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Abstract: In this work, we propose a distributed no-regret learning for stochastic aggregative games over time-varying networks.
We consider a finite set of players repeatedly playing the network aggregative game in stochastic regimes, where each player has
an expectation-valued objective function depending on its own strategy and the aggregate of all player strategies, and the players
can estimate gradients of their objective functions up to a zero-mean error with bounded variance. We consider the scenario in
which players cannot directly obtain the aggregate value, but they are able to share their estimates of the aggregate with their
neighbors without disclosing their own strategies. We design a distributed learning algorithm based on the mirror descent and
dynamical averaging tracking. We then provide analysis for both the variational regret and the cost regret for aggregative games
with player-specific problem being convex, and show that the expected regret bounds can be O(

√
K) for specific step-sizes.

These analyses indicate the key correlations between the regret bounds, the network connectivity, and game structures, etc. In
addition, we validate the almost sure convergence to the Nash equilibrium for the class of strictly monotone games. Finally, we
present preliminary numerics by applying the proposed scheme to the Nash-Cournot competition problem.
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1 Introduction

In recent years, the game-theoretic models and design-
ing tools have been extensively used for controlling or pre-
scribing behaviors in distributed engineered systems since
the decision making of individuals is inherently distributed
[1]. In non-cooperative settings, they enable a flexible con-
trol paradigm for individuals to autonomously optimize their
selfish objectives, e.g., congestion control [2] and resource
allocation [3]. While in cooperative settings, they provide
potentially tractable decentralized algorithms, e.g., distribut-
ed optimization [4] and cooperative control [5]. In particu-
lar, [6] introduces the game-based control system and inves-
tigates its controllability, [7] addresses the intrinsic forma-
tion control by an infinite-horizon non-cooperative differen-
tial game, [8] uses the zero-sum game to tackle the contain-
ment control problem with conflicting leaders, [9] adopts an
aggregate game to model and analyze the energy consump-
tion control in smart grid, etc.

In noncooperative games, there is a set of players aim-
ing to optimize its private objective depending on its rival
strategies. The solution is captured by Nash equilibrium
(NE) [10], at which no player can improve its payoff by u-
nilaterally deviating from the equilibrium strategy. On one
hand, players may not have full information of the game and
thus cannot compute a Nash equilibrium in an introspective
manner. On the other hand, computing NE based on equi-
librium analysis (such as fixed point of the best-response
and gradient-response mappings) is impractical in network
regime due to the high computational complexity [11]. Thus,
learning is indispensable for searching Nash equilibria. The
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learning process can also be regarded as players taking ac-
tions in repeated games, and it can account for how each
player adjusts its strategy in response to the other players
over time to search for strategies resulting in higher payoffs.
From this perspective, NE can be interpreted as the steady
state of the learning process.

In practice, it is difficult or even impossible for players to
acquire perfect global information for networked games. For
example, in the bandit feedback learning, the information at
the players’ disposal merely includes their own payoffs re-
ceived at each stage [12]. In large-scale networks, each play-
er knows its own objective function but not that of the rest
of players. But the players may observe or receive infor-
mation from its neighbors through the network connecting
them, and such distributed NE seeking with partially infor-
mation has been recently studied in [13–15].

The most widely used class of no-regret policies for re-
peated games is the online mirror descent methods [12, 16].
Mirror descent method that can be traced back to [17], is
a primal-dual method for constrained convex optimization.
Subsequently, the method was used in distributed optimiza-
tion [18, 19] and games [12, 16, 20–22]. In particular,
[12] examines the long-run behavior of learning in non-
cooperative concave games with bandit feedback, while [16]
studies the convergence of no-regret learning in continuous
games with stochastic gradient observations of the payof-
f function. Mirror descent method shows good averaging
properties in the presence of noise [23] and achieves the op-
timal rate in online optimization with bandit feedback [24].

The class of aggregative games where each player’s pay-
off is a function of its own strategy and the aggregate of all
players’, an example is the Cournot model where it is the
aggregate supply of rivals that matters rather than their indi-
vidual strategies [25, 26]. Within recent years such aggrega-
tive games have been widely used in network decision and



control problems (see e.g., [9, 27–29]). Though players may
not directly obtain the aggregate, they can observe its neigh-
bors’ information. Motivated by the consensus-based pro-
tocols for distributed optimization [30], [14] developed dis-
tributed gradient schemes and [31] proposed best-response
algorithms with sufficient conditions for guaranteeing con-
vergence to NE. Aggregative game with coupling constraints
was investigated by [32], which however requires a central n-
ode for updating the Lagrange multiplier associated with the
coupling constraints. Distributed variable sample-size gra-
dient scheme was proposed in [33] for stochastic aggrega-
tive games, which uses an increasing number of sampling
gradients and communication rounds. In addition, [34–36]
have also proposed continuous-time distributed algorithm-
s via consensus-based approaches. However, most of the
aforementioned works concentrated on proving the conver-
gence to Nash equilibrium with some monotonicity condi-
tions, while have not discussed the regret bounds for general
convex aggregative games.

We consider a finite set of players repeatedly playing the
network aggregative game in stochastic regimes. As far as
we know, this work is the first to study the distributed no-
regret learning for stochastic aggregative games. Our major
contributions are summarized as follows.

1) We propose a distributed stochastic learning scheme via
mirror descent and dynamical averaging tracking. At
each stage, every player takes a weighted average of
its neighbors’ estimates of the aggregate, observes an
unbiased estimate of its payoff gradients with bounded
variance, takes small steps along the estimated gradient,
and then mirrors it back to the strategy set.

2) For the aggregative game where each player’s subprob-
lem is convex, we provide a detailed analysis of the
variational regret defined by the gap function associ-
ated with the variational inequality, and each player’s
cost regret being the difference between the total cost
over K steps and the cost of best possible strategy in
the hindsight. Specially, we obtain the expected regret
bounds O(

√
K) for a specific selection of steplenghts,

which implies the proposed distributed learning method
is no-regret.

3) Finally, we show that for a special class of strictly
monotone games, the sequence converges almost sure-
ly to the Nash equilibrium. The analysis relies on tools
and techniques from stochastic approximation, martin-
gale limit theory, and convex analysis.

The rest of paper is organized as follows. We state the
problem formulation along with some basic assumptions in
Section 2. In Section 3, we propose a distributed no-regret
learning scheme and establish its almost sure convergence,
for which the proofs are given in Section 4. We provide some
preliminary numerics on Nash-Cournot games in Section 5
and conclude the paper in Section 6.

Notations: When referring to a vector x, it is assumed
to be a column vector while xT denotes its transpose and
[x]j denotes the j-th entry. ‖x‖ denotes the Euclidean vector
norm, i.e., ‖x‖ =

√
xTx. 〈x, y〉 = xT y denotes the inner

product of vectors x, y. A nonnegative square matrix A is
called doubly stochastic if A1 = 1 and 1TA = 1T , where
1 denotes the vector with each entry equal 1. IN ∈ RN×N

denotes the identity matrix. Let G = {N , E} be a direct-
ed graph with N = {1, · · · , N} denoting the set of players
and E denoting the set of directed edges between players,
where (j, i) ∈ E if player i can obtain information from
player j. Denote by Ni , {j ∈ N : (j, i) ∈ E} the set
of neighboring players of player i. The graph G is called
strongly connected if for any i, j ∈ N there exists a direct-
ed path from i to j, i.e., there exists a sequence of edges
(i, i1), (i1, i2), · · · , (ip−1, j) in the digraph with distinct n-
odes im ∈ N , ∀m : 1 ≤ m ≤ p− 1.

2 Problem Formulation

In this section, we define a class of aggregative games in
stochastic regimes and introduce some basic assumptions.

2.1 Problem Statement
We now formally define the class of aggregative game

〈N , (Xi)
N
i=1, (fi)

N
i=1〉, where N , {1, · · · , N} is a fi-

nite set of players. Each player i ∈ N selects its strate-
gy xi ∈ Rmi from a strategy set Xi ⊂ Rmi . Denote by
x , (xT1 , · · · , xTN )T ∈ R

∑N
i=1mi and x−i , {xj}j 6=i the s-

trategy profile and the rival strategies, respectively. For each
i ∈ N , player i has a cost function fi(xi, σ(x)) depend-
ing on its own strategy xi and an aggregate function of all
players’ strategies defined as σ(x) ,

∑N
j=1 hj(xj), where

hj : Xj → Rm. Given σ(x−i) ,
∑N
j=1,j 6=i hj(xj), the

ith player solves the following parameterized stochastic op-
timization problem:

min
xi∈Xi

fi(xi, hi(xi) + σ(x−i)), (1)

where fi(xi, σ(x)) , E [ψi(xi, σ(x); ξi(ω))], the random
variable ξi : Ω → Rdi is defined on the probability space
(Ω,F ,Pi), ψi : Rmi × Rm × Rdi → R is a scalar-valued
function, and E[·] denotes the expectation with respect to the
probability measure Pi.

A Nash equilibrium (NE) of the aggregative game (1) is a
tuple x∗ = {x∗i }Ni=1 such that for each i ∈ N ,

fi(x
∗
i , σ(x∗)) ≤ fi(xi, hi(xi) + σ(x∗−i)), ∀xi ∈ Xi.

In other words, x∗ is a NE if no player can gain more by
unilaterally deviating from its equilibrium strategy x∗i .

We consider the setting that the agents repeatedly play
the game 〈N , (Xi)

N
i=1, (fi)

N
i=1〉. Suppose that each player

i ∈ N knows the structure of its private function fi and
hi, but cannot directly observe the aggregate σ(x). Never-
theless, players at time instant k may exchange information
with their neighbors over a digraph Gk = {N , Ek}. Define
Wk = [ωij,k]Ni,j=1 as the adjacency matrix, where ωij,k > 0
if and only if (j, i) ∈ Ek, and ωij,k = 0, otherwise. Denote
by Ni,k , {j ∈ N : (j, i) ∈ Ek} the set of neighboring
players of player i at time k.

2.2 Assumptions
We impose the following conditions on the time-varying

communication graphs Gk = {N , Ek}.

Assumption 1. (a) Wk is doubly stochastic for any k ≥ 0;
(b) There exists a constant 0 < µ < 1 such that

ωij,k ≥ µ, ∀j ∈ Ni,k, ∀i ∈ N , ∀k ≥ 0;



(c) There exists a positive integer B such that the union
graph

{
N ,
⋃B
l=1 Ek+l

}
is strongly connected for all k ≥ 0.

We define a transition matrix Φ(k, s) = WkWk−1 · · ·Ws

for any k ≥ s ≥ 0 with Φ(k, k + 1) = IN , and state a result
that will be used in the sequel.

Lemma 1. [30, Proposition 1] Let Assumption 1 hold. Then
there exist θ = (1 − µ/(4N2))−2 > 0 and β = (1 −
µ/(4N2))1/B ∈ (0, 1) such that for any k ≥ s ≥ 0,∣∣∣[Φ(k, s)]ij − 1/N

∣∣∣ ≤ θβk−s, ∀i, j ∈ N . (2)

We require the player-specific problem to be convex and
continuously differentiable.

Assumption 2. For each player i ∈ N ,
(a) the strategy set Xi is closed, convex and compact;
(b) the cost function fi(xi, σ(x)) is convex in xi ∈ Xi for
every fixed x−i ∈ X−i =

∏
j 6=iXj;

(c) fi(xi, σ) is continuously differentiable in (xi, σ) ∈ Xi×
Rm, and hi(xi) is continuously differentiable in xi ∈ Xi.

For any x ∈ X ,
∏N
i=1Xi and z ∈ Rm, define

Fi(xi, z) ,
(
∇xifi(·, σ) +∇hi(xi)∇σfi(xi, ·)

)
|σ=z,

φi(x) , ∇xi
fi(xi, σ(x)) = Fi(xi, σ(x)), and (3)

φ(x) , (φi(x))
N
i=1 .

By (3) and using Assumption 2(c), we see that the pseu-
dogradient φ(x) is continuous.

Remark 1. Since each player-specific optimization problem
is convex, by [37, Proposition 1.4.2], x∗ is a NE of (1) if and
only if x∗ is a solution to a variational inequality problem
VI(X,φ), i.e., finding x∗ ∈ X such that

(x̃− x∗)>φ(x∗) ≥ 0, ∀x̃ ∈ X. (4)

Since φ is continuous, X is convex and compact, the exis-
tence of NE follows immediately by [37, Corollary 2.2.5].

The introduction of hi : Xi → Rm allows each player’s
strategy to have distinct dimensions. We impose the follow-
ing Lipschitz conditions on hi and Fi(xi, z).

Assumption 3. For each player i ∈ N ,
(a) hi(·) is Lhi-Lipschitz continuous in xi ∈ Xi, i.e.,

‖hi(xi)− hi(x′i)‖ ≤ Lhi‖xi − x′i‖, ∀xi, x′i ∈ Xi;

(b) for any xi ∈ Xi, Fi(xi, z) is Lipschitz continuous in z
over any compact set, i.e., for any positive constant cz , there
exists a constant Li possibly depending on cz such that for
all z1, z2 ∈ Rd with ‖z1‖ ≤ cz and ‖z2‖ ≤ cz:

‖Fi(xi, z1)− Fi(xi, z2)‖ ≤ Li‖z1 − z2‖.

In addition, we require each ψi(xi, σ; ξi) to be differen-
tiable and assume there exists a stochastic oracle that returns
unbiased gradient estimates with bounded variance.

Assumption 4. For each player i ∈ N and any ξi ∈ Rdi ,
(a) ψi(xi, σ; ξi) is differentiable in xi ∈ Xi and σ ∈ Rm;
(b) for any xi ∈ Xi and z ∈ Rm, qi(xi, z; ξi) =
(∇xi

ψi(xi, σ; ξi) + ∇hi(xi)∇σψi(xi, σ; ξi)) |σ=z satis-
fies E [qi(xi, zi; ξi)|xi] = Fi(xi, zi) and E[‖qi(xi, z; ξi) −
Fi(xi, z)‖2|xi] ≤ ν2i for some constant νi > 0.

Example 1. (Nash Cournot competition problem). Suppose
there is a collection of N firms competing over m market-
s denoted by M , {1, · · · ,m}. Each firm i supplies mi

markets with xi = (xij)
mi
j=1 ∈ Rmi amount of products.

Matrix Ai ∈ Rm × Rmi is used to specify the participa-
tion of firm i in the markets, where [Ai]lj = 1 if and on-
ly if firm i sells xij amount of products to market l ∈ M,
and [Ai]lj = 0, otherwise. Denote by A = [A1, · · · , AN ],

Ax =
∑N
i=1Aixi ∈ Rm, and by Sl = [Ax]l the aggregated

products of all connected firms delivered to market l ∈ M.
By the law of supply and demand, we assume that the price
pl of products sold in market l ∈ M is determined by a
linear inverse demand function pl(Sl; ζl) = dl + ζl − blSl
corrupted by noise, where dl > 0 indicates the price when
the amount of products is zero, bl > 0 represents the s-
lope of the inverse demand function, and the random dis-
turbance ζl is zero-mean. Let the production cost func-
tion of firm i be given by ci(xi; ξi) = (ci + ξi)

Txi, where
ci > 0 is the pricing parameter and ξi is a random vari-
able with zero-mean. Then firm i ∈ N has a stochastic

cost ψi(x; ξi, ζi) = ci(xi; ξi) −
(
d + ζ − BAx

)T
Aixi

with d = (d1, · · · , dm)T , B = diag{b1, · · · , bm}, and
ζ = col{ζ1, · · · , ζm}. Firm i aims to minimize its expect-
ed cost while satisfying a finite capacity constraint Xi, i.e.,
minxi∈Xi fi(x) , E[ψi(x; ξi, ζi)].

Note that Example 1 fits well into the aggregative game
formulation (1) with hi(xi) = Aixi, σ(x) =

∑N
i=1Aixi,

and fi(x, σ) = cTi xi − (d − Bσ)TAixi. Then by (3),
Fi(xi, z) = ci − ATi d + ATi B(z + Aixi) and φi(x) =

ci − ATi d + ATi B
(∑N

i=1Aixi + Aixi
)
. We can validate

that Assumptions 2, 3, and 4 hold for Example 1 when the
random variables ξi, ζl, i ∈ N , l ∈ M are zero mean with
bounded variance.

Suppose that players in the network repeatedly play the s-
tochastic aggregative games (1). At each round k, each play-
er i chooses a strategy xi,k ∈ Xi, receives the information
from its neighbors, and forms an estimate for the average
aggregate denoted by v̂i,k+1. The cumulative cost regret of
player i up to time K is defined as

Ri,K =

K∑
k=1

fi(xi,k, Nv̂i,k+1)

− min
xi∈Xi

K∑
k=1

fi
(
xi, hi(xi) +Nv̂i,k+1 − hi(xi,k)

)
,

(5)

indicating how much player i would have gained by always
taking the best decision in the hindsight given the history
of utilities, strategies, and the estimated average aggregate
observed up to iteration K. An algorithm is called no-regret
in expectation if E[Ri,K ]/K −−−−→

K→∞
0 for each player i.

Let xk = (xi,k)Ni=1 be the strategy profile at stage k of
the learning process. We can also quantify the network’s
total regret by a variational regret constructed from the gap
function G(x) , supy∈X(x− y)Tφ(x). It is shown by [38,
Theorem 3.1] that G(x) ≥ 0 for any x ∈ X, and G(x) = 0
if and only if x solves VI(X,φ). We define the variational
regret as VRK ,

∑K
k=0G(xk). If VRK grows sublinearly

in K, then the learning process is called “no regret”.



It is desirable for players to adopt a no-regret learning
algorithm since no player wants to realize that the action-
s it employed is strictly inferior to some fixed action in the
hindsight. This paper aims to design a distributed no-regret
learning algorithm using its neighboring and local informa-
tion that converges almost surely to a Nash equilibrium.

3 Algorithm Design and Main Results

In this section, we design a distributed learning algorithm,
show that the algorithm is no-regret measured by both the
cost regret and the variational regret, and prove its almost
sure convergence to the Nash equilibrium.

3.1 Mirror Descent
We assign a continuously differentiable σi-strongly con-

vex function ri(xi) : Xi → R to each player i ∈ N , i.e.,

ri(x
′
i) ≥ ri(xi) + 〈∇ri(xi), x′i − xi〉+

σi
2
‖xi − x′i‖2

for any xi, x
′
i ∈ Xi. The Bregman divergence associated

with the function ri for any xi, yi ∈ Xi is defined by

Di(xi, yi) , ri(xi)− ri(yi)− 〈∇ri(yi), xi − yi〉. (6)

Then Di(xi, yi) ≥ σi

2 ‖xi − yi‖
2 for any xi, yi ∈ Xi.

We have Di(xi, yi) = 0 if and only if xi = yi. Thus, the
convergence of a sequence {xi,k} to x∗i can be checked by
Di(xi,k, x

∗
i )→ 0. For technical analysis, we assume the in-

verse that Di(xi,k, x
∗
i )→ 0 when xi,k → x∗i . Such a “Breg-

man reciprocity” condition (see e.g., [12, 39]) is the blanket
assumption of this work. In particular, this condition trivial-
ly holds for the Euclidean norm and the entropy regularizer,
see [12, Examples 3.1 and 3.2].

3.2 Distributed Learning Algorithm
Each player i at stage k selects a strategy xi,k ∈ Xi,

and holds an estimate vi,k for the average aggregate. At
stage k+1, player i observes its neighbors’ past information
vj,k, j ∈ Ni,k and updates an intermediate estimate by (7),
then it computes its partial gradient and updates its strategy
xi,k+1 by a mirror descent scheme (8), and, finally, updates
the average aggregate with the renewed strategy xi,k+1 by
(9). The procedures are summarized in Algorithm 1.

Algorithm 1 Distributed Learning via Mirror Descent
Initialize: Set xi,0 ∈ Xi and vi,0 = hi(xi,0) for each i ∈ N .
Iterate until convergence
Consensus. Each player computes an intermediate estimate by

v̂i,k+1 =
∑

j∈Ni,k

wij,kvj,k. (7)

Strategy Update. Each player i ∈ N updates its equilibrium strat-
egy and the average aggregate by

xi,k+1 = argmin
xi∈Xi

(
〈−αkqi(xi,k, Nv̂i,k+1; ξi,k), xi,k − xi〉

+Di(xi, xi,k)
)
, (8)

vi,k+1 = v̂i,k+1 + hi(xi,k+1)− hi(xi,k), (9)

where αk > 0 is the steplength, and ξi,k denotes a random realiza-
tion of ξi at time k.

Define the gradient noise ζi,k , qi(xi,k, Nv̂i,k+1; ξi,k)−
Fi(xi,k, Nv̂i,k+1) and a proximal mapping as follows,

Pi,xi(yi) = argmin
x′i∈Xi

(
〈yi, xi − x′i〉+Di(x

′
i, xi)

)
. (10)

Then (8) can be rewritten as

xi,k+1 = Pi,xi,k

(
− αk (Fi(xi,k, Nv̂i,k+1) + ζi,k)

)
. (11)

Define Fk , {x0, ζi,l, i ∈ V, l = 0, 1, · · · , k − 1}. Then by
Algorithm 1 it is seen that xi,k and v̂i,k+1 are adapted to Fk.
From Assumption 4 it follows that for each i ∈ V :

E[ζi,k|Fk] = 0 and E[‖ζi,k‖2|Fk] ≤ ν2i . (12)

3.3 Main Results
We first provide a bound on the expected regrets E[VRk]

and E[Ri,K ], where VRK =
∑K
k=0G(xk) is the variational

regret, and Ri,K is the cost regret defined by (5). Define

Mi , max
xi∈Xi

‖xi‖, MH ,
N∑
j=1

max
xj∈Xj

‖hj(xj)‖, (13)

C̃ , θMH + 2θ

N∑
j=1

LhjMj/(1− β), (14)

Ci , NC̃Lfi + max
x∈X
‖φi(x)‖, i ∈ N , (15)

where the boundedness of ‖φi(x)‖ follows by the compact-
ness of X and the continuity of φi(x).

Theorem 1. Suppose Assumptions 1, 2, 3, 4 hold, and
that {αk} is a monotonically nonincreasing sequence.
Let {xk} be generated by Algorithm 1. Define Ri ,
maxxi,yi∈Xi

Di(xi, yi) and R ,
∑N
i=1Ri. Then

E[VRK ] ≤ F1 +
R

2αK
+ F2

K∑
k=0

αk (16)

with F1 ,
MHθN
1−β

N∑
i=1

LfiMi, and

F2 ,
θN

∑N
i=1 LfiMi

β(1−β)

N∑
j=1

Lhjσ
−1
j (Cj + νj) +

N∑
i=1

Ci+ν
2
i

4σi
.

In addition, the following holds for each i ∈ N .

E[Ri,K ] ≤ Ci(Ci+νi)
σi

T∑
k=0

αk +
Ri
αT

. (17)

The proof of Theorem 1 is given in Section 4.2. The fol-
lowing corollary shows how a specific selection of learning
rate αk result in practical bounds on the expected variational
regret E[VRK ] and the expected cost regret E[Ri,K ].

Corollary 1. Suppose Assumptions 1, 2, 3, and 4 hold. Let
{xk} be generated by Algorithm 1 with αk = 1√

k+1
. Then

E[VRK ] ≤ F1 +
F2

2
+
R+ F2

2

√
K + 1

and for each i ∈ N ,

E[Ri(K)] ≤ Ci(Ci+νi)
2σi

+
(
Ci(Ci+νi)

2σi
+Ri

)√
K + 1.



The result follows immediately from Theorem 1 and∑K
k=0

1√
k+1
≤ 1 +

∫K+1

1
x−1/2dx

= 1 + x1/2

2 |
K+1
1

√
K + 1 =

√
K+1+1

2 .

Since both E[VRK ]/K → 0 and E[Ri(K)]/K → 0, i.e.,
E[VRK ] and E[Ri(K)] are sublinear in K, Algorithm 1 is
called a distributed no-regret learning scheme.

To further establish the almost sure convergence, we re-
quire the pseudogradient mapping φ(x) to be strictly mono-
tone similarly to [14].

Assumption 5. (φ(x)−φ(x′))T (x−x′) > 0 for any x, x′ ∈
X and x 6= x′.

We impose the following condition on steplengths, which
is required to be square-summable but not summable. Such
a steplength condition is widely used in stochastic approxi-
mation algorithms, see e.g., [40].

Assumption 6. {αk} is a monotonically nonincreasing se-
quence,

∑∞
k=0 α

2
k <∞, and

∑∞
k=0 αk =∞.

The following theorem shows that for the case where the
pseudogradient of the aggregative game is strictly monotone,
the sequence {xk} generated by Algorithm 1 converges al-
most surely to the unique Nash equilibrium.

Theorem 2. Suppose Assumptions 1, 2, 5, 3, 4, and 6 hold.
Let {xk} be generated by Algorithm 1. Then

lim
k→∞

xk = x∗, a.s.

The proof of Theorem 2 is given in Section 4.3.

4 Proof of Main Results

4.1 Preliminary Results
We now establish a bound on the consensus error of the

aggregate, measured by ‖σ(xk)−Nv̂i,k+1‖.

Proposition 1. Consider Algorithm 1. Let Assumptions 1, 2,
and 3 hold. Then for each player i ∈ N ,

‖σ(xk)−Nv̂i,k+1‖ ≤ θMHNβ
k

+ θN

k∑
s=1

βk−sαs−1

N∑
j=1

Lhjσ
−1
j (Cj + ‖ζj,s−1‖).

(18)

Proof. Since vi,0 = hi(xi,0) and W (k) is doubly stochastic,
similarly to [14, Lemma 2], we can show by induction that

N∑
i=1

vi,k =

N∑
i=1

hi(xi,k) = σ(xk), ∀k ≥ 0. (19)

Akin to [14, Eqn. (16)], we give an upper bound on∥∥∥σ(xk)
N − v̂i,k+1

∥∥∥ . By combining (9) with (7), we have

vi,k+1 =
∑N
j=1 wij,kvj,k + hi(xi,k+1)− hi(xi,k)

=
∑N
j=1[Φ(k, 0)]ijvj,0 + hi(xi,k+1)− hi(xi,k)

+
∑k
s=1

∑N
j=1[Φ(k, s)]ij(hi(xi,s)− hi(xi,s−1)).

Then by (9), we have v̂i,k+1 =
∑N
j=1[Φ(k, 0)]ijvj,0 +∑k

s=1

∑N
j=1[Φ(k, s)]ij(hj(xj,s) − hj(xj,s−1)). By using

(19), we have that

σ(xk)

N
=

∑N
j=1 vj,0

N
+

k∑
s=1

N∑
j=1

1

N
(hj(xj,s)− hj(xj,s−1)).

Therefore, we obtain the following bound.∥∥∥σ(xk)
N − v̂i,k+1

∥∥∥ ≤∑n
j=1

∣∣ 1
N − [Φ(k, 0)]ij

∣∣ ‖vj,0‖
+
∑k
s=1

∑N
j=1

∣∣ 1
N − [Φ(k, s)]ij

∣∣ ∥∥hj(xj,s)− hj(xj,s−1)
∥∥.

Then by using (2), vi,0 = hi(xi,0), and Assumption 3(a), we
obtain that∥∥∥σ(xk)

N − v̂i,k+1

∥∥∥ ≤ θβk∑N
j=1 ‖hj(xj,0)‖

+θ
∑k
s=1 β

k−s∑N
j=1 Lhj

∥∥xj,s − xj,s−1∥∥. (20)

This combined with (13) proves∥∥∥∥σ(xk)

N
− v̂i,k+1

∥∥∥∥ ≤ θβkMH + 2θ

k∑
s=1

βk−s
N∑
j=1

LhjMj

≤ θMH + 2θ

N∑
j=1

LhjMj/(1− β)
(14)
= C̃. (21)

By (13) and (19), we have that ‖σ(xk)‖ ≤ MH for any
k ≥ 0. Thus by (21), we obtain that for each i ∈ N

‖Nv̂i,k+1‖ ≤ NC̃ +MH , ∀k ≥ 0.

Then by using Assumption 3(b) and (3), we obtain that for
each j ∈ N and any s ≥ 0 :

‖Fj(xj,s, Nv̂j,s)‖
≤ ‖Fj(xj,s, Nv̂j,s)− Fj(xj,s, σ(xs)‖+ ‖Fj(xj,s, σ(xs)‖
≤ Lfj‖Nv̂j,s − σ(xs)‖+ ‖φj(xs)‖
(21)
≤ NC̃Lfi + max

x∈X
‖φi(x)‖ (15)

= Ci. (22)

By applying the optimality condition to (8), and using the
definition (6), we have that

(xi − xi,k+1)T
(
αk(ζi,k + Fi(xi,k, Nv̂i,k+1))

+∇ri(xi,k+1)−∇ri(xi,k)
)
≥ 0, ∀xi ∈ Xi.

(23)

By setting xi = xi,k in (23), rearranging the terms, and using
the σi-strongly convexity of ri, we have that

(xi,k − xi,k+1)Tαk(ζi,k + Fi(xi,k, Nv̂i,k+1))
≥ (xi,k − xi,k+1)T

(
∇ri(xi,k)−∇ri(xi,k+1)

)
≥ σi‖xi,k − xi,k+1‖2.

Then from (22) it follows that

‖xi,k − xi,k+1‖ ≤
αk
σi

(‖ζi,k‖+ ‖Fi(xi,k, Nv̂i,k+1)‖)

(22)
≤ αk

σi
(Ci + ‖ζi,k‖) . (24)

This together with (13) and (20) produces (18). �
We now state a property from [12, Proposition B.3] re-

garding the Bregman divergence and proximal mapping de-
fined in (6) and (10), respectively.



Lemma 2. Let ri be a smooth and σi-strongly regulariz-
er over the convex set Xi. Then for all xi, yi, zi ∈ Xi,
Di(xi, yi) ≥ σi

2 ‖xi − yi‖
2,

Di(yi, xi)−Di(yi, zi)−Di(zi, xi)

= 〈∇ri(zi)−∇ri(xi), yi − zi〉,
(25)

and

Di(zi, Pi,xi
(yi)) ≤ Di(zi, xi) + 〈yi, xi − zi〉+

1

2σi
‖yi‖2.

(26)

The following proposition gives a recursion for the error
D(x, xk+1) =

∑N
i=1Di(xi, xi,k+1) measured by the Breg-

man distance. Define

εk , αk

N∑
i=1

LfiMi‖Nv̂i,k+1 − σ(xk)‖. (27)

Proposition 2. Suppose Assumptions 1, 2, 3, and 4 hold. Let
{xk} be generated by Algorithm 1. Then the following holds
for any x ∈ X with Ci is defined by (15).

E[D(x, xk+1)|Fk] ≤ D(x, xk) + 2εk

− 2αk(xk − x)Tφ(xk) + α2
k

N∑
i=1

Ci + ν2i
2σi

, a.s.
(28)

Proof. By using (11) and (26), we have

Di(xi, xi,k+1) ≤ Di(xi, xi,k)
−〈αk (Fi(xi,k, Nv̂i,k+1) + ζi,k) , xi,k − xi〉
+ 1

2σi
‖αk (Fi(xi,k, Nv̂i,k+1) + ζi,k) ‖2

≤ Di(xi, xi,k)− αk〈ζi,k, xi,k − xi〉
−αk〈Fi(xi,k, Nv̂i,k+1), xi,k − xi〉
+
α2

k

2σi

(
‖Fi(xi,k, Nv̂i,k+1)‖2 + ‖ζi,k‖2

)
+
α2

k

σi
〈Fi(xi,k, Nv̂i,k+1), ζi,k〉.

Since xi,k and v̂i,k+1 are adapted toFk, by taking condition-
al expectation on Fk, using (12) and (22), we obtain

E[Di(xi, xi,k+1)|Fk] ≤ Di(xi, xi,k)

− αk〈Fi(xi,k, Nv̂i,k+1), xi,k − x∗i 〉+
Ci + ν2i

2σi
α2
k.

(29)

Note by Assumption 3(b), (3), and (13) that

〈−Fi(xi,k, Nv̂i,k+1), xi,k − xi〉
= 〈−Fi(xi,k, σ(xk)), xi,k − xi〉
+〈Fi(xi,k, σ(xk))− Fi(xi,k, Nv̂i,k+1), xi,k − xi〉
≤ −〈φi(xk), xi,k − xi〉
+‖Fi(xi,k, σ(xk))− Fi(xi,k, Nv̂i,k+1)‖‖xi,k − xi‖
≤ −〈φi(xk), xi,k − xi〉+ 2LfiMi‖σ(xk)−Nv̂i,k+1)‖.

This together with (29) implies that

E[Di(xi, xi,k+1)|Fk] ≤ Di(xi, xi,k)

− αk〈φi(xk), xi,k − xi〉+
α2

k

2σi

(
Ci + ν2i

)
+2LfiMiαk‖Nv̂i,k+1 − σ(xk)‖, a.s.

Summing up the above inequality from i = 1 toN , we prove
(28). �

We state a supermartingale convergence result that will be
employed in the proof, see e.g., [41, Lemma 11, p. 50].

Lemma 3. Let vk, ek, ζk, γk be nonnegative random vari-
ables adapted to some σ-algebra Fk. If almost surely,∑∞
k=0 ek <∞,

∑∞
k=0 γk <∞, and

E[vk+1|Fk] ≤ (1 + γk)vk + εk − ζk,

Then vk converges almost surely and
∑∞
k=0 ζk <∞, a.s..

4.2 Proof of Theorem 1
By taking unconditional expectations on both sides of (28),
and rearranging the terms, we obtain that for any x ∈ X,

E[(xk − x)Tφ(xk)] ≤ E[D(x,xk)]−E[D(x,xk+1)]
2αk

+E[εk]
αk

+ αk
∑N
i=1

Ci+ν
2
i

4σi
.

Summing the above inequality from k = 0, . . . ,K produces

K∑
k=0

E[(xk − x)Tφ(xk)] ≤ E[D(x, x0)]

2α0
− E[D(x, xK+1)]

2αK

+

K∑
k=1

(
1

2αk
− 1

2αk−1

)
E[D(x, xk)]

+

K∑
k=0

E[εk]

αk
+

N∑
i=1

Ci + ν2i
4σi

K∑
k=0

αk (30)

≤ R

2αK
+

K∑
k=0

E[εk]

αk
+

N∑
i=1

Ci + ν2i
4σi

K∑
k=0

αk, ∀x ∈ X.

where the last inequality follows from D(x, xK+1) ≥ 0 and
the definition of R.

By (12) and the Jensen’s inequality, we have that
E[‖ζi,s‖] ≤

√
E[‖ζi,s‖2] ≤ νi for each i ∈ N and any

s ≥ 0. This combined with (18) and (27) proves that

E[εk/αk] = θN
∑N
i=1 LfiMi

(
MHβ

k + ek
)
, (31)

where ek ,
∑k
s=1 β

k−sαs−1
∑N
j=1 Lhjσ

−1
j (Cj + νj).

Note that
∑K
k=0 β

k ≤
∑∞
k=0 β

k ≤ 1
1−β , and∑K

k=0

∑k
s=1 β

k−sαs−1 ≤
∑K−1
s=0 (

∑K
k=0 β

k−1)αs ≤∑K−1
s=0 αs

β(1−β) . This together with (30) and (31) implies∑K
k=1 E[(xk − x)Tφ(xk)] ≤ R

2αK
+ θNMH

1−β
∑N
i=1 LfiMi +

F2

∑K
k=0 αk. By maximizing this inequality over x ∈ X

and using the Jensen’s inequality to interchange the max
and E operations, we prove (16).

(ii) By Assumption 2, using the definition of Fi(xi, z) in
(3), (22), and (24), we obtain that

fi(xi,k, Nv̂i,k+1)− fi(xi, hi(xi) +Nv̂i,k+1 − hi(xi,k))

≤ (xi,k − xi)TFi(xi,k, Nv̂i,k+1)

≤ (xi,k − xi,k+1)TFi(xi,k, Nv̂i,k+1)

+ (xi,k+1 − xi)TFi(xi,k, Nv̂i,k+1) (32)

≤ αkCi
σi

(Ci + ‖ζi,k‖)

+ (xi,k+1 − xi)TFi(xi,k, Nv̂i,k+1)

Note by (23) that

(xi,k+1 − xi)T
(
αk(ζi,k + Fi(xi,k, Nv̂i,k+1)

)
≤ (xi,k+1 − xi)T

(
∇ri(xi,k)−∇ri(xi,k+1)

)
.

(33)



By using (25), we have that

(xi,k+1 − xi)T
(
∇ri(xi,k)−∇ri(xi,k+1)

)
= Di(xi, xi,k)−Di(xi, xi,k+1)−Di(xi,k+1, xi,k)
≤ Di(xi, xi,k)−Di(xi, xi,k+1).

This combined with (33) implies that

(xi,k+1 − xi)TFi(xi,k, Nv̂i,k+1)

≤ Di(xi,xi,k)−Di(xi,xi,k+1)
αk

+ (xi − xi,k+1)T ζi,k.

Since {αk} is monotonically non-increasing, by the defi-
nition of Ri, we have that∑K

k=0
Di(xi,xi,k)−Di(xi,xi,k+1)

αk

≤ Di(xi,xi,0)
α0

+
∑K
k=1

(
1
αk
− 1

αk−1

)
Di(xi, xi,k)

≤ Ri

α0
+
∑K
k=1

(
1
αk
− 1

αk−1

)
Ri = Ri

αK
.

Then by summing up (32) from k = 0 to K, we obtain that

Ri,K ≤
∑K
k=0

αkCi

σi
(Ci + ‖ζi,k‖)

+ Ri

αK
+
∑K
k=0(xi − xi,k+1)T ζi,k.

Then by taking expectations on both sides of the above equa-
tion, and using E[‖ζi,k‖] ≤ νi, we prove (17). �

4.3 Proof of Theorem 2
Since αk ≤ αs for all k ≥ s, we have∑K

k=0 αk
∑k
s=1 β

k−sαs−1 ≤
∑K
k=0

∑k
s=1 β

k−sα2
s−1

=
∑K
k=0

∑k
s=1 β

k−1−(s−1)α2
s−1 =

∑K
k=0

∑k−1
t=0 β

k−1−tα2
t

≤
∑K−1
t=0

(∑K
t=0 β

t−1
)
α2
t ≤ 1

β(1−β)
∑K−1
t=0 α2

t .

This together with (31) produces∑K
k=0 αkek ≤

∑N
j=1 Lhjσ

−1
j (Cj+νj)

β(1−β)
∑K−1
t=0 α2

t .

By recalling that αk ≤ α0 for all k ≥ 0, we have∑K
k=0 αkβ

k ≤ α0

∑∞
k=0 β

k ≤ α0

1−β . Then by (31), we have∑K
k=0 E[εk] ≤ θN

∑N
i=1 LfiMi

(
α0MH

1−β

+
∑N

j=1 Lhjσ
−1
j (Cj+νj)

β(1−β)
∑K−1
t=0 α2

t

)
.

(34)

Thus,
∑∞
k=0 E[εk] <∞ and

∑∞
k=0 εk <∞, a.s.

Note by Assumption 5 and (4) that

(xk − x∗)Tφ(xk) ≥ (xk − x∗)Tφ(x∗) ≥ 0, ∀k ≥ 0. (35)

By setting x = x∗ in (28), applying Lemma 3, using∑∞
k=0 α

2
k < ∞ and

∑∞
k=0 εk < ∞, a.s., we conclude

that D(x∗, xk) converge almost surely, and
∑∞
k=0 αk(xk −

x∗)Tφ(xk) < ∞, a.s. The requirement
∑∞
t=0 α(t) = ∞

implies that lim inft→∞(xk−x∗)Tφ(xk) = 0. So, there ex-
ists a subsequence {tr} such that lim

r→∞
(xtr − x∗)Tφ(xtr ) =

0. Let x̃ be a limit point of the bounded sequence {x(tr)}.
Then (x̃ − x∗)Tφ(x̃) = 0 by the continuity of φ(x). Hence
x̃ = x∗ by (4) and the strict monotonicity of φ(x). Then
by the Bregman reciprocity condition, D(x∗, xtr ) converges
almost surely to zero. By recalling that D(x∗, xk) con-
verges almost surely, we obtain D(x∗, xk)

a.s.−−−−→
k→∞

0 and

xk
a.s.−−−−→
k→∞

x∗ by Lemma 2. �

5 Numerical Simulations

In this section, we empirically validate the performance
of Algorithm 1 on the Nash Cournot competition problem
described in Example 1.

Suppose that the capacity constraint of firm i ∈ N is
a simplex Xi , {xi ≥ 0 : 1Txi = 1}. We consider
the entropic regularizer ri(xi) =

∑mi

j=1 xij log(xij). Then
the pseudo-distance defined by (6) becomes Di(xi, yi) =∑mi

j=1 xij log(xij/yij), which is called the Kullback–
Leibler divergence. Then the update (8) becomes

[xi,k+1]j =

(
[xi,k]j exp(−αk[qi(xi,k, Nv̂i,k+1; ξi,k, ζk)]j)

)mi

j=1∑mi
j=1[xi,k]j exp(−αk[qi(xi,k, Nv̂i,k+1; ξi,k, ζk)]j)

.

This is known as the exponentiated gradient algorithm and
has been extensively studied in online learning [12, 16, 20].

Set N = 20,m = 10,mi = 3, and let the interaction-
s among the firms be described by an undirected connected
Erdős–Rényi graph G = {N , E}, where each edge connect-
ing two firms is included in the graph with probability 0.2
independent from every other edge. Set the adjacency matrix
W = [wij ], where wij = 1

max{|Ni|,|Nj |} for any i 6= j with
(i, j) ∈ E , wii = 1 −

∑
j 6=i wij , and Wij = 0, otherwise.

Suppose that for each firm i ∈ N , each entry of ci satis-
fies the uniform distribution U [3, 4]. The pricing parameters
dl, bl of market l ∈M are drawn from uniform distributions
U [4, 5] and U [1, 1.1], respectively. Let the random variables
ξi, i ∈ N and ζl, l ∈ M be drawn from uniform distribu-
tions U [−ci/8, ci/8] and U [−dl/8, dl/8], respectively.

We implement Algorithm 1 with αk = 1√
k

and display the
empirical results in Figs. 1 and 2. Fig. 1 demonstrates that
the rescaled regret VRK/

√
K is bounded, indicating that the

variational regret VRK = O(
√
K) matching the bound es-

tablished in Corollary 1. In addition, Fig. 2 shows that the
squared error maxi∈N ‖xi,k−x∗i ‖ asymptotically decreases
to zero, implying that the iterate {xk} asymptotically con-
verges to the Nash equilibrium.
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Fig. 1: Bound on the Varia-
tional Regret

0 1000 2000
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100

Fig. 2: Asymptotic Conver-
gence to Nash Equilibrium

6 Conclusions

This paper proposes a distributed no-regret learning for
stochastic aggregative game based on mirror descent. For
the class of strictly monotone games, the iterate is shown to
converge almost surely to the unique Nash equilibrium with
suitably selected diminishing steplengths. It is of interest to
extend the no-regret learning methods to the other classes of
network games in distributed and stochastic settings.
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