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

It is easy to verify that x∗ = 05 is a continuous equilibrium
point. It can be observed from Figure 2 that if the initial state
is chosen to be near 0, then x(k)→ 0 as k→ ∞.

1
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6 5

Fig. 3: A directed ring graph with eight nodes.
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Fig. 4: Global stability of the equilibrium point for a directed
ring graph. In each round, an arbitrary initial value is chosen.

Example 3 (Directed ring graph). In this example, we con-
sider a directed ring graph to illustrate Theorem 3 and show
global stability of the equilibrium point. The graph is given
in Fig. 3 with eight nodes and the weight of each edge is 1.
Let �i1 = −�i2 = 0.5 and �i1 = �i2 = 0.5 for i = 1, 3, 5, 7
and Ψ2 = [0, 3], Ψ4 = [4, 7], and Ψ6 = [−7,−4]. It can
be observed from Figure 4 that x(k) converges to the same
equilibrium point with the initial state chosen arbitrarily.

Example 4 (Constrained consensus). Consider the a random
undirected graphwith 200 nodes, which is strongly connected
as seen in Fig. 5.

Set Ψi = [−0.5 − r1, 1 + r2] where r1, r2 are positive
random numbers sampled from the interval [0, 1]. Note that
∩Nj=1Ψj ⊂ [−0.5, 1], i.e., the intersection is nonempty. It can
be easily verified that c1N for c ⊂ [−0.5, 1] are equilibrium
points. As k → ∞, it is seen from Figure 6 that consensus is
achieved asymptotically from different initial values.

6 Conclusion
In this paper, we have developed a multi-agent systemwith

heterogeneous constraints. They (i.e., the constraints) are
adopted to describe the heterogeneous heuristic beliefs of the
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Fig. 5: A random graph with 200 nodes that is strongly con-
nected.
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Fig. 6: Consensus is achieved for a group of agents having
nonempty intersection of Ψm, m = 1,… , 200. From arbi-
trary initial values in different rounds, consensus is achieved
asymptotically.

agents or heterogeneity of the sets for which the intersection
is being sought. We characterize the generalized equilibrium
point from the perspective of Kakutani’s fixed point for a set-
valued map. We also prove the local/global stability of cer-
tain equilibrium points. Two special cases are further dis-
cussed with respect to the structure of the communication
graph and the constraint forms, respectively. It is observed
that whether dissensus or consensus appears is closely related
to the constraints themselves. Future works may consider a
time-varying deterministic or stochastic heterogeneous con-
straints.
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