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Abstract: This paper investigates a data-driven adaptive optimal control approach for antimony flotation process in presence
of input time-delay and disturbance. The integration frame of adaptive dynamic programming (ADP) and value iteration (VI)
is applied to the optimal controller design without requirement of system dynamics. Fundamentally different from the exist-
ing reagents control methods, the input time-delay and disturbance are simultaneously considered in the VI-based ADP control
scheme. Specifically, the disturbance is compensated directly by adding an inner model as the feedforward component to the
control action and the optimal feedback gain is computed by iteratively solving Riccati equation. By exploiting industrial col-
lected data, the numerical simulation proves that the proposed data-driven methodology can enable the concentrate and tailing
grade to keep tracking the target trajectories with a minimum reagents consumption.
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1 Introduction

With the rapid development in manufacturing and “the
Belt and Road” initiative, China’s emerging strategic in-
dustry showing a growing appetite for antimony, rare earth,
tungsten, graphite and other mineral materials. Meanwhile,
much attention has been attracted to the separation technolo-
gy of the above mineral resources against the background of
building a community with a shared future for mining indus-
try [1]. Flotation is a widely used, cost-effective separation
technique for mineral processing, by adding certain different
chemical reagents in pulp to modify the mineral hydrophobic
or hydrophilic properties [2]. However, in order to obtain the
desired flotation index, adjustment of reagents addition in
practice are mainly relied on experienced operators, which
may lead to poor flotation performance and high reagents
consumption. Besides, there always exist time-delay and
nonvanishing disturbance during the complex flotation pro-
cess, which are not discussed in the current literature. There-
fore, making stabilization and optimization of flotation pro-
cesses is still a challenging that needs further investigation
in order to improve the flotation performance, reduce labor
intensity and reagents consumption.

To overcome the disadvantages of high arbitrariness in
manual operation, several optimal control theories and s-
trategies have been brought up for flotation reagents control
problem such as the model-based approaches [3, 4], fuzzy-
based or rule-based expert systems [5, 6], artificial neural
networks based methods [7, 8], computer vision based con-
trol strategies [9, 10], and integration between these methods
[11, 12]. Although satisfactory achievements were made in
the productive practice, problems are also existed, like d-
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ifficulty in model acquisition, incomplete knowledge base,
weak explanation ability or poor stability. Therefore, other
alternative techniques for flotation reagents control need to
be carried out.

As an effective data-driven optimal control method, adap-
tive dynamic programming (ADP), which are sometimes
called approximate dynamic programming, has been wide-
ly utilized for industrial processes for many years, because
of its practical advantages such as its simple control struc-
ture, fewer tuning parameters, robustness and easy under-
standability [15–18]. In recent years, ADP-based control
approach has been involved in the application of industrial
processes, see, e.g., [19–22].

In this paper, ADP is used to find an adaptive optimal
controller based on value iteration (VI) algorithm, in which
the inputs time-delay and external disturbance are taken in-
to account. The purpose of flotation reagents control is to
force the flotation index to track the reference trajectories,
and minimize the reagents consumption. The proposed data-
driven optimal control technique has good convergence and
stability which is strictly proved by rigorous proofs.

The rest of this paper is organized as follows. The work-
ing mechanism of a single flotation cell is described and
the dynamic model is constructed in Section 2, which of-
fers reliable reference for the subsequent data-driven con-
trol scheme. Section 3 provides the formation of flotation
reagents control problem, and gives a data-driven control al-
gorithm based on VI. Then, the proposed VI-based ADP al-
gorithm is applied in the simulation of actual problem with
industrial data, along with convergence analysis in Section
4. Finally, Section 5 gives some brief concluding remarks.

Notations. Throughout this paper, Z+ and R repre-
sent nonnegative integers and the set of real numbers,
respectively. vec(A) = [aT1 , a

T
2 , · · · , aTm]T , where

ai ∈ Rn represents the ith column of A ∈ Rn×m. In
case of m = n, λ(A) denotes the set of all eigenval-



Fig. 1: The two-phase structure of a single flotation tank

ues. For a symmetric matrix P ∈ Rm×m, vecs(P ) =
[p11, 2p12, · · · , 2p1m, p22, 2p23, · · · , 2pm−1, pmm]T ∈
R

1
2m(m+1). For an arbitrary column vector v ∈ Rn,

vecv(v) = [v2
1 , v1v2, · · · , v1vn, v

2
2 , · · · , vn−1vn, v

2
n]T ∈

R
1
2n(n+1).

2 Flotation Process Description

The antimony flotation process consists of a rougher cel-
l, two cleaner cells and two scavenger cells. Since the
reagents addition is completed in the rougher circuit, and the
final concentrate/tailing products are respectively obtained
through the cleaner circuit and scavenger circuit separation.
Therefore, the “rougher-cleaner-scavenger” circuits can be
condensed into a single flotation tank for analyzing the anti-
mony flotation process which can be seen in Fig. 1.

The flotation tank is equipped with an impeller at the bot-
tom so as to agitate the flotation pulp, as shown in Fig. 1.
The flotation cell can be divided into two phases based on
the maldistribution of mineral particles: froth phase and pulp
phase. Both phases are vulnerable to chemical reagents. Af-
ter feeding and reagents are added to the pulp phase, the use-
ful minerals with hydrophobic property attach to air bubbles,
which move upward and form the froth layer at the top of
flotation cell. The valuable minerals in the froth layer are
scraped from the flotation tank, known as the concentrate
product. Meanwhile, the hydrophilic minerals remain in the
pulp, and are drained off along with underflow, which forms
the tailing product.

The flotation performance is usually assessed in terms of
tailing and concentrate grade. In practice, the tailing and
concentrate grade are determined by the air flow rate, im-
peller speed, feeding grade and chemical reagents (PH value,
frother, activator and collector). In our experiment, air flow
rate and impeller speed are fixed, and the feeding grade is
identified by X-ray fluorescence analyzer. To meet the pro-
duction requirement, it is possible to modify reagents addi-
tion to selectively changing mineral surface characteristics.

2.1 Modeling the antimony flotation process
From flotation process mechanism, there exists four states

of mineral particles in the flotation cell which can be seen
in Fig. 1. Based on [23], the dynamic relationship can be
modeled based on the flotation dynamics and mass balance
model:

(1). Free mineral particles in pulp phase

d

dt
(VLPψ

LP) = −kPATVLPψ
LP + kPDTVBPψ

BP

+QFeedψ
Feed −QTψ

LP +QRk
RψLF −QEψ

LP. (1)

(2). Mineral particles attached to air bubbles in pulp phase

d

dt
(VBPψ

BP) = −kPDTVBPψ
BP + kPATVLPψ

LP

−QAψ
BP +QATψ

BP. (2)

(3). Free mineral particles in froth phase

d

dt
(VLFψ

LF) = −kFATVLFψ
LF + kFDTVBFψ

BF

−QEψ
LP −QRk

RψLF −QCψ
LF. (3)

(4). Mineral particles attached to air bubbles in froth phase

d

dt
(VBFψ

BF) = −kFDTVBFψ
BF + kFATVLFψ

LF

+QAψ
BP −QACψ

BF. (4)

where ψ represents the number of mineral particles in the
corresponding state, VLP is the pulp volume in pulp phase,
VBP is the gas volume in pulp phase, VLF is the pulp volume
in froth phase, VBF is the gas volume in froth phase, kFAT is
the attachment rate constant of mineral particles-bubbles in
froth phase, kFDT is the detachment rate constant of mineral
particles and bubbles in froth phase, kPAT is the attachmen-
t rate constant of mineral particles-bubbles in pulp phase,
kPDT is the detachment rate constant of mineral particles
and bubbles in pulp phase,QFeed is the feeding flow rate,QT
is the tailing flow rate, QC is the concentrate flow rate, QR

is the flow rate of falling mineral particles from froth phase
to pulp phase, kR is the flow rate constant of falling mineral
particles from froth phase to pulp phase, QE is the flow rate
of entrained mineral particles from pulp phase to froth phase,
QA is air flow rate, QAT is the air flow rate from pulp phase
to tailing, QAC is the air flow rate from froth phase to con-
centrate, V is the flotation cell volume, VTF is the volume of
froth phase, VTP is the volume of pulp phase.

Equation (1)-(4) can be rewritten as follows by separately
adding up the mineral particles in froth phase and pulp phase
(free and attached to air bubbles)



Pulp phase:

d

dt
(VLPψ

LP + VBPψ
BP) = QFeed −QTψ

LP +QRk
RψLF

−QEψ
LP −QAψ

BP +QATψ
BP. (5)

Froth phase:

d

dt
(VLFψ

LF + VBFψ
BF) = −QEψ

LP −QRk
RψLF

−QCψ
LF +QAψ

BP −QACψ
BF. (6)

Suppose there is a physical equilibrium between mineral
particles attached to bubbles and free particles:

ψBP = αP
VLP

VBP
ψLP, (7)

ψBF = αF
VLP

VBP
ψLF. (8)

The number of particles per unit volume in pulp phase can
be represented by

ψMP = ψLP +
VBP

VLP
ψBP. (9)

Substituting (7) into (9)

ψMP = (1 + αP)ψLP (10)

Similarly, the number of particles per unit volume in froth
phase can be written as

ψMF = (1 + αF)ψLF. (11)

Substituting (7), (8), (10), (11) into (5) and (6), we have

d

dt
(VLPψ

MP) = QFeedψ
Feed−

(QT +QE +QAαP
VLP

VBP
+QTαP)

ψMP

(1 + αP)
, (12)

d

dt
(VLFψ

MF) = (QAαP
VLP

VBP
+QE)

ψMP

(1 + αP)

− (QRk
R +QC(1 + αF))

ψMF

1 + αF
. (13)

To simplify the model, the following assumptions are
made:

(1). The mineral particles are completely mixed with the
air bubbles in pulp phase;

(2). The mineral particles are completely mixed with the
air bubbles in froth phase;

(3). The mineral particles are uniform in size and shape;
(4). In steady state, QA = QAC +QAT;
(5). QC/QAC = VLF/VBF, QT/QAT = VLP/VBP.
Based on the assumption, (12) and (13) can be rewritten

as

dCMP

dt
=
QFeedC

Feed

VLP
− (QE +QAα

PVLP/VBP)

(1 + αP)VLP
CMP

+
QRk

RCMF

(1 + αF)VLP
− QTC

MP

(1 + αP)VLP
, (14)

dCMF

dt
=

(QE +QAα
PVLP/VBP)

(1 + αP)VLF
CMP

− QRk
RCMF

(1 + αF)VLF
− QCC

MF

VLF
. (15)

Note that (14) and (15) represents mineral mass balance in
pulp phase and froth phase, respectively.

In order to establish the relationship between reagents ad-
dition and flotation indexes, define the tailing grade

R1 =
CMPQT

VLPCFeedQFeed
, (16)

and the concentrate

R2 =
CMPQT

VLPCFeedQFeed
. (17)

Substitute (16) and (17) into (14) and (15)

dR1

dt
=
QT

V 2
LP

− (QE +QAα
PVLP/VBP)

(1 + αP)VLP
R1

+
QRk

RVLF

(1 + αF)VLP

QTQC

VLP
R2 −

QT

(1 + αP)VLP
R1, (18)

dR2

dt
=

(QE +QAα
PVLP/VBP)

(1 + αP)VLF

QC

QT
R1

− QRk
R

(1 + αF)VLP
R2 −

QC

VLP
R2, (19)

where VTF = VBF + VLF, VTP = VBP + VLP.
To analyze the optimal control problem, the model was

modified to study the effect of operation variables on flota-
tion performance. Based on [24]

QE =
6δ

dBP
Qair = r1QA, (20)

QR =
1− µF

µF

Qair

S
= r2QA, (21)

where δ is the thickness of the film around air bubble, dBP is
mean bubble diameter in pulp phase, µF is the average gas
content in the froth phase, r1 and r2 are variables that vary
with the operating conditions.

Equation (18) and (19) retain the essential characteristics
of (1) and (4), which draw a distinction of mineral particles-
bubbles attachment/detachment mechanism between pulp
phase and froth phase. QA, QT, and QC in practice are usu-
ally first adjusted to a reasonable value and rarely manipu-
lated during production. Therefore, the unknown parameters
in the model is the attachment/detachment rate constant αF

of mineral particles-bubbles in the froth phase, the attach-
ment/detachment rate constant αP in the pulp phase, and the
falling back rate constant kR. All these parameters are af-
fected by the reagents addition.

Empirically, the PH value O1 affects mineral floatability
by changing the mineral surface properties in the pulp phase.
We can assume that αP is related to O1 with proportion re-
lationship based on [25] and [26]. Besides, αP is associated
with collector flow rate O2, because collector promotes the
hydrophobic properties of useful minerals and facilitates the



attachment of mineral particles to bubbles. As O2 increas-
es, αP grows in a suitable range [27]. Therefore, it can be
assumed that

αP = m1O1O2. (22)

αF and kR are mainly affected by bubble residence time,
which is related to activator and frother. Because the bubble
viscosity increases with the increase of activator flow rateO3

and frother flow rate O4, which causes the bubble residence
time in froth phase increases. Thus, it becomes difficult for
the valuable minerals to fall back, which affects the final tail-
ing grade and concentrate grade [28, 29]. Assume

αF = m2O3O4, (23)

kR = m3O3 +m4O4 +m5. (24)

Hence, the dynamic model between flotation indexes and
chemical reagents can be deduced, which lays a foundation
for establishing the simulation environment for the subse-
quent data-driven optimal reagents control methods. (18)
and (19) become

dR1

dt
= −[

(r1QA +QAm1O1O2)

(1 +m1O1O2)VLPVBP
+

QT

(1 +m1O1O2)VLP
]R1

+
QT

V 2
LP

+
r2QA(m3O3 +m4O4 +m5)VLF

(1 +m1O1O2)VLP

QTQC

VLP
R2,

(25)

dR2

dt
=

(r1QA +QAm1O1O2VLP/VBP)

(1 +m1O1O2)VLF

QC

QT
R1

− r2QA(m3O3 +m4O4 +m5)

(1 +m2O3O4)VLP
R2 −

QC

VLP
R2, (26)

where m1, m2, m3, m4, m5, r1 and r2 are parameters to be
identified. The behavior of particles-bubble in the pulp phase
and froth phase can be influenced by optimizing the reagents
addition PH value O1, collector flow rate O2, activator flow
rate O3 and frother flow rate O4, which is essential to min-
eral recovery.

3 Flotation reagents control problem with input
time-delay

To address the reagents control problem during antimony
flotation process which is defined in the previous section,
a data-driven adaptive optimal control strategy is examined
in this section. The objective is to make tailings grade and
concentrate grade satisfy the production requirements and
keep the reagents consumption to a minimum.

3.1 Reagents control problem description
By defining

x1 = R1 −R1eq, (27)

x2 = R2 −R2eq, (28)

where R1 represents the tailing grade, R2 denotes the con-
centrate grade, R1eq and R2eq are the ideal values of tail-
ing grade and concentrate grade, respectively. x1 and x2 are
tracking errors.

The flotation process model defined in Section 2 can be
expresses as

ẋ = Acx+

4∑
i=1

Bciµ(t− τi) +Dc, (29)

in which x = [x1, x2]T ∈ Rn is the system state vec-
tor that needs to be tracked, µ = [µ1, µ2, µ3, µ4]T =
[O1, O2, O3, O4]T ∈ Rm is control input, Dc represents dis-
turbance. Ac ∈ Rn×n, Bci ∈ Rn×m, Dc ∈ Rn, τi is the
input time-delay, and

τi = (di − 1)h+ τ
′

i , (30)

where di is a given integer, i = 1, 2, 3, 4 satisfies 1 ≤ d1 ≤
d2 ≤ d3 ≤ d4, h is the sampling period, 0 < τ

′

i ≤ h.
Based on [30], the flotation process model (29) can be

discretized into

x(kh+ h) = eAchx(kh) +

∫ (kh+h)

kh

eAc(kh+h−s
′
)Dcds

′

+

4∑
i=1

∫ (kh+h)

kh

eAc(kh+h−s
′
)Bciµ(s

′
− τi)ds

′

= Mx(kh) + Ed

+

4∑
i=1

[Γ0iu(kh− dih) + Γ1iu(kh− (di − 1)h)], (31)

where M = eAch, Γ0i = eAc(h−τi′)
∫ τ ′i

0
eAcsdsBci, Γ1i =∫ h−τ ′i

0
eAcsdsBci, Ed =

∫ (kh+h)

kh
eAc(kh+h−s

′
)Dcds

′
.

Define ξk = [xT (k), uT (k − d4), uT (k − d4 +
1), · · · , uT (k − 1)]T ∈ Rq , q = n + md4. System (31)
can be written as:

ξk+1 = Hdξk +Gduk + Ed, (32)

in which Hd and Gd are described by

Hd =


Φ Γ0i Γ1i · · · 0
0 0 Im · · · 0
...

...
...

. . .
...

0 0 0 · · · Im
0 0 0 · · · 0

, Gd =


0
0
...
0
Im

.

First, define an internal model v to reject the external dis-
turbance based on [31]

vk+1 = vk + xk. (33)

Define zk = [ξTk , v
T
k ]T , one has

zk+1 = Adzk +Bduk +Dd, (34)

and
xk = Cdzk, (35)

in which Ad =

[
Hd 0
C I2

]
, Bd =

[
Gd
0

]
, Dd =

[
Ed
0

]
, Cd =[

In 0n×(nz−n)

]
, nz = q + n.

Theorem 1. Given a matrix K =
[
Kξ Kv

]
∈ Rm×nz

makes all of the eigenvalues of Ad − BdK are in the unit
circle. The controller can be designed as uk = −Kzk. Then,
according to (34), we have lim

k→∞
xk = 0, the asymptotic

tracking problem with input time-delay and disturbance is
solved.



Proof. According to [31, Lemma 1.37], there exists an op-
timal feedback gain K. The closed-loop system can be ex-
pressed as

zk+1 = (Ad −BdK)zk +Dd. (36)

Then, we define the stable state z∗

z∗ = [Inz − (Ad −BdK)]−1Dd

= [ξ∗, v∗]T , (37)

where v∗ is the steady state value of the compensator v,
which is determined by K.

Kε = (BTd Pj+1Bd +R)−1BTd Pj+1Ad (38)

in which Pj = ATd Pj+1(Ad−BdKε) +Q. The disturbance
term compensator

vk = (Ad −BdKε)
T vk+1 − (Ad −BdKε)

TPk+1Ed (39)

and the corresponding control gain

Kv = (BTd Pj+1Bd +R)−1BTd . (40)

Therefore, the controller is

uk = Kεzk +Kvvk+1. (41)

Let K =
[
Kε Kv

]
, the steady-state input is u∗ =

−Kz∗.
Next, define the state tracking error and input error as

z̄k = zk − z∗, ūk = uk − u∗, respectively. According to
(36), we have

z̄k+1 = Adz̄k +Bdūk + (Ad − Inz
)z∗ +Bdu

∗ +Dd

= (Ad −BdK)z̄k. (42)

Because Ad −BdK is a Schur matrix, one can check that
lim
k→∞

z̄k = 0, which means lim
k→∞

zk = z∗, lim
k→∞

xk = x∗ =

0, lim
k→∞

uk = u∗. Thus, the stability of the closed-loop sys-

tem is guaranteed. �

According to the above analysis, the objective of flotation
reagents optimal control problem is to find a control strate-
gy that forces the tracking error zk to converge to zero with
a minimum reagents consumption O1-O4 while the distur-
bance Dd and input time-delay τi exist. Note that the com-
pensator v is an essential step to realize the asymptotic track-
ing of tailing grade and concentrate grade during flotation
process.

The reagents control problem can be represented as the
following optimal control problem, also known as linear
quadratic regulator (LQR) problem:

min
ū

∞∑
k=0

z̄Tk Qz̄k + ūTkRūk

subject to z̄k+1 = Adz̄k +Bdūk,

where Q = QT > 0, R > 0, (Ad,
√
Q) is observable. The

target is to find the optimal feedback gain K∗ by calculating
LQR problem, and design a controller ūk = −K∗z̄k. Thus,

the asymptotic tracking of the closed-loop system (34) is re-
alized.

According to linear optimal control theory [32], P ∗ =
P ∗T > 0 is the unique solution for the following Algebra
Riccati Equation (ARE):

ATd PjAd−Pj+Q−ATd PjBd
(
R+BTd PjBd

)−1
BTd PjAd = 0.

(43)
K∗ can be solved by the following equation

K∗ =
(
R+BTd PjBd

)−1
BTd P

∗Ad. (44)

However, P in DARE (43) is nonlinear, which is generally
difficult to solve directly. The value iteration (VI) algorithm
can be used to get an approximate solution of (43).

Algorithm 1 VI Algorithm
1: Choose a small enough constant ε > 0, j ← 0, Pj ← 0.
2: repeat
3: Calculate Pj+1 and Kj+1 by the following equation

Pj+1 ← AT
d PjAd+Q−AT

d PjBd(Rd+B
T
d PjBd)

−1BT
d PjAd

(45)
Kj+1 ← (R+BT

d Pj+1Bd)
−1BT

d Pj+1Ad (46)

4: j ← j + 1
5: until |Pj − Pj−1| < ε.

Remark 1. Considering Pj andKj defined in (45) and (46),
for all sequences {Pj}∞j=1 and {Kj}∞j=1, it has

(1). lim
j→∞

Kj = K∗

(2). lim
j→∞

Pj = P ∗

[33] has proved the convergence of this model-based con-
trol method. The model-based controller design procedure
is given in Algorithm 1, from which we can get the optimal
feedback gain K∗ based on (45)-(46).

Obviously, the system coefficient matrices Ad, Bd, and
Dd are required if the model-based approach is employed.
However, it is costly to identify an accurate system model
because of the complexity and large time delay of the actu-
al flotation process. Therefore, a data-driven adaptive opti-
mal control method is proposed to solve the reagents control
problem in the presence of input time-delay and disturbance.

3.2 Data-Driven ADP controller design
The purpose for the flotation reagents control problem is

to design an optimal controller, so as to enable the system
state x to track the target value, and keep the reagents con-
sumption u to a minimum. This paper presents a VI-based
ADP algorithm to find the optimal control strategy with on-
line measurement data, and the control structure is shown
in Fig. 2, where Z−1 is delay operator. The real-time tail-
ing and concentrate grade are measured online. ξk supplies
the current system state x and the historical input u. The
feedback gain K is calculated by using the VI-based ADP
algorithm with vk functions as a compensator, which facili-
tate the tailing grade R1 and concentrate grade R2 tracking
the target values Req = [R1eq, R2eq]

T with a small tracking
error x = [x1, x2]T .

System (34) can be written as

zk+1 = Ajzk +Bd(Kjzk + uk) +Dd, (47)



Fig. 2: Reagents control structure under ADP controller

in which Aj = Ad −BdKj .
A data-driven VI-based ADP controller design method is

given, in which it starts with a random function, then find an
improved function during the iteration until the optimal one
is chosen.

Defining the following matrix:

Hj =

 H11
j H12

j H13
j(

H11
j

)T
H22
j H23

j(
H13
j

)T (
H23
j

)T
H33
j


:=

BTd PjBd BTd PjDd BTd PjAd
DT
d PjBd DT

d PjAd DT
d PjAd

ATd PjBd ATd PjDd ATd PjAd

 .
By (45) and (47), the VI equation can be written as

zTk+1Qzk+1

=− zTk+1F(Pj)zk+1 + zTk+1Pj+1zk+1

=− zTk+1

[
H33
j − (H13

j )T (R+H11
j )−1H13

j

]
zk+1

+

uk1
zk

⊗
uk1
zk

T

vec(Hj+1)

=zTk+1

[
H33
j − (H13

j )T (R+H11
j )−1H13

j

]
zk+1

+

vecv

uk1
zk

T vecs(Hj+1)

=− φjk+1 + ψTk vecs(Hj+1), (48)

where
F (Pj) = ATd PjAd−ATd PjBd

(
R+BTd PjBd

)−1
BTd PjAd,

φjk+1 = −zTk+1

[
H33
j −

(
H13
j

)T (
R+H11

j

)−1
H13
j

]
zk+1,

ψk = vecv
([
uTk 1 zTk

]T)
, ⊗ is Kronecker product.

Algorithm 2 VI-based ADP algorithm for flotation reagents
control problem

1: Find a small enough constant ε > 0.
2: Given an initial control policy uk in [0, k0,0), j ← 0, Hj ← 0,
Kj ← 0.

3: repeat
4: Employ control strategy uj

k = −Kjzk + ek in [kj,0, kj,s].
5: Solve Hj+1 through (49)
6: Kj+1 ← (R+H11

j+1)
−1H13

j+1

7: j ← j + 1
8: until |Hj −Hj−1| < ε.

For any sampling instant k ∈ Z+, (48) holds. In order to
find outHj+1, z and u are collected within k0 < k1 < · · · <
kN , in which N is a big enough integer.

By defining ψV = [ψk0, ψk1, · · · , ψks]T ,
ΦVj = [zTk0+1Qzk0+1 + φjk0+1, z

T
k1+1Qzk1+1 +

φjk1+1, · · · , zTks+1Qzks+1 + φjks+1]T .
(48) can be expressed as

ψV vecs (Hj+1) = ΦVj . (49)

Assumption 1. There exists a positive integer s0 ∈ Z+, for
any s > s0, ψV is full of rank.

Remark 2. In order to make the Assumption 1 holds, let
uk = −K0zk + ek as control input, in which ek is explo-
ration noise [34].

Under Assumption 1, we obtain the unique solution to
(49) via the least square method

vecs(Hj+1) = (ψTV ψV )−1ψTV ΦVj . (50)

Therefore, the optimal feedback gain Kj+1 can be updat-
ed through (50)

Kj+1 =
(
R+H11

j

)−1 (
H13
j

)
. (51)

Finally, the flotation reagents control method based on
ADP is given in Algorithm 2, which only require the system
input and state information instead of the flotation mathe-
matical model.

The following theorem shows the convergence of Algo-
rithm 2.

Theorem 2. Under Assumption 1 and the proposed VI-
based ADP Algorithm 2, it can be known that:
(1). lim

j→∞
Hj = H∗d ;

(2). lim
j→∞

Kj = K∗d .

where H∗d =

BTd P ∗dBd BTd P
∗
dDd BTd P

∗
dAd

DT
d P
∗
dBd DT

d P
∗
dAd DT

d P
∗
dAd

ATd P
∗
dBd ATd P

∗
dDd ATd P

∗
dAd

.

Proof. If Pj+1 is the solution of (45), the unique solution
Hj+1 can be obtained. Based on (48), it can be clearly see
that Hj+1 satisfies (50). Let H be the solution of (50), we
haveH = Hj+1 because ψV is full of rank, which means the
least squares solution of (50) is equivalent to the solution of
Algorithm 1. Therefore, the convergence of Hj+1 and Kj+1

is proved. �

Then, the following theorem shows the local stability of
the proposed VI-based ADP control method.

Theorem 3. Employing the control strategy Kj∗ iteratively
obtained by Algorthm 2, the flotation performance reaches
the target value, i.e., lim

k→∞
xk = 0.

Proof. According to Theorem 2, Ad − BdKj∗ is a Schur
matrix, employ the optimal controller learned from VI-based
ADP algorithm to the closed-loop system, which satisfies

z̄k+1 = (Ad −BdKj∗)z̄k. (52)

Based on Theorem 1, one can check that lim
k→∞

xk = 0. �



Fig. 3: Hj and Kj compared with their optimal values

Fig. 4: System states with VI-based ADP control scheme

Fig. 5: Control inputs with VI-based ADP control scheme

4 Simulation result

In this section, the efficacy of the proposed VI-based AD-
P control approach is verified by numerical simulation. In
order to model the reagents control in flotation process, we
collect 4000 groups of reagent addition data and the corre-
sponding 4000 groups of taling grade and concentrate grade
data. In the flotation process model (29),

Ac =

[
−11.6773 −0.1531
−1368.6 −22.5954

]
,

Bc1 =

[
−0.1429 0 0 0
−12.4712 0 0 0

]
,

Bc2 =

[
0 0.0011 0 0
0 −0.0567 0 0

]
,

Bc3 =

[
0 0 0.00007 0
0 0 0.1613 0

]
,

Bc4 =

[
0 0 0 −0.0016
0 0 0 −0.0491

]
,

Dc = [0.3388, 18.8626]T .
The input time-delay is set to τ1 = 0.03s, τ2 = 0.15s,
τ3 = 0.25s, τ4 = 0.37s, the sampling period is 0.1s, the
weight matrix Q = 10−5I18, R = I4. The optimal control
gain K∗ is obtained by calculating DARE (43) with matrix
coefficients of the state space model.

Simulation has been carried out based on (34) and (35),
where the exploration noise ek is generated by the random
generator. From Fig. 3, it can be seen that Hj and Kj it-
eratively learned from Algorithm 2 with industrial collected
data converge to the optimal valuesH∗ andK∗ calculated by
DARE with flotation process model after 14 iterations. Thus,
the adaptive optimal controller uk = −Kzk is obtained.

Then, the optimal control strategy learned from the Algo-
rithm 2 is applied to the closed-loop system after k = 30,
the following results are obtained: x1 and x2 converge to 0
with very small tracking error, as shown in Fig. 4. Mean-
while, Fig. 5 provides the recommended reagents addition
u = [u1, u2, u3, u4].

The significant advantage of the proposed method is its
simplicity, which is independent of the precise knowledge
of flotation dynamics with good disturbance rejection and
fast setpoint tracking. The simulation demonstrated that the
flotation process can be effectively controlled by the VI-
based ADP algorithm.

5 Conclusions

In terms of input time-delay caused by the reagents reac-
tion and material transfer, as well as the impacts of grinding
process changes, a VI-based ADP algorithm is used to find
a desirable adaptive optimal controller and implemented on-
line using measurable data. In particular, an inner model
is bring forward for compensating the external disturbance,
and the optimal control action is derived by solving the Ric-
cati equation with the proposed data-driven control policy.
The simulation results show that the proposed ADP-based
approach is suitable for minimizing the error between the
flotation index and its reference, without the knowledge of
system dynamics. In addition, the proposed learning-based
technique can be easily extended to control other manipu-
lated variables of the whole flotation plants, like pulp level
and air inlet rate. These extension will be uncovered in later
research.
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