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Smart Grid as CNS
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Cyber-Physical World .
Physical
A broad range of complex, multi- World
disciplinary, physically-aware next
generation engineered systems that

integrate embedded computing Actuation
technologies (cyber part) into the _

physical world.

Communication
Network

X.Yu, Y. Xue, “Smart Grids: A cyber-physical systems perspective,” Proc IEEE, 104(5): 1058-1070, 2016



Cyber-Physical-Social Systems (CPSS)
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S. De, Y. Zhou, A. L. Abad, K. Moessner, “Cyber-Physical-Social Frameworks for Urban Big Data Systems: A survey,” Appl Sc, vol. 7, 2017



CPSS in Smart Energy

Underpinned by

« Super high dimensions

Information Retrieval (spatial scale)

* Real-time (temporal
scale) responses

* Intermittency

* High complexity
(structured and non-
structured, topology,
varying conditions)

Smart
Intelligent Information
Control E ﬁel'gy Processing

« Cyber-physical spaces

+ Social-economic
Information Intelligence aspects

» Cybersecurity

The key question: How to handle the exponentially growing size and complexity of
Smart Energy Systems effectively and timely?



The “no free lunch theorem” of Wolpert and Macready ...
Computational complexity for solving a large scale problem cannot be reduced
regardless of what algornthms you may use ...

We have to have leap of faith ... !

The “simple solutions for complex problems” problem solving
paradigm ...

Learning from NATURE to deal with future challenges ...

D.H. Wolpert, W.G. Macready, “No free lunch theorems for optimization,” IEEE T-EC, 1(1): 67-82, 1997.
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Control Theory and Methods

*  Open Loop vs Closed
Loop

* Linear vs Nonlinear
System

* C(Classic vs Modern
Theories

* Frequency vs Time
Domains

« SISO vs MIMO
 Centralised vs Distributed

 Deterministic vs Stochastic

Detector Actuating
Signal

Cantroller # Plant

Output

Feedback

Elements

Feadback
Signal

Control Systems

Controllability &
Observability

Stability

Control Specification
Model Identification
Data-driven

Control Types:
Optimal/Adaptive/Robust/
Intelligent/Stochastic/
Switching ...



Control in Smart Grid

Underpinned by

» Super high dimensions
Information Retrieval (spatial scale)

* Real-time (temporal
scale) responses

* Intermittency

Smart
Intelligent g Information * High complexity
Contral Grld Processing (structured and non-
structured, topology,

varying conditions)
« Cyber-physical spaces

e Social-economic
aspects

Information Intelligence

» Cybersecurity

How to handle the exponentially growing size and complexity effectively and timely?



An inspiration:
300+ years ago,
Brook Taylor
introduced
Taylor Series
Expansion!

Taylor Series Expansion

Taylor's Theorem : Suppose fis continuous on the closed interval [a, b] and has

n + 1 continuous derivatives on the open interval (a, b). If x and ¢ are points in
(a, b), then

The Taylor series expansion of f(x) aboutc:

Pl e le] (x—c) +L e;{":] (x=¢) +...

v

o

Taylor Series= Z ﬁfm{f:) (x—c)'

k=1

If the series converge, we can write:

g s

1(x) = E%f*“m (x—c)

k=)



Case 1: Finding minimum set of control nodes
The concept of controllability

= For a canonical linear, time —invariant dynamics
X(t) = AX(t) + Bu(t) [1]

x(1): states of N nodes at time t. A: interaction between
nodes. B: control matrix. u(t): time dependent input vector.

= System is controllable if and only if controllability matrix
C = (B.AB,--- .AY"!B) [2]
has full rank (Kalman’s controllability rank condition p1).
rank(C) = N [3]

[1] Kalman et al, Contrib. Differ. Equ. 1,1962



The concept of structural controllability

In the controllability matrix Q: O=[B AB --- A"'B]

All 0 are fixed. There is a realization of independent nonzero parameters such that Q has full row rank

= u, b w e u,
by b by
X, am}{l as, 021}(1 ay; Xa
sy
=< ) 3 X
2 as, 3 Q33
X3
C=[B,A-B,A’ B]
1 0 0 1 0 O 1 O 0 I O 0
Q=50 a, O b0 a, O b|0 a, O b|0 a, ayua,
0 0 aya, 0 a, 0] 0 ay azay | 0 a; ayay,
rank C=3=n rankC=2<n=3 rank C=3=n rank C =7
controllable uncontrollable controllable controllable ?

Y.Y. Liu, J. J. Slotine, A. L. Barabasi, Nature, 2011 Structurally controllable



Case 1: Finding minimum set of control nodes
Using structural controllability to find minimum number of driver nodes

= Liu et al zproved that the minimum number of driver nodes equal to number of
unmatched nodes from maximum matching algorithm

O Matched node

— Matchinglink

. Unmatched/ Driver
node

Directed Network Maximum Matching Algorithm Minimum Driver Nodes

[2] Y. Y. Liu, J. J. Slotine, A. L..Barabasi, Nature, 2011



Case 1: Finding minimum set of control nodes

Network augmentation

—

Problem: how to maximise system structural controllability with minimum
number of driver nodes unchanged? There are a lot of applications.

J. Wang, X. Yu, L. Stone, “Effective augmentation of complex networks,” Scientific Reports, vol. 6, 25627, 11 May 2016



Case 2: Selecting the best driver nodes for synchronisability

Network Model

Linearly coupled network:
N 2 9
9
X, =f(x.)+cz,8..Hx. x,eR" i=12,..,N 5 -2 : APY %o
l l = l S a2 3% o
Jj= e 2 s T 9 )
B Sl e e
- General assumption: f(.) is Lipschitz. Here, it is linear (or linearized): LI o Py
N a 9 3 v e j <
)'cizAxi+cZﬂl.ijj x,eR" i=12,.,N ) 't 3 ' R
=1 < JJ JJJ 9
9
- Coupling strength ¢>0 and H - input coupling matrix ? > e
- Adjacency matrix:
: Y |-'BI'J'JNxN b, .
E: f(xz)9 X eR
If node i points to node j (j #1i), theng, =1 ; otherwise £, =0 ; and g, =0 _W
u, =—-Hx

For undirected networks, [ﬂ,jJNxN is symmetrical; for directed networks,
may not be so



Case 2: Selecting the best driver nodes for synchronisability

<
o 2 20 I Objective: To achieve a certain control goal

9 » 9 9 9 9
3 3 N "_,"":J J:,N 92 _9 :
A T (R Questions:
P o o e A > ° o

e NBS . . 5 = How many controllers to use?

&y AT e 9 = Where to put them?
2 9 —
3 A - Pinning Control
] N
%=f(xl), x, €R” xi = Axi +CZ’BUHXJ 4+ 5iBui

i=1
%I . 5 1 ljjf to — control

" |0 if not--control

X Li, X F Wang, G Chen, Pinning a complex dynamical network to its equilibrium, IEEE T-CAS I, 51: 2074-2087, 2004
W Yu, G Chen, J Lu, J Kurths, Synchronization via pinning control on general complex networks, SIAM J. Contr. Optim., 51:1395-1416, 2013



Case 2: Selecting the best driver node for synchronisability

Suppose that all nodes of a complex network should be
pinned (synchronized) to the following desired state:

d(s(?))
X (t) = Xz(f} — Xﬂ:{f} = 8§(t).as ! — oo, dt = F(S(t))

One should design the following state feedback:

N
dx; k. : the feedback gain
— =Fx) - lijHx; +wj,u; = —oBik;i(s — x; ! . .
ac ~ "o J].Z %+ vtk = —oflals =5 p.=1 for driver nodes, otherwise =0.
< Augmented Laplacian matrix I, +kp I, Ly
C = {CU} _ lfl 122 +:k2182 lZ:N
/ll-l the i eigenvalue of the L, Iy, o Loy +hky By
augmented Laplacian matrix
« The metric R is defined? as a measure of controllability R = ’/11_"’
1

Smaller R results in better synchronizability (i.e. synchronizability over
wider coupling strength).

1 X. F. Wang, G. Chen, “Pinning control of scale-free dynamical networks,” Physica A, vol. 310, pp. 521-531, 2002
2F. Sorrentino, et al., "Controllability of complex networks via pinning," Physical Review E, vol. 75, p. 046103, 2007.



Case 2: Selecting the best driver node for synchronisability

nodes with highest degree
nodes with highest betweenness centrality
nodes with highest closeness centralit

* Ry = (Ay/A,) for the main Laplacian matrix.

* R, = (A/A,) for the augmented Laplacian matrix when node i is controlled.

This method is time consuming in large complex networks. Heuristice
are also not accurate enough.

50+,

Eigenvalue

Accuracy(%)

3
T

perturbation analysis ., X,liseigenvectors of L ’
Eigen-ratio sensitivity ESI(Q) = (x;v) related to 4, and .
ana|ysis shows i element. ‘°’,’\\"“~- ,'»‘:\”;/_/\\

A. Moradi Amani, M. Jalili, X. Yu, L. Stone, "Finding the most influential nodes in pinning controllability of
complex networks," IEEE T-CAS I, 64(6): 685-689 2017.

L T L L
0.02 0.05 0.1 0.2 0.4 0.6
Rewiring probability

Watts-Strogatz complex network with
N=1000 nodes.



Case 3: Characteristic Modelling Approach (27%=28=1-6I7)
y(s) ZT_"'U b, gJ

’U;(S) s"o + Z?OO ! a;s

1 Error O(h2)
y(k+1) = (2+wi(k))y(k) + (=1 + wa(k))y(k — 1) + wz(k)u(k) + wa(k)u(k — 1)

,a@-,bj ceR

A . . B2 s
V(k+1) = A (R)VE) + A(R)V(E=1) + (Ao BRIVE) T ki
"1 AT ey ?
L » =R "(w . v_
0 U :
' | L by = R (e (R (212 (v))
vz l VuP— % y A, = o, (v)+ v (v (%) st ;}E
\(\ \(_k N \&\ A \\\':f},;;;;,;/ o
=t /:({_ é; /{/{ f; Lf\/{_f E17 : FIARIS /
SR G e U emme
- " . - - #3155 -

L. Chen, X. Yu, C. Sun. Characteristic modeling approach for complex network systems. IEEE T-SMC Syst. 48(8):1383-1388, 2018



Table of Contents

1. Complex Network Systems (CNSs)
Control Science and Engineering in CNSs
Switching and Switching Control

Dealing with Switching in CNSs

a > Wb

Future Perspectives



Switching phenomena are everywhere in CNSs
e.g. links on-off intentionally or unintentionally, switching control mechanisms for

fast transient responses.

Switching can be classified in two clusters:

Open-loop switching means the switching occurs without influences from any
internal system states and external influences

Closed-loop switching means the switching depends on internal systems
states and external influences



Switching Patterns

Switching phenomena are everywhere in CNSs.
The frequency influences significantly the behaviours of system dynamics

Low frequency - If it is ‘low’, provided each switching action sustains sufficient ‘long’ time,
many existing methodologies for non-switching dynamics can be used by ‘piecing-together’
various ‘smooth’ subsystems — in time or in state.

Medium frequency — Medium frequency is really the area of special interest as piecing-
together smooth subsystems may not give accurate picture though methodologies such as
Lyapunov theory and Averaging theory may still be applied with caution.

High frequency — The system with high frequency switching tends to violate the theories for
usual ‘smooth’ dynamical systems such as the existence and uniqueness of general
solutions to smooth ordinary differential equations; drastically different methods such as
Filippov theory should be used!



Benefits of Switching

The benefits of switching are enormous ... for example,

y+a,y+ay,y=0  subsystem 1
y+ay+ay,y =0 subsystem 2

" a, > 0the systems are both asymptotically stable.
" a; = 0 the systems are both marginally stable.
" a; < 0 the systems are both unstable.



Switching between unstable systems can yield a stable motion

Phase plane

a, =—0.1

Both dynamics are unstable

1 . Phase plane
% 4 2 |::r 3 4 8 B D'B"""i'"_"i""q;'_"_;*_""L'""L_""LI '''''
YEt] D.E'-—-——i'—-—--i———-—'i-—-——T—-—-—r-—-——r—-—-—:'*-—-—'
y R S
Pt)v(t)<0  system] P S U S S S
Wt (t)=0  system?2 = o
O<a, <a 0P SRR U U S SO S SN VA
ae e I ety B S ais Sy
Switched asymptotically S N N IR e = i S I
) 111 PR S S (NS i SR B S
stable dynamics ;




Switching between stable systems can result in an unstable motion

Phase plane

a, =0.1

Both dynamics are
asymptotically stable

Phase plane

% ! ! !
15-—-——-——-——-:——--'—-——-——-:-—-——-——-——-T —————————— -
Pt)h(t)=0 system] O — S S A .

Y, 2 i i i

e)(t)<0  system 2 = i

5-———————————r———————————i— —————————————————————— —

0<a, <ay, | | |
) ) u-—--------—-r------—----Er--"-"r ------------------ -

Switched unstable dynamics L

10 -5 I é 10




A simple case study

Consider a double integrator given by ¥ = u(t) , for 0<k,<I<k,

u(t)=—=Fky(t) u(t)=—kau(t)

(b) (a) (b)

@ | o) o N S ®
|

o —k f yy<0
If we choose switching control  u = o
—k,y otherwise

and a new Lyapunov function V(y):%(j/z +3%)

w=k) i yp<0

V: . ...:. —
Then WA= {yy‘(l—k» if >0

|
L]



However, if we choose a switching line s=y+cy

—k if s>0

The control is chosenas - _j sgn(s) =
k if s<0

Take V(y)=ls +§y'2

Then V =sgn(s)(cy -k sgn(s)) —cysgn(s) = —k|s| < 0

/Tf‘:v\\ —

c‘ y\ <1, then ss <0, slidingmodeexists

Sliding mode
s=y+cy =0




When s=0 is reached, that is, v = —cy, ¢ >0, Y() =exp(=ct)y(0) > 0, for t—

S
\
Control A

Sliding mode control theory:
For % =f(x)+b(x)u
1. Define a switching manifold which prescribe the desirable properties s(x)

2. Design a discontinuous control u(x), 4= {” s(x)>0

u  s(x)<0
suchthat [ims<0, and lims>0

s—0" s—>0"

Vadim Utkin, Sliding Modes in Control and Optimisation, Springer, 2013.




Drawbacks of Switching

Sensitivity to switching times leads to many problems in practice, €.g.

Consider a second order system

+
X, =X, u:{a x, x>0
X, =—-bx,+u

a x, x5<0
where

b>0,c>0,s=cx, +x,

Equivalently,

X+bx+a’x=0



S
Switching line
(sliding mode)

g |
=

—

kow

|V

¥

N x'(h / S

i

'

< ¥
“,:&dd

Unstable asympto

te

Phase pldne portrait

0.6
0

. . .
0.1 0.2 0.3 04
x1

Near continuous-time behavior ...




Problem with discretization

Is it true that a ‘small enough’ sampling period does not cause chaotic motions?

0.4

02r

1]

02

[}
=

04t

OB

08

-1

\ \ \ \ \ \
0 02 0.4 0E 0.8 1 1.2 1.4
fl

12

-0.2

-0.4

06 F

08+

03

0B

0.4

02

0

=l
0.8

I
0.6

;
0.4

I
-02

| | |
0 02 04
1

I
0B

I
08

1
1

1.2

h=0.00158

h=0.00165

Yu, 1991), the maximum His 0.0016!

With b=-4.1, a=4.1, c=1, according to the upper bound formulae (Potts &

R.B. Potts, X. Yu, "Discrete variable structure system with pseudo-sliding modes," J Aust Math Soc B, 32:365-376, 1991.




Another example

X, =
b2 u =—sgn(s)
X, =U
where c>0,s=cx +x,

Equivalently, ¥+1=0

i 1 LN ! !
4:____|____|___J\__|.___|____|___4____
Y P G W A U
{|____|____|___J _______ [ Y T T

A Y
pb o NN ]
_..1.-____I____I___J___L__\_:____I___J.____

S N T A T N e
8 o] 4 2 )] 2 4 o] 8

Fig. 1. Confimuous ame system, o = 3, mbal pomt (., xz) = (7.1.2),

Z. Galias, X. Yu, Study of periodic solutions in discretized two dimensional sliding-mode control systems, IEEE T-CAS II, 58(6): 381-385, 2011.



Main Switching Theories

1. Piece-Wise Lyapunov Theory
2. Filippov Theory
3. Averaging Method



1. Piece-wise Lyapunov theory

For x = f(x) + b(x)u(x), If there exist Lyapunov function V,,p € P, two class K, functions
a, and a,, and a positive number p,, such that

a([x]) =V, < ax(lx|)

%(f(x) + b()u(x))< —2pg V, (x)

W (x) < uVy(x), Vp,q €P

Then switched control system is globally asymptotically stable for every switching signal
with average dwell time

log
2po

T>

D. Liberzon, Switching in Systems and Control, Birkhauser, 2003



2. Filippov Theory

Under infinite switching, x = f(x,#) is equivalent to

i=folxt)  p=af+(1- a)f 0<a<l

(In Fillipov sense)

The gap ...

What happens when
switching dwell time t

log u
27?7
Switching manifold s=0 0<7< 200

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Springer, 2013.




3. Averaging Method
Consider a general nonlinear dynamical system
x =¢ef(t,x,1)
where f(t, x, t) is periodic in t with period 7, the evolution of the system is said to occur in

two timescales: a fast oscillatory one associated with the presence of tin fand a slow one
associated with the presence of ¢ . The averaged system is expressed as

2 1 7 T~
X 8;]0 f(s,x,0)ds = ef (%)
where X is the average state over (0, t) with respect to ¢.

Averaging Theorem:
If 1x(0) — £(0)| =Ofe), then |x(e) — %(2)| =O(e) on a time scale t ~~

J. A. Sanders, et al, Averaging Methods in Nonlinear Dynamical Systems, Springer, 2007.
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Switching in CNSs

Switching phenomena:

Links are on or off
(switching topology)

Some dynamical
nodes are under
discontinuous control
e.g. sliding mode

9 :
9 ? v

5 @ I J

9 9 9
,J ]

a N\ PR Be 8 e
JJ S B J"baﬂa 9o
9 a: 9 3-" o 1

¥ -
9 - 2 9
¢ 9 9
2t 9 9
>
2% !
9 5



Coordination and Control of CNSs with Switching Topologies

[Subsystems’ property]:

[Switching frequency]: 1 & Switching linear systems
¢ Slowly switching . C N S Wlth (CLF, MLng approac):]es)
(CL_F, MLFs approaches, stochastic - . # Switching nonlinear systems

matrices theoy) SWILCNhINg (CLF, MLFs approach)
OEast swit_chin_g (Ave_raging th_eory, . ’

time-varying differential equation dyn amics [Triggered mechanism]:

theory) & Time-driven switchin-

- g (CLF,
MLFs approaches)

[Triggered mechanism]: @ State-dependent switching

@ Time-driven switching (CLF, . CNS Wlth (Filippov theory)
MLFs approaches) CN.S V\."th inherent [Depending on state]:
# State-dependent switching SW|tCh|ng Lo P g on sakel:
(Filippov theory) t | switching ’ﬁfﬁ" loop Swr']t"';'"g (CLF,
OopoIo . s approaches
P 9y dynamICS # Closed-loop switching (Optimal

[Depending on state]: P é control, sliding mode theory)

€ Open loop switching (CLF,
MLFs approaches)

@ Closed-loop switching (Optimal
control, sliding mode theory)

[Hybrid property]:

€ Continuous time switching
systems

# Discrete time switching
systems

€ Hybrid switching systems

G. Wen, X. Yu, W. Yu, J. Lu, Coordination and control of complex network systems with switching

! topologies: A survey, IEEE T-SMC Syst, doi:10.1109/TSMC.2019.2961753.



Synchronization with fast switching topology: Averaging method

Suppose that there is a constant 7>0 and a fixed matrix L such that

Tf dT — L —— Average Loplaman

matrix

for all ¢, and the networks with linear (nonlinear) nodes can be synchronized
under the fixed graph with Laplacian matrix L. Then, global (local)
synchronization in complex networks with fast switching topology can be

ensured.

' Example: Suppose that
" the network switches
fast among the three

. network candidates.

The time- ,
. average network

topology




Synchronization with slowly switching topology: An M-matrix based
approach

Each possible topology should satisfy some connectivity

conditions (contains at least a directed spanning tree) ;
Synchronization criteria

(slowly switching topology)

Switching should not be very fast
(dwell time constraint condition) .

......................................................................................................................................................

G Wen, W. Yu, G. Hu, J. Cao and X. Yu, IEEE Trans. Neural Networks

Multiple L Functions(MLFs) |
ultiple Lyapunov Functions(MLFs) 1| 2 hing Systems, 26(12): 32393250, 2015. State feedback. |
can be constructed from M-matrix

theory! A unified construction

approach! G. Wen, W. Yu, Y. Xia, X. Yu, and J. Hu, IEEE Trans. Systems, Man and
i Cybernetics, Systems, 47(5): 869-881,2017. Output feedback

How to ensure synchronization in switching complex networks when each possible topology
does not contain any directed spanning tree?




Synchronization with slowly switching topology: An M-matrix based
approach — state feedback

The Laplacian matrix of ~ is s
network topology G* , [} = ( - ¢ ) e RINHDx(N+1)
s€e{1,2,..,p} ON 0

G*® contains a directed -
spanning tree rooted at [€ % L° is a nonsingular M matrix

node N +1
Error N o o
System: €;(t) = f(x;(¢),¢) — f(s(¢), ) — az I () —acy et
=

MLFs: V(D) = e (E°® @ I)e(t) with E9OLI® 4 ([o®) 500 >

i G.Wen, W. Yu, G. Hu, J. Cao, X. Yu, Pinning synchronization of directed networks with switching topologies: A multiple Lyapunov
i functions approach, IEEE T-NNLS, 26(12): 3239-3250, 2015.



Synchronization with slowly switching topology: An M-matrix based
approach — output feedback

Node Xi(t) = Ax;(t) + Bu;(t) + Df (x;(1), 1)
dynamics: yi() = Cxi(t)

N+1
Control  Xi(t) = A%i(t) + Bui(t) + o Y _ aif V' F(8;(r) — 8i(1))
protocol: j=1
+ Df(xi(1), 1)
N+1
ui(t) = BK Y a7 (%(1) = %i(0))
j=1

MLFs: V() =’E)’T(r)(§‘°””®Q)E)’(t) + zeT(r)(E‘f’“”@P—')e(r)

G. Wen, W.Yu, Y. Xia, X. Yu, J. Hu, Distributed tracking of nonlinear multiagent systems under directed switching topology: An observer-
! based protocol, IEEE T-SMC Syst, 47(5): 869-881,2017.



Pinning synchronization of complex switching networks with a leader of
nonzero control inputs

The dynamics of the leader may be
: > 6
. subjected to unknown external control
Multiple Lyapunov . 1
inputs 45
Functions-based
. D@
approach (to analysis
the dwell time based [ / \
synchronization criteria) - - 5 4
Each possible topology should satisfy
Sliding Mode Control some connectivity conditions (contains 6
Approach ( to make the at least a directed spanning tree) 145
followers track the > >
3 - 1l Ll 2
leader asymptotically )
\ [ l
5 4

MLFs-based approach Plus Sliding model control technique!

.........................................................................................................................................................................................................................................................

G. Wen, P. Wang, X. Yu, W. Yu, J. Cao, Pinning synchronization of complex switching networks with a leader of nonzero control inputs, IEEE T-
i CAS |, 66(8): 3100-3112, 2019. '



Consensus disturbance rejection for linear multiagent systems with
directed switching communication topologies

Multiple Lyapunov Functions-
based approach (to analysis the
average dwell time based
consensus criteria)

Unknown Input Observer (UIO)
Approach ( to estimate the
relative full states’ error among
neighboring agents )
Disturbance Observer (DO)

Approach ( for disturbance
rejection )

The dynamics of the followers are
subjected to non-vanishing external

dist .
di(t) == Wdl(t)

Each possible topology should
satisfy some connectivity conditions
(contains at least a directed
spanning tree)

MLFs-based approach Plus UIO Plus DO control technique!

0
2, 2
v \‘
1 4
\ 2 3

P Wang, G. Wen, X. Yu, W. Yu, Y. Lv, Consensus disturbance rejection for linear multiagent systems with directed switching communication

topologles IEEE T-CNS, 7(1): 254-265, 2020.



Synchronization of resilient complex networks under attacks

. The network topology without
| | k | —
mpy swtla network mode attacks should satisfy some © z
( modelling the abrupt connectivity conditions
change of the states as an (contains at least a directed
impulsive disturbance to the spanning tree)
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CLF-based approach Plus Impulsive control technique!
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Concluding remarks ...

Nature has been teaching us many ingenious and ‘easy’ ways to
handle huge size and complexity.

A new methodology, ‘simplexity approach’, is needed to deal with
spatio-temporal size and complexity in a timely fashion.

Balancing between optimality, timeliness, and complexity to deliver
performance is a key issue.

Many switching theories can be used for analysis and synthesis in
modelling, control and optimisation of CNSs

New generation control theories and methodologies for CNSs are
emerging — an exciting time ahead!
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