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Smart Grid as CNS
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Cyber-Physical World 

A broad range of complex, multi-
disciplinary, physically-aware next 
generation engineered systems that 
integrate embedded computing 
technologies (cyber part) into the 
physical world.

X. Yu, Y. Xue, “Smart Grids: A cyber-physical systems perspective,” Proc IEEE, 104(5): 1058-1070, 2016



Cyber-Physical-Social Systems (CPSS)

S. De, Y. Zhou, A. L. Abad, K. Moessner, “Cyber-Physical-Social Frameworks for Urban Big Data Systems: A survey,” Appl Sc,  vol. 7，2017



CPSS in Smart Energy

Information Retrieval

Information 
Processing

Information Intelligence

Intelligent 
Control

Underpinned by

• Super high dimensions 
(spatial scale)

• Real-time (temporal 
scale) responses

• Intermittency
• High complexity 

(structured and non-
structured, topology, 
varying conditions)  

• Cyber-physical spaces
• Social-economic 

aspects
• Cybersecurity

The key question: How to handle the exponentially growing size and complexity of 
Smart Energy Systems effectively and timely?



The “no free lunch theorem” of Wolpert and Macready … 
Computational complexity for solving a large scale problem cannot be reduced 
regardless  of what algorithms you may use … 

We have to have leap of faith … !

D.H. Wolpert, W.G. Macready, “No free lunch theorems for optimization,” IEEE T-EC, 1(1): 67-82, 1997.

The “simple solutions for complex problems” problem solving 
paradigm … 

Learning from NATURE to deal with future challenges …
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Control Theory and Methods

• Open Loop vs Closed 
Loop

• Linear vs Nonlinear 
System

• Classic vs Modern 
Theories

• Frequency vs Time 
Domains

• SISO vs MIMO

• Centralised vs Distributed

• Deterministic vs Stochastic

Control Systems 

• Controllability & 
Observability

• Stability

• Control Specification

• Model Identification

• Data-driven

• Control Types: 
Optimal/Adaptive/Robust/
Intelligent/Stochastic/
Switching …



Control in Smart Grid
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Information Intelligence

Intelligent 
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Underpinned by

• Super high dimensions 
(spatial scale)

• Real-time (temporal 
scale) responses

• Intermittency
• High complexity 

(structured and non-
structured, topology, 
varying conditions)  

• Cyber-physical spaces
• Social-economic 

aspects
• Cybersecurity

How to handle the exponentially growing size and complexity effectively and timely?



An inspiration: 
300+ years ago, 
Brook Taylor 
introduced  
Taylor Series 
Expansion!



The concept of controllability

 For a canonical linear, time –invariant dynamics 

 System is controllable if and only if controllability matrix 

has full rank (Kalman’s controllability rank condition [1] ). 

[1]

[2]

[3]

[1] Kalman et al,  Contrib. Differ. Equ. 1 ,1962

Case 1: Finding minimum set of control nodes



In the controllability matrix Q: 

All 0 are fixed. There is a realization of independent nonzero parameters such that Q has full row rank
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The concept of structural controllability
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Y. Y. Liu, J. J. Slotine, A. L. Barabasi, Nature, 2011



Using structural controllability to find minimum number of driver nodes

15

 Liu et al [2] proved that the minimum number of driver nodes equal to number of 
unmatched nodes from maximum matching algorithm

[2] Y. Y. Liu, J. J. Slotine, A. L..Barabasi, Nature, 2011

Case 1: Finding minimum set of control nodes



Network augmentation

Problem: how to maximise system structural controllability with minimum 
number of driver nodes unchanged? There are a lot of applications.

16

Augmentation

J. Wang, X. Yu, L. Stone, “Effective augmentation of complex networks,” Scientific Reports, vol. 6, 25627, 11 May 2016

Case 1: Finding minimum set of control nodes



Network Model
Linearly coupled network:

- General assumption:  f (.)  is Lipschitz. Here, it is linear (or linearized):

If node i points to node j (j ≠ i), then           ; otherwise          ; and

- Adjacency matrix:

- Coupling strength  c > 0 and  H – input coupling matrix

For undirected networks,       is symmetrical; for directed networks, 
may not be so

NiRxHxcxfx n
i

N

j
jijii ,...,2,1)(

1
 





NiRxHxcAxx n
i

N

j
jijii ,...,2,1

1
 





 
NNij 



1ij 0ij 0ii

 
NNij 



Case 2: Selecting the best driver nodes for synchronisability



Objective: To achieve a certain control goal

Questions:
 How many controllers to use?

 Where to put them?       

 Pinning Control

Case 2: Selecting the best driver nodes for synchronisability
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X Li, X F Wang, G Chen, Pinning a complex dynamical network to its equilibrium, IEEE T-CAS I, 51: 2074-2087, 2004
W Yu, G Chen, J Lu, J Kurths, Synchronization via pinning control on general complex networks, SIAM J. Contr. Optim., 51:1395-1416, 2013



Suppose that all nodes of a complex network should be 
pinned (synchronized) to the following desired state:

One should design the following state feedback:

( ( )) ( ( ))d s t F s t
dt


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ki : the feedback gain 
βi=1 for driver nodes, otherwise βi=0.

• Augmented Laplacian matrix

λi: the ith eigenvalue of the 
augmented Laplacian matrix
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• The metric R is defined2 as a measure of controllability

Smaller R results in better synchronizability (i.e. synchronizability over        
wider coupling strength).

ܴ ൌ 	
ேߣ
ଵߣ

1 X. F. Wang, G. Chen, “Pinning control of scale-free dynamical networks,” Physica A, vol. 310, pp. 521-531, 2002
2 F. Sorrentino, et al., "Controllability of complex networks via pinning," Physical Review E, vol. 75, p. 046103, 2007.

Case 2: Selecting the best driver node for synchronisability



Heuristics:

• R0 = (λN/λ1ሻ for the main Laplacian matrix.

• Ri = (λi/λ1ሻ for the augmented Laplacian matrix when node i is controlled.

• nodes with highest degree
• nodes with highest betweenness centrality
• nodes with highest closeness centrality

Using R: • Calculate ΔR	ൌ	R0 – Ri for	all	nodes	iൌ1,2,…N;	select	the	node	with	maximum	ΔR.

• This method is time consuming in large complex networks. Heuristice
are also not accurate enough.

• Eigenvalue 
perturbation analysis

• Eigen-ratio sensitivity 
analysis

 2
( ) i

NESI i x
xn is eigenvectors of L
related to λn and i
shows ith element.

A. Moradi Amani, M. Jalili, X. Yu, L. Stone, "Finding the most influential nodes in pinning controllability of 
complex networks," IEEE T-CAS II, 64(6): 685-689 2017.

Case 2: Selecting the best driver node for synchronisability

Watts‐Strogatz complex network with 
N=1000 nodes.



Error O(h2)

Case 3: Characteristic Modelling Approach (吴宏鑫院士创立)

L. Chen, X. Yu, C. Sun. Characteristic modeling approach for complex network systems. IEEE T-SMC Syst.  48(8):1383-1388, 2018
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Switching phenomena are everywhere in CNSs
e.g. links on-off intentionally or unintentionally, switching control mechanisms for  
fast transient responses.  

Switching can be classified in two clusters:

Open-loop switching means the switching occurs without influences from any 
internal system states and external influences

Closed-loop switching means the switching depends on internal systems 
states and external influences   



Switching Patterns
Switching phenomena are everywhere in CNSs.

The frequency influences significantly the behaviours of system dynamics

Low frequency - If it is ‘low’, provided each switching action sustains sufficient ‘long’ time, 
many existing methodologies for non-switching dynamics can be used by ‘piecing-together’ 
various ‘smooth’ subsystems – in time or in state.

Medium frequency – Medium frequency is really the area of special interest as piecing-
together smooth subsystems may not give accurate picture though methodologies such as 
Lyapunov theory and Averaging theory may still be applied with caution. 

High frequency – The system with high frequency switching tends to violate the  theories for 
usual ‘smooth’ dynamical  systems such as the existence and uniqueness of general 
solutions to smooth ordinary differential equations; drastically different methods such as 
Filippov theory should be used!



Benefits of Switching

The benefits of switching are enormous … for example, 

ሷݕ ൅ ܽଵݕሶ ൅ ܽ଴ଵݕ ൌ 0 subsystem 1

ሷݕ																																 ൅ ܽଵݕሶ ൅ ܽ଴ଶݕ ൌ 0 subsystem 2

 ܽଵ ൐ 0	the systems are both asymptotically stable.
 ܽଵ ൌ 0 the systems are both marginally stable.
 ܽଵ ൏ 0 the systems are both unstable.



Switching between unstable systems can yield a stable motion



Switching between stable systems can result in an unstable motion



A simple case study  
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However, if we choose a switching line

The control is chosen as 

Take 

Then

cyys  
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0  ,  ccyy  tforyctty ,0)0()exp()(When s=0 is reached, that is,                      ,
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Sliding mode control theory:

For 

1. Define a switching manifold which prescribe the desirable properties s(x)

2. Design a discontinuous control u(x),

such that 
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Vadim Utkin, Sliding Modes in Control and Optimisation, Springer, 2013.
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Equivalently,
0 xaxbx 

Consider a second order system

Drawbacks of Switching 
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Sensitivity to switching times leads to many problems in practice, e.g. 



Near continuous-time behavior …Phase plane portrait

Phase plane portrait for ‘+’ (s>0, a+>0) Phase plane portrait for ‘-’ (s<0, a-<0) 
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Switching line
(sliding mode)

Unstable asymptote



Problem with discretization

Is it true that a ‘small enough’ sampling period does not cause chaotic motions?

h=0.00158 h=0.00165

With b=-4.1, =4.1, c=1, according to the upper bound formulae (Potts & 
Yu, 1991), the maximum H is 0.0016!

33

R.B. Potts, X. Yu, "Discrete variable structure system with pseudo-sliding modes," J Aust Math Soc B, 32:365-376, 1991.



Another example 
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 )sgn(su 

21,0 xcxsc where

Equivalently, 01x

Z. Galias, X. Yu, Study of periodic solutions in discretized two dimensional sliding-mode control systems, IEEE T-CAS II, 58(6): 381–385, 2011.



Main Switching Theories

1. Piece-Wise Lyapunov Theory

2. Filippov Theory

3. Averaging Method



1. Piece-wise Lyapunov theory

For ሶݔ ൌ ݂ ݔ ൅ ܾ ݔ ݑ ݔ , If there exist Lyapunov function ௣ܸ,݌ ∈ ܲ, two class ܭஶ functions 
ଵߙ and ߙଶ,	 and a positive number ߩ଴,	such that 

)ଵߙ ݔ ሻ ൑ ௣ܸ ൑ )ଶߙ ݔ ሻ
డ௏೛
డ௫

(݂ ݔ ൅ ܾ ݔ ݑ ݔ )൑ െ2ߩ଴ ௣ܸሺݔሻ
௣ܸሺݔሻ ൑ ߤ ௤ܸሺݔሻ, ∀݌, ݍ ∈ ܲ

Then switched control system is globally asymptotically stable for every switching signal 
with average dwell time 

߬ ൐ ୪୭୥ ఓ
ଶఘబ

D. Liberzon, Switching in Systems and Control, Birkhauser, 2003
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Switching manifold s=0

Trajectory

f+

f-

fo

 txfx ,

grad s

is equivalent to

 txfx ,0 f0=f++(1- )f--, 0<<1

(In Fillipov sense)

2. Filippov Theory
Under infinite switching,

37A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Springer, 2013.

The gap …

What happens when 
switching dwell time ߬	

0 ൏ ߬ ൏ ୪୭୥ ఓ
ଶఘబ

???



3. Averaging Method

Consider a general nonlinear dynamical system 

ሶݔ ൌ ݂ ,ݐ ,ݔ ߬

where ݂ ,ݐ ,ݔ ߬ is periodic in t with period ߬	, the evolution of the system is said to occur in 
two timescales: a fast oscillatory one associated with the presence of t in f and a slow one 
associated with the presence of 	. The averaged system is expressed as 

෤ሶݔ ൌ  ଵ
ఛ ׬ ݂ ,ݏ ,ݔ 0ఛ

଴ ݏ݀ ൌ ݂ሺ෪ݔ෤)

where ݔ෤	is the average state over 0, ߬ 	with respect to .

Averaging Theorem: 
If ݔ 0 െ ෤ሺ0ሻݔ ൌ(), then ݔ  െ ෤ሺሻݔ ൌ() on a time scale t	~ ଵ



38

J. A. Sanders, et al, Averaging Methods in Nonlinear Dynamical Systems, Springer, 2007.
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Switching in CNSs

Switching phenomena:

• Links are on or off 
(switching topology)

• Some dynamical 
nodes are under 
discontinuous control 
e.g. sliding mode



Coordination and Control of CNSs with Switching Topologies

41

G. Wen, X. Yu, W. Yu, J. Lu, Coordination and control of complex network systems with switching 
topologies: A survey, IEEE T-SMC Syst, doi:10.1109/TSMC.2019.2961753.

CNS with 
switching 
dynamics

CNS with 
inherent 
switching 
dynamics

CNS with 
switching 
topology

[Switching frequency]:
Slowly switching 
(CLF, MLFs approaches, stochastic 

matrices theoy)
Fast switching (Averaging theory, 

time-varying differential equation 
theory)

[Triggered mechanism]:
Time-driven switching (CLF, 

MLFs approaches)
State-dependent switching 

(Filippov theory) 

[Depending on state]:
Open loop switching (CLF, 

MLFs approaches)
Closed-loop switching (Optimal 

control, sliding mode theory) 
….

[Subsystems’ property]:
Switching linear systems
(CLF, MLFs approaches)
Switching nonlinear  systems 

(CLF, MLFs approach)

[Triggered mechanism]:
Time-driven switching (CLF, 

MLFs approaches)
State-dependent switching 

(Filippov theory) 

[Depending on state]:
Open loop switching (CLF, 

MLFs approaches)
Closed-loop switching (Optimal 

control, sliding mode theory) 

[Hybrid property]:
Continuous time switching 

systems 
Discrete time switching 

systems
 Hybrid switching systems
….



Synchronization with fast switching topology:  Averaging method

Average Laplacian
matrix

H. Kim, H. Shim, J. Back, J. H. Seo, Automatica, 47(1):267-272, 2013. 

Example: Suppose that
the network switches 
fast among the three 
network candidates. 

The time-
average network 
topology



Synchronization with slowly switching topology: An M-matrix based 
approach

Synchronization criteria    
(slowly switching topology)

Each possible topology should satisfy some connectivity 
conditions (contains at least a directed spanning tree) ;

Switching should not be very fast
(dwell time constraint condition) .

G. Wen, W. Yu, G. Hu, J. Cao and X. Yu, IEEE Trans. Neural Networks 
and Learning Systems, 26(12): 3239-3250, 2015. State feedback.

How to ensure synchronization in switching complex networks when each possible topology 
does not contain any directed spanning tree?

43

G. Wen, W. Yu, Y. Xia, X. Yu, and J. Hu, IEEE Trans. Systems, Man and 
Cybernetics, Systems, 47(5): 869-881,2017. Output feedback

 Multiple Lyapunov Functions(MLFs) 
can be constructed from M-matrix 
theory! A unified construction 
approach!



44

G. Wen, W. Yu, G. Hu, J. Cao, X. Yu, Pinning synchronization of directed networks with switching topologies: A multiple Lyapunov 
functions approach, IEEE T-NNLS, 26(12): 3239-3250, 2015. 

The Laplacian matrix of 
network topology ܩ௦ , 
ݏ ∈ ሼ1,2, … , ሽ݌

௦ܩ contains a directed 
spanning tree rooted at 
node ܰ ൅ 1

is a nonsingular M matrix 

ሶ݁௜ ݐ ൌ ݂ ௜ݔ ݐ , ݐ െ ݂ሺݏ ݐ , ሻݐ െ ෍݈௜௝ߙ
ఙ ௧

ே

௝ୀଵ
௝݁ሺݐሻ െ ௜ܿߙ

ఙ ௧ ݁௜ሺݐቍ

V t ൌ ݁ t ் Ξఙሺ௧ሻ ⊗ ௡ܫ ݁ሺݐ൯ Ξఙሺ௧ሻܮ෠ఙሺ௧ሻ ൅ ෠ఙሺ௧ሻܮ
்
Ξఙሺ௧ሻ ൐ 0with MLFs: 

Error
System: 

Synchronization with slowly switching topology: An M-matrix based 
approach – state feedback
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Synchronization with slowly switching topology: An M-matrix based 
approach – output feedback

G. Wen, W. Yu, Y. Xia, X. Yu, J. Hu, Distributed tracking of nonlinear multiagent systems under directed switching topology: An observer-
based protocol, IEEE T-SMC Syst, 47(5): 869-881,2017. 

Node
dynamics: 

Control 
protocol: 

MLFs: 



Pinning synchronization of complex switching networks with a leader of 
nonzero control inputs

G. Wen, P. Wang, X. Yu, W. Yu, J. Cao, Pinning synchronization of complex switching networks with a leader of nonzero control inputs, IEEE T-
CAS I, 66(8): 3100-3112, 2019. 

46

The dynamics of the leader may be 
subjected to unknown external control 
inputs

Each possible topology should satisfy 
some connectivity conditions (contains 
at least a directed spanning tree) 

 Multiple Lyapunov 
Functions-based 
approach  (to analysis 
the dwell time based 
synchronization criteria)

 Sliding Mode Control 
Approach （to make the 
followers track the 
leader asymptotically ）

MLFs-based approach Plus Sliding model control technique!



Consensus disturbance rejection for linear multiagent systems with 
directed switching communication topologies

P. Wang, G. Wen, X. Yu, W. Yu, Y. Lv, Consensus disturbance rejection for linear multiagent systems with directed switching communication 
topologies, IEEE T-CNS, 7(1): 254-265, 2020. 

47

Each possible topology should 
satisfy some connectivity conditions 
(contains at least a directed 
spanning tree) 

The dynamics of the followers are 
subjected to non-vanishing external 
disturbancesሶ݀ ௜ሺݐሻ ൌ ܹ݀௜ሺݐ൯

 Multiple Lyapunov Functions-
based approach (to analysis the 
average dwell time based 
consensus criteria)

 Unknown Input Observer (UIO) 
Approach （to estimate the 
relative full states’ error among 
neighboring agents ）

 Disturbance Observer (DO) 
Approach （for disturbance 
rejection ）

MLFs-based approach Plus UIO Plus DO control technique!



Synchronization of resilient complex networks under attacks

P. Wang, G. Wen, X. Yu, W. Yu, Y. Wan, Synchronization of resilient complex networks under attacks, IEEE T-SMC Syst, doi: 
10.1109/TSMC.2019.2895027.

48

The network topology without 
attacks should satisfy some 
connectivity conditions 
(contains at least a directed 
spanning tree) 

The network topology will lose 
connectivity  because of 
attacks on edges and nodes, 
and states of the nodes being 
attacked may change abruptly 
at some time instants

Attacks

 Impulsive network model
（modelling the abrupt 
change of the states as an 
impulsive disturbance to the 
synchronization error 
system）

 Common Lyapunov Function-
based approach  (to analysis 
synchronization criteria)

CLF-based approach Plus Impulsive control technique!
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• Nature has been teaching us many ingenious and ‘easy’ ways to 
handle huge size and complexity.

• A new methodology, ‘simplexity approach’, is needed to  deal with 
spatio-temporal size and complexity in a timely fashion.

• Balancing between optimality, timeliness, and complexity to deliver 
performance is a key issue.

• Many switching theories can be used for analysis and synthesis in 
modelling, control and optimisation of CNSs

• New generation control theories and methodologies for CNSs are 
emerging – an exciting time ahead! 

Concluding remarks …
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