

Plenary Talk, CCC2021 On-line, July. 27, 2021

Service Robot Technology

Hajime ASAMA Dept. of Precision Engineering The University of Tokyo, Japan President of IFAC (International Federation of Automatic Control) Fellow of IEEE, JSME, RSJ

Market forecast in the future of robot industry for 2035

In 2035, the market can expand up to 9.7 trillion yen by dissemination of the robot technology in a new field including the service.

Trends of Robot Industry

• From Human-exclusive system (automation) to Human-inclusive system (co-existing)

RT for public services

Robot Technology

Required in Disaster Prevention and Response

	Aerial vehicles	【使用目的】 (1)発災直後の広域被災状況の調査 (2)孤立地域等の細部被害状況の調査 (3)津波からの避難支援(局地の情報収集・伝達) 【期待する能力】 (1)夜間、悪天候における情報収集 (2)映像、位置、生体反応等の情報をリアルタイムに 災害対策本部等へ伝送 (3)津波からの避難に必要な情報・警報を住民に直接 連絡	
	Ground vehicles	【使用目的】 余震・火災・水没等危険な時期・場所での調査・瓦礫 除去・教助活動支援 【期待する能力】 (1)生体反応の感知等捜索能力 (2)瓦礫、浸水、高温・火災等環境下での機動力 (3)瓦礫等重量物の除去能力	
U	水中探査 ロボット nderwater	【使用目的】 津波発生後の海洋における調査・瓦礫除去・救助活動 支援 【期待する能力】 (1)瓦礫、汚濁等劣悪環境下の海洋での探索能力 (2)同上環境下における機動力、瓦礫除去能力 (3)被災者等の救助能力	
	Vehicles 津波避難支援 ロボット	【使用目的】 津波からの災害弱者などの避難・誘導活動の支援 【期待する能力】 (1)津波被害の予測・回避能力 (2)避難住民を安全、迅速、努めて大量に輸送 (3)居住地域、避難地域、避難経路の認識	

Operation Phases in Disaster Response

Remote Technology for Decommissioning of NPS

Accident of Fukushima Daiichi Nuclear Power Station

- Earthquake (14:47)
- Loss of Power Supply
- Activation of Emergency Diesel Generator
- SCRAM Stop Reactors
- Tsunami
- Damage of Fuel Tanks and Generators
- SBO (Station Black Out) (15:39)
- Failure of Cooling System of Reactors and Fuel Storage Pool
- Loss of Cooling Water
- Melt down
- Hydrogen Explosion (Mar. 12-15, Unit 1, 3, 4)

Mid-and-long-Term Roadmap Summary (TEPCO)

Present (C	ompletion of Step 2) With	hin 2 Years Within	10 Years After 30-4) Years
Step 1, 2	Phase 1	Phase 2	Phase 3	
<achieved conditions="" stable=""> -Condition equivalent to cold</achieved>	Period to the start of fuel removal from the spent fuel pool (Within 2 years)	Period to the start of fuel debris removal (Within 10 years)	Period to the end of decommissioning (After 30-40 years)	
shutdown -Significant Suppression of Emissions	 Commence the removal of fuels from the spent fuel pools (Unit 4 in 2 years) Reduce the radiation impact due to additional emissions from the whole site and radioactive waste generated after the accident (secondary waste materials via water processing and debris etc.) Thus maintain an effective radiation dose of less than 1 mSv/yr at the site boundaries caused by the aforementioned. Maintain stable reactor cooling and accumulated water processing and improve their credibility. Commence R&D and decontamination towards the removal of fuel debris Commence R&D of radioactive waste processing and disposal 	 Complete the fuel removal from the spent fuel pools at all Units Complete preparations for the removal of fuel debris such as decontaminating the insides of the buildings, restoring the PCVs and filling the PCVs with water Then commence the removal of fuel debris (Target: within 10 years) Continue stable reactor cooling Complete the processing of accumulated water Continue R&D on radioactive waste processing and disposal, and commence R&D on the reactor facilities decommission 	 -Complete the fuel debris removal (in 20-25 years) -Complete the decommission (in 30-40 years) -Implement radioactive waste processing and disposal 	
Actions tow safety will be	ards systematic staff training an e continuously implemented.	d allocation, improving motivation,	and securing worker	

Needs (Tasks) for Remote Technology

- Water injection
- Removal and transportation of rubbles, fuels (including fuel debris), and contaminated water, etc. (Cutting, suction, handling)
- Investigation, measurement, and mapping (images, radiation, etc.)
- Sampling (dust, contaminated water, concrete core, fuel debris, etc.)
- Decontamination and Shielding
- Fixing of contaminated water leakages
- Handling, transportation, removal, setup of devices, instruments, equipments, etc.
- Waste and contaminated water management
- Dismantling of facilities

Remotely controlled Unmanned Construction System for Rubble Clearing-up From Apr. 6, 2011

処理前

コンテナ1個分の処理後

ナ周辺約 2.5mSv/h)

^{ガレキ積2} Crawler dumps ^{コンテナふた}

THE

Backhoes & Iron Forks

積み込み時配置

na ision Engineering _{Tokyo}

定置時配置

遠隔操作重機によるガレキ撤去作業 (コンテナ:3.2×1.6×1.1m、約4m³) (撤去前) (撤去後)

(東京電力提供)

(仮置の瓦礫収集コンテナ)

Sampling of contaminated water and setting up of water level gauge by Quince from June 24, 2011

Investigation inside R/B unit 2 on Oct.20 by Quince (TEPCO Oct. 21, 2011)

Investigation of 1st-5th floor inside Unit 2 R/B on Oct. 20, 2011 by Quince

Robots newly developed for Investigation of inside PCV

Two types of shape-changing, remote-controlled, crawler robots for investigation

Investigation of outside the pedestal (Unit 1) Investigation of inside the pedestal (Unit 2)

Arm Type Access Device

- An arm type access device has been produced, which can access on a wide range through the penetration of the primary containment vessel (X-6 penetration) for control rods maintenance.
 - Total length of the arm: Approx. 22m
 - An investigation device up to 10kg can be loaded.

Inspection of Social Infrastructure

Bridge Inspection Drone (collaboration work Fujitsu, Nagoya Inst. Tech., Hokkaido Univ.)

Bridge Inspection

- Problem
 - GNSS signal is unstable under bridges.
- Approach: Localization using camera images
 - Estimate the drone pose (position and orientation) is only by the mounted camera on drone

Robot Localization

• Localization result only by using images of spherical camera mounted on the drone

Bridge Inspection • Generate database of bridge inspection

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021

The University of Tokyo

Bird-eye View

- Robot visualization method using third person view
 - Bird-eye view (third person view) are virtually created from four fish-eye (wide FOV) cameras on the robot.
 - We can easily understand the relation between the robot and the surrounding environment only from one bird-eye view image.

Bird-eye View

• Real-time visualization from top view using image processing technique.

Application to Unmanned Construction System

Front View

Bird-eye View

Teleoperation of Robot Using Bird-eye View

Third Person View Using Multiple Cameras

- Robot visualization method using third person view without external cameras
- Bird-eye view (third person view) are virtually created from multiple wide-FOV (fish-eye) cameras equipped on the robot

3D reconstruction of surrounding environment is required

Teleoperated robot

Concept of proposed method

Teleoperation of Robot Using Bird-eye View

3D Reconstruction of Indoor Environment Using LRF

Using assumption that walls are perpendicular to floor
 LRF is used to measure distance between robot and walls

Visualize in real-time: 25 fps (=0.04 s) Vaio Z Core i7-6567U

RT for personal services

Assistive System for Rehabilitation (Stand-up motion)

Background

- Problem of Aging Society
 - Increased social security cost
 - Burden to care givers
 - Declined QoL of the elderly

- Standing up motion is an important basic activity
 - Starting motion for activities of daily living [Guralnik JM '95]

Development of Assistive system for standing-up motion

Measurement system for standing-up motion (Motion Capture and force measurement)

Assistive motion by an expert

1軸可動式 ベッド

起立動作アシストシステム概観

-

Dynamic simulation of standing-up motion

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021

2軸可動式 センサ付バー

Dept. of Precision Engineering

Background

- Problem of Aging Society
 - Increased social security cost
 - Burden to care givers
 - Declined QoL of the elderly

- Standing up motion is an important basic activity
 - Starting motion for activities of daily living [Guralnik JM '95]

Necessary to understand mechanism of standing-up motion

Muscle Synergy Hypothesis

For target motion, humans do not control individual muscles, but control modules of simultaneous muscle activation (synergy)

Reduction of control input for redundant body DoF
[Bernstein '67]
-Muscle synergy in human walking, grasping, and posture control

[Ivanenko '05, Torres '07, Weiss '04]

Objectives (Topics)

• What synergy structure humans have in standing-up motion

Clarify how muscle synergies change in motor impaired patients

How rehabilitation improves synergy structure

Muscle Synergy Hypothesis

Experiment Setup

Recorded muscle activity, kinematics and reaction force
 7 Healthy male (24.3±2.1 yrs, 1.73±0.05 m, 71.7±10.3 kg)
 5 trials for every condition

12 muscles extend or flex ankle, knee, hip, and lumbar

Number of Muscle Synergy

• ANOVA (Analysis of Variance) + post hoc test statistical significance between: 1~2, 2~3, 3~4 (p < 0.05)

Satisfies threshold of previous study: $R^2 > 0.95$ [Ting '05] Coefficient of determination

Spatial Pattern

Temporal Patterns

Corresponds to kinematic phase

Muscle Synergy Structure of Stroke Patients

Aim: Clarify muscle synergy structure of stroke patients

Measure stroke patient with motor impairment

- Stroke Patient : 26 people (Morinomiya Hospital)
 - 58.9±12.7 yrs (22 male, 4 female)
 - Moderate-Mild (FIM: 74.3 ± 8.4/91)
 - Analyze paralyzed side
- Healthy Elderly: 8 people
 · 64.4 years±3.3 years, 8 male

Extract synergy from each patients and divide 26 patients divided into clusters based on temporal patterns

Cluster Analysis

26 patients are divided into 4 groups considering clustering performance

Muscle Synergy in Stroke Patients

Stroke patients have different synergy activation
 Group 1: Relatively healthy group

Group 2: Longer activation of synergy 1

Group 3: Longer activation of synergy 2

Group 4: Merged activation of synergies 3 and 4

Intervention of Physical Therapist

• Physical therapist (PT) intervenes the affected side:

- Distal front of thigh
- Posterior pelvis

EMG Measurement of PT

Analyze EMG from upper limbs of physical therapist
 Clarify *how* and *when* they intervenes patients

Effect of PT Intervention

- PT intervenes the patient as follows
- Pulling the distal thigh before buttocks leave

- Extending the knee and supporting pelvis

- PT Intervention improved muscle synergy structure
 - change activation timing earlier
 - shorten activation duration properly

Sense of Agency (SoA)

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021

Temporal Delay in Tele-operation

Sense of Agency (SoA)

- The sense that the subject is the one who is causing or generating an action.
 - Generated in the brain
 - Associated to the active motion of the subject

Results

Difference is small: Motion is attributed to "self" Difference is large: Motion is attributed to "others"

The Influence of High-level Cognitive Process on SOA

Modified Comparator Model

Sensory processes mentioned in the comparator model
 High-level cognitive process (the present study)

Wen Wen, Atsushi Yamashita, Hajime Asama: "The Influence of Goals on Sense Control", Consciousness and Cognition, Vol.37, pp.83-90 (2015).

High-level vs. Low-level processes

To what extent was the dot

under your control?

Task: Direct the moving dot into the square as quickly as possible.

Independent variables

¢

- Delay in response (100, 400, or 700 ms)
- Assistance of computer (Improving task performance by ignoring erroneous commands)

Assistance: Promotes high-level process (performance-based inference) while impairing low-level process (action-effect comparison)

SoA are influenced by both the high- and low-level processes, and the high-level process would be more dominate when the low-level process is less reliable.

Wen Wen, Atsushi Yamashita and Hajime Asama: "The Sense of Agency during Continuous Action: Performance is More Important than Action-Feedback Association", PLoS ONE, vol. 10, no. 4, e0125226, pp. 1-16 (2015).

Rehabilitation taking account of SoA

Dept. of Precision Engineering The University of Tokyo

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021

The role of sense of agency in motor rehabilitation

Smartphone Zombie Detection and Avoidance

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021

Pedestrian trajectory data from Lidar data

Fig. 5 projection of Lidar point cloud on x-y plane

Mapping

Overview of smartphone zombie detection

Data collection for training smartphone zombie detector

New dataset collected from two stations at 2019.2.21 and 2019.7.3

Other object Smartphone zombie

- Point cloud: Velodyne LiDAR
- Image: spherical camera (Ricoh Theta V)
- Label: manual annotation

8/12/2021

Experiments

 The robot moving inside Hongo campus Approximately 15 minutes of LiDAR stream were used in evaluation
 Observed trajectory Predict trajectory Smartphone zombie

Experiment area in
Hongo campus

Video recorded during experiments – trajectory prediction

Video recorded during experiments – smartphone zombie detection

Needs of RT for response to COVID-19

- Avoid the Three C's •
- Reduce contacts for • Infection prevention

Important notice for preventing COVID-19 outbreaks. **Avoid the "Three Cs"!**

- **1. Closed spaces** with poor ventilation.
- 2. Crowded places with many people nearby.
- **3. Close-contact settings** such as close-range conversations.

One of the key measures against COVID-19 is to prevent occurrence of clusters. Keep these "Three Cs" from overlapping in daily life.

Needs of Robot Technology for Pandemic Disasters

Providing services without physical contact

- Direct Needs (Medical)
 - Medical treatment
 - Specimen collection, test, inspection
 - Transportation of patients, monitoring
 - Disinfection, sterilization, cleaning, pollutant treatment, disposal
 - Transportation (meal, medicine)
- Indirect Needs
 - Delivery, serving, transportation (meals, medicine)
 - Remote communication (including customer service, monitoring)
 - Disinfection
 - Temperature measurement

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021

Case study of introduction / demonstration test

RT System Required at the Sites

Remote Technology (Remotely operable RT System) (Distributed System, Human I/F, Communication)

Situation Awareness (Measurement, Visualization)

Autonomy (Mapping, Localization, Planning)

Body Consciousness (Sense of Agency, Sense of Ownership)

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021

Intelligence required for robots

- Can intelligent robots be realized only by mounting AI on the robot platforms?
 - Ill-defined, ill-structures, adaptive response to unknown situation
 - Noises, real-time
 - Blackbox, explainability, overfitting
- Intelligence required for motion control dependent on body
 - Is human brain functional if transferred on bird, cat, or fish?

Moonshot Research and Development Program

The Moonshot Research and Development Program sets ambitious goals to attract people, and promotes challenging R&D projects with the aim of resolving difficult societal issues while bringing together the wisdom of researchers from all over the world.

- Moonshot Goal #3 (PD: Prof. Toshio Fukuda)
- Realization of AI robots that autonomously learn, adapt to their environment, evolve in intelligence and act alongside human beings, by 2050.
- Innovation in Construction of Infrastructure with Cooperative AI and Multi-Robots Adapting to Various Environments (PM: Prof. Keiji Nagatani)
- Robot Technology for Dynamic Collaboration

Summary

- Derive solutions (Needs-oriented R&D is necessary)
- Understand human (Humanity & social science, medical science)
- Systems theory and engineering (Means to design systems)
- Physical AI (Autonomous systems)
- Humanitarian viewpoint vs economic viewpoint
- International cooperation (Concentration of wisdom, Solidarity - Harmony)

T IFAC

INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

22nd IFAC World Congress 2023 Yokohama, Japan

Jun-ichi Imura General Chair Hideaki Ishii IPC Chair

1

<u>Venue</u>: PACIFICO Yokohama <u>Dates</u>: July 9th (Sun) – 14th (Fri), 2023

22nd IFAC World Congress 2023

PACIFICO Yokohama (All-in-One Venue)

Tokyo

Yokohama

Control for Solving Societal Problems and Creating Societal Values

IFAC 2023 Industry Group (Chair: Kazuya Asano)

- 17 subgroups on various technical areas including more than 100 members (about half are affiliated with industrial companies in Japan)
- Goal: To identify societal problems that the industry faces and find control oriented solutions enhanced by new tools from Data Science, AI, DX, ...

Approach

- Advertise IFAC activities to the industry
- Encourage their participation in organizing events with TCs
- Support presentation of their current problems and new developments

□ In collaboration with Tariq Samad and Industry Committee of IFAC

K. Asano (JFE Techno-Research Corp)

17 subgroups

Congress Highlights: Industry

- 1. Mechatronic Systems (M. Hirata)
- 2. Power and Energy Systems (Y. lino)
- 3. Machinery and Robotics (K. Osuka)
- 4. Steel Manufacturing Processes (H. Kitada)
- 5. Chemical Processes (H. Tanaka)
- 6. Automotive Control (Y. Yasui)
- 7. Smart Cities (M. Kohno)
- 8. Control in Agriculture (S. Hidaka)
- 9. Control in Construction (K. Nagatani)
- 10. Aerospace Technology (M. Sato)
- 11. Marine Systems (H. Yoshida)
- 12. Environmental Systems (M. Hashizume)
- 13. Biological and Medical Systems (K. Kawashima)
- 14. Systems Science and Technology (T. Kaihara)
- 15. Internet of Things (S. Takai)
- 16. Artificial Intelligence (K. Nakadai)
- 17. Measurement and Instrumentation (T. Tanaka)

International Program Committee (Chair: Hideaki Ishii, Co-Chair: Yoshio Ebihara)

Congress Highlights: Program

- Submission categories
 - Regular, Invited, Open invited tracks
 - Extended abstracts, Demonstrator
 - Discussion papers

Hideaki ISHII Yoshio EBIHARA

- **D** For discussing specific topics by non-academic participants
- □ Late deadline in February 2023
- Dissemination papers
 - Papers recently accepted by IFAC journal can be presented at the congress
- Special sessions on the Congress Vision "Wa" in collaboration with the Industry Group

22nd IFAC World Congress PACIFICO YOKOHAM

See you in Yokohama, Japan in 2023 !!

9 July -14 July, 2023

20 July, 2020 22nd IFAC World Congress Promotional Video is now released.

9 July, 2020 22nd IFAC World Congress Official Website is now launched.

www.ifac2023.org

Thank you for your attention!

Hajime ASAMA Dept. of Precision Engineering The University of Tokyo, Japan asama@robot.t.u-tokyo.ac.jp

Copyright (c) Hajime Asama, Univ. of Tokyo. All rights reserved 2021