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What is optimal filtering?

The filtering problem is to obtain the best estimate x̂t of an unobserv-

able state xt based on the observation data Y t
0 = {Ys; 0 ≤ s ≤ t}.

If lEx2
t < ∞, then x̂t = lE[xt|F Y

t ] with F Y
t = σ{Ys; 0 ≤ s ≤ t}.

The early research on optimal filtering problem can be traced back to

the Cold War.
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Linear filtering

Kalman-Bucy filtering is the most successful result in linear filtering

theory, which was obtained by Kalman and Bucy [TASME Ser. D,

1961].

The most famous application of Kalman-Bucy filtering is the Apollo

Project, which was used to estimate the trajectories of manned space-

ship going to Moon and back.
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Nonlinear filtering

There have been two essentially different approaches so far.

The innovation process approach =⇒ FKK equation.

The theory achieved its culmination with the celebrated paper of Fu-

jisaki, Kallianpur and Kunita [Osaka J. Math., 1972].

The Kallianpur-Striebel formula approach =⇒ Zakai’s equation.

The approach was introduced by Duncan [1967], Mortensen [1966],

and Zakai [Z. Wahrsch. Geb., 1969], independently.
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What is optimal control with noisy observation?

This kind of problem is always hard to study. An intrinsic difficulty is the

circular dependence between control and observation, which results in

the unavailability of classical variation.

The difficulty is often omitted in the early literature.

There have been two techniques to overcome the difficulty.

Decomposition technique.

Probability measure transformation technique.

See, e.g., Bensoussan [CUP, 1992], Wang, Wu and Xiong [Springer,

2018] for a systematic account.
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Certainty equivalence principle

Kalman and Koepcke [TASME, 1958] raised a question of “whether

the separate optimization of statistical prediction and control system

performance yields a system which is optimal in the over-all sense.”

Joseph and Tou [TAIEEAI, 1961] answered the question by a discrete

time combined problem of estimate and LQG control.

The optimal control is designed as the linear feedback of the filtering

of optimal state. One feature is that the coefficients of the feedback

are the same as the full information case.

This feature is known as the certainty equivalence principle, which

does not hold for general cost functional.
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(Traditional) separation principle

Wonham [SIAM J. Control, 1968] proved a more general separation

result within the framework of a continuous time Gaussian system ob-

served via a noisy linear system with more general cost functional.

The result is improved by many scholars under various setups and is

referred to as the (traditional) separation principle.

In general, the traditional separation principle is not applicable for non-

Gaussian control system with noisy observation.

Theoretically, the problem can be regarded as a fully observable op-

timization problem driven by a Zakai’s equation, which is essentially

difficulty to study.
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Backward separation principle

Wang and Wu [JMAA, 2008] initiated a new backward separation

method, which decouples control and estimate by first (formally) deducing

optimal control and then computing optimal filtering.

The method is different from the traditional separation principle, and

avoids lots of stochastic calculus in infinite-dimensional spaces.

The method is applicable for a broad class of non-Gaussian control

systems. See, e.g., Wu [SCF, 2010], Wang and Wu [IEEE TAC, 2009],

Wang, Zhang and Zhang [IEEE TAC, 2014], Hu, Nualart and Zhou

[arXiv, 2014], Wu and Liu [EJC, 2017], Ma and Liu [AJC, 2017].
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What is FBSDE?

Forward-backward stochastic differential equation (FBSDE):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
dxt = b(t, ω, xt)dt + σ(t, ω, xt)dwt,

−dyt = f (t, ω, xt, yt, zt)dt − ztdwt,

x0 = a, yT = g(xT ),

where

b : [0,T] ×Ω × lRn → lRn, σ : [0,T] ×Ω × lRn → lRn×r,

f : [0,T] ×Ω × lRn+m+m×r → lRm, g : lRn → lRm.

The Eq. has a unique solution (x, y, z) under usual assumptions.

10 / 43
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Probability space

(︁
Ω,F w,w̄,

(︁
F w,w̄

t

)︁
0≤t≤T

, lP
)︁

: complete filtered propability space

(wt, w̄t) : 2-dimensional standard BM

F w,w̄
t : σ{(ws, w̄s); 0 ≤ s ≤ t}

[0,T] : fixed time horizon

11 / 43



Liability process

Consider a firm whose liability process l̄vt is governed by

−dl̄vt =
(︁
btvt − b̄t

)︁
dt + ctdwt + c̄tdw̄t,

where
vt − premium rate, a control process,

b̄t > 0 − expected liability rate,

ct > 0, c̄t > 0 − liability risk.

12 / 43



Cash flow

Then the cash balance process xv
t of the firm is

xv
t = e

∫︀ t
0 asds

(︃
e0 −

∫︁ t

0
e−

∫︀ s
0 ardrdl̄vs

)︃
,

whose differential form reads⎧⎪⎪⎪⎨⎪⎪⎪⎩ dxv
t = (atxv

t + btvt − b̄t)dt + ctdwt + c̄tdw̄t,

xv
0 = e0,

where
at > 0 − interest rate,

e0 − initial endowment.
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Observation equation

Assume that xv can only be partially observed via a factor process⎧⎪⎪⎪⎨⎪⎪⎪⎩ dYv
t = (ftxv

t + gt)dt + htdwt,

Yv
0 = 0,

where
ft, gt, ht − uniformly bounded and deterministic,

ht − larger than zero.
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Stock price equation

A typical interpretation of Yv
t in reality is the logarithm of the stock as

follows. To be specific,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dSv

t = Sv
t

[︃(︃
ftxv

t + gt +
1
2

h2
t

)︃
dt + htdwt

]︃
,

Sv
0 = 1.

where

ht − the volatility coefficient of the stock, a positive constant,

ftxv
t + gt +

h2
t

2
− the appreciation rate of return of the stock.
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Observable filtration

Then σ{Sv
s ; 0 ≤ s ≤ t}, rather than F w,w̄

t , is the information available to

the firm at time t. Moreover, it follows from

Yv
t = log Sv

t

that
F Yv

t = σ{Yv
s ; 0 ≤ s ≤ t}

= σ{Sv
s ; 0 ≤ s ≤ t}.

16 / 43



Cost functional

J[v] =
1
2

lE
[︃∫︁ T

0
Rt(vt − rt)2dt + M(xv

T − m)2 − 2yv
0

]︃
,

where
rt,m − benchmark, pre-set target,

yv
0 − recursive utility from v :⎧⎪⎪⎪⎨⎪⎪⎪⎩−dyv

t = (B̃tyv
t + D̃tvt)dt − zv

t dwt − z̄v
t dw̄t,

yv
T = xv

T .
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Recursive utility problem

Our problem is to find an F Yv

t -adapted v to minimize

J[v] =
1
2

lE
[︃∫︁ T

0
Rt(vt − rt)2dt + M(xv

T − m)2 − 2yv
0

]︃
,

subject to xv and yv.

Since the firm can only get information from the stock, we are facing

a special LQ problem driven by FBSDE with noisy observation.
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Economic implication

The model applies to the case the firm has three objectives:

to minimize the difference between v and r;

to minimize the risk of the terminal cash balance;

to maximize the recursive utility from v.
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State equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxv
t =

(︁
atxv

t + btvt + b̄t
)︁

dt + ctdwt + c̄tdw̄t,

−dyv
t =

(︁
Atxv

t + Btyv
t + Ctzv

t + C̄t z̄v
t + Dtvt + D̄t

)︁
dt

− zv
t dwt − z̄v

t dw̄t,

xv
0 = e0, yv

T = Fxv
T + G,

(1)

where

vt − control process.
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Observation equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩ dYv
t = (ftxv

t + gt)dt + htdwt,

Yv
0 = 0,

(2)

where
wt − correlated noise,

ftxv
t + gt − observation coefficient, unbounded.

21 / 43



Problem (LQC)

Find an F Yv

t -adapted control u such that

J[u] = inf
v

J[v]

subject to (1), (2), and

J[v] =
1
2

lE
{︃∫︁ T

0

[︁
Lt(xv

t )2 + Ot(yv
t )2 + Rtv2

t + 2ltxv
t + 2otyv

t + 2rtvt
]︁

dt

+ M(xv
T )2 + 2mxv

T + N(yv
0)2 + 2nyv

0

}︂
.

(3)

Cover the above motivating example as a special case.
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Assumption

Assumption 1

The coefficients at, bt, b̄t, ct, c̄t, ft, gt, ht, 1/ht, At, Bt, Ct, C̄t, Dt and D̄t are

uniformly bounded, deterministic functions. e0 and F are constants, and

G ∈ L 2
F w,w̄

T
(lR).

Assumption 2
Lt ≥ 0, Ot ≥ 0, Rt ≥ 0, lt, ot and rt are uniformly bounded, deterministic

functions. M ≥ 0, N ≥ 0, m and n are constants.
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What are the new features?

The observation noise is correlated with the state noise.

The observation coefficient is linear with respect to the state.

The diffusion coefficients are any large constants.
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What are the difficulties?

Partially observed stochastic control problems are always hard to study:

Circular dependence between control and observation results in an

intrinsic difficulty to study Problem (LQC).

Classical separation principle is usually invalid to deal with Problem

(LQC)/ results in stochastic control with infinite-dimensional space.

How to solve some practical problems?
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What is the solution method?

The backward separation method is applicable to Problem (LQC).

A decomposition technique is also needed. The technique is inspirited

by Bensoussan [CUP, 1992].
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Decomposition of the state and observation

To solve Problem (LQC), we separate (xv, yv, zv, z̄v) and Yv into

(xv, yv, zv, z̄v) =
(︁
x0, y0, z0, z̄0

)︁
+

(︁
x1, y1, z1, z̄1

)︁
,

Yv = Y0 + Y1,

where
(︁
x0, y0, z0, z̄0

)︁
and Y0 are independent of v. Set

F Yv

t = σ{Yv
s ; 0 ≤ s ≤ t}, F Y0

t = σ
{︁
Y0

s ; 0 ≤ s ≤ t
}︁
.
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Two decision sets

Definition 4.1

U 0
ad =

{︃
v|vt is F Y0

t -adapted with values in lR such that lE sup
0≤t≤T

v2
t < ∞

}︃
.

Definition 4.2

Uad =
{︁
v|vt is F Yv

t -adapted and is an element of U 0
ad

}︁
.

28 / 43



Two LQ problems

Problem (LQC). Find a u ∈ Uad such that

J[u] = inf
v∈Uad

J[v].

Preliminary problem. Find a u ∈ U 0
ad such that

J[u] = inf
v∈U 0

ad

J[v].

29 / 43



Equivalence

Proposition 4.1
Under Assumptions 1 and 2,

inf
v∈Uad

J[v] = inf
v∈U 0

ad

J[v].

One key point of its proof is that Uad is dense in U 0
ad under the metric

of L 2
F Y0 (0,T; lR).
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Maximum principle

Theorem 4.1
Let Assumptions 1 and 2 hold. Suppose that (u, x, y, z, z̄) is the optimal

solution. Then the FBSDE⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
dpt = (Btpt − Otyt − ot)dt + Ctptdwt + C̄tptdw̄t,

−dqt = (atqt − Atpt + Ltxt + lt)dt − ktdwt − k̄tdw̄t,

p0 = − Ny0 − n, qT = −FpT + MxT + m

admits a unique solution
(︁
p, q, k, k̄

)︁
∈ L 2

F w,w̄

(︁
0,T; lR4

)︁
such that

Rtut − DtlE
[︁
pt
⃒⃒⃒
F Y

t

]︁
+ btlE

[︁
qt
⃒⃒⃒
F Y

t

]︁
+ rt = 0

with F Y
t = σ{Yu

s ; 0 ≤ s ≤ t}.
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Verification theorem

Theorem 4.2
Assume Assumptions 1 and 2 hold. Let u ∈ Uad satisfy

Rtut − DtlE
[︁
pt
⃒⃒⃒
F Y

t

]︁
+ btlE

[︁
qt
⃒⃒⃒
F Y

t

]︁
+ rt = 0,

where (x, y, z, z̄, p, q, k, k̄) is a solution to the Hamiltonian system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = (atxt + btut + b̄t)dt + ctdwt + c̄tdw̄t, x0 = e0,

−dyt = (Atxt + Btyt + Ctzt + C̄t z̄t + Dtut + D̄t)dt − ztdwt − z̄tdw̄t,

dpt = (Btpt − Otyt − ot)dt + Ctptdwt + C̄tptdw̄t, p0 = −Ny0 − n,

−dqt = (atqt − Atpt + Ltxt + lt)dt − ktdwt − k̄tdw̄t,

yT = FxT + G, qT = −FpT + MxT + m.

Then u is an optimal control of Problem (LQC).
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Uniqueness

Assumption 3
Rt > 0 and 1/Rt are uniformly bounded and deterministic functions.

Proposition 4.1
Let Assumptions 1, 2 and 3 hold. If u is an optimal control of Problem

(LQC), then u is unique.
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Optimal filtering of state equation

Proposition 4.2
Let Assumption 1 hold. For any v ∈ Uad, the optimal filtering of (xv

t , y
v
t , z

v
t , z̄

v
t )

with respect to F Yv

t satisfies an FBSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
dx̂v

t =
(︁
atx̂v

t + btvt + b̄t
)︁

dt +

(︃
ct +

Ptft
ht

)︃
dŵt,

−dŷv
t =

(︁
Atx̂v

t + Btŷv
t + Ct ẑv

t + C̄t ˆ̄zv
t + Dtvt + D̄t

)︁
dt − Ẑv

t dŵt,

x̂v
0 = e0, ŷv

T = Fx̂v
T + Ĝ,

(4)

where the mean square error Pt of the estimate x̂v
t is the unique solution of

A special case of (4) is derived originally in Huang, Wang and Xiong

[SICON, 2009].
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Optimal filtering of state equation

Continuation of Proposition 4.2⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ṗt − 2atPt +

(︃
ct +

Ptft
ht

)︃2

− (ct + c̄t)2 = 0,

P0 = 0,

ŵt =

∫︁ t

0

fs
hs

(xv
s − x̂v

s)ds + wt (5)

is a standard BM with values in lR, and

Ẑv
t = ẑv

t +
ft
ht

(︁̂︂xv
t yv

t − x̂v
t ŷv

t

)︁
.
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Optimal filtering of adjoint equation

Proposition 4.3
Let Assumptions 1, 2 and Ot = 0 hold. The optimal filtering of (pt, qt, kt)

depending on F Y
t satisfies an FBSDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp̂t = (Btp̂t − ot)dt +

[︃
Ctp̂t +

ft
ht

(︀̂︂xtpt − x̂tp̂t
)︀]︃

dŵt,

−dq̂t = (atq̂t − Atp̂t + Ltx̂t + lt)dt − K̂tdŵt,

p̂0 = − Ny0 − n, q̂T = Mx̂T − Fp̂T + m

(6)

with

K̂t = k̂t +
ft
ht

(︀̂︂xtqt − x̂tq̂t
)︀
,
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Optimal filtering of adjoint equation

Continuation of Proposition 4.3

where (x̂, ŷ), ŵ and ̂︂xmp satisfy (4) with v = u, (5), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ̂︂xm
t pt =

[︂
(mat + Bt) ̂︂xm

t pt − ot̂︁xm
t + m

(︁
btut + b̄t + ctCt + c̄tC̄t

)︁
̂xm−1
t pt

]︂
dt

+

[︃
mct
̂xm−1
t pt + Ct ̂︂xm

t pt +
ft
ht

(︂
̂xm+1
t pt − x̂t ̂︂xm

t pt

)︂]︃
dŵt,

x̂m
0 p0 = − em

0 (Ny0 + n), m = 1, 2, 3, · · · ,

respectively.
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An example

Example 5.1

inf
v∈Uad

J[v],

J[v] =
1
2

lE
{︃∫︁ T

0

[︁
Ot(yv

t )2 + Rtv2
t

]︁
dt + N(yv

0)2 + 2nyv
0

}︃
,

(State)

⎧⎪⎪⎪⎨⎪⎪⎪⎩−dyv
t =

(︁
Btyv

t + Ctzv
t + C̄t z̄v

t + Dtvt
)︁

dt − zv
t dwt − z̄v

t dw̄t,

yv
T = G.

Suppose that wt is observable at time t.
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Is it easy to solve?

Control and estimate cann’t be separated in the sense of classical

separation principle.

The existence and uniqueness of optimal filtering for Hamiltonian isn’t

an immediate result.
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Assumption

Introduce⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α̇t −

(︁
2Bt + C2

t + C̄2
t

)︁
αt −

1
Rt

D2
t α

2
t + Ot = 0,

α0 = −N,
(7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β̇t −

(︃
Bt + C2

t + C̄2
t +

1
Rt

D2
t αt

)︃
βt = 0,

β0 = −n.

Assumption 4
The solution α of (7) satisfies

1
αt

C̄2
t +

1
Rt

D2
t ≥ 0.
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Optimal control

Proposition 5.1
Let Assumptions 1∼4 hold. The optimal control is uniquely denoted by

ut =
1
Rt

Dt(αtŷt + βt),

where ŷ is the unique solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
dp̂t = (Btp̂t − Otŷt)dt + Ctp̂tdwt,

−dŷt =
(︁
Btŷt + Ct ẑt + C̄t ˆ̄zt + Dtut

)︁
dt − ẑtdwt,

p̂0 = − Ny0 − n, ŷT = Ĝ.

Theorems 4.1-4.3 and Propositions 4.1-4.3 are used to derive the

proposition.
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Summary

This talk introduces a backward separation method, which is also

applicable to some stochastic differential games with noisy observation.

Wang, Xiao and Xiong [Automatica, 2018] for nonzero sum game.

Shi, Wang and Xiong [ESAIM COCV, 2020] for leader-follower game.
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Thank you for your attention!
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