
Obstacle-Avoidance Distributed Optimal Coordination of
Multiple Euler-Lagrangian Systems

Liwei An1, Guang-Hong Yang1,2

1. College of Information Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
E-mail: liwei.an@foxmail.com

2. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, 110819, P. R. China
E-mail: yangguanghong@ise.neu.edu.cn

Abstract: This paper investigates the problem of obstacle avoidance in the distributed optimal coordination for multiple uncertain
Euler-Lagrangian (EL) systems. The main challenge focuses on the co-design of obstacle avoidance mechanism and distributed
optimization strategy. To address it, a novel safety barrier function in the closed form of path integrals is constructed. By
combining distributed optimization algorithm and adaptive tracking control, a distributed coordination algorithm is proposed.
Based on Lyapunov method and boundedness analysis for the barrier function, it is proven that the global convergence and
collision avoidance of the EL systems can be guaranteed in the presence of parametric uncertainties.
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1 Introduction

Distributed optimization over multi-agent networks has
attracted much attention due to various practical applications
in convex computation, resource allocation, and localization
[1, 2]. The aim is to solve an optimization problem cooper-
atively in a distributed manner where the team performance
function is composed of a sum of local objective function-
s. With potential applications of cyber-physical systems, the
distributed optimization with physical dynamics as execu-
tive bodies, termed distributed optimal coordination (DOC)
[3], can be completed based on effective combination of the
(cyber) computation/communication and the (physical) dy-
namics/ control in many applications, such as the coopera-
tive search of signal sources [4, 5], the motion coordination
[8], the distributed state estimation [6] and the distributed
optimal power flow [7]. Recently, many important results on
DOC for dynamical multi-agent networks are developed. In
[9], the problem is fundamentally investigated for a class of
continuous-time multi-agent systems with single-integrator
dynamics, by explicitly taking into account nonuniform gra-
dient gains, finite-time convergence, and a common convex
constraint set. Further, Zhang and Hong [10] and Xie and
Lin [11] extend the traditional distributed optimization algo-
rithm to high-order multi-agent systems. In [3], Zhang et
al. propose a gradient-based DOC algorithm with adaptive
mechanism for multiple uncertain heterogeneous EL system-
s. Considering that many physical agents are usually mod-
eled by general linear dynamics, the distributed optimization
algorithms are developed for general continuous-time linear
multi-agent systems in [12, 13]. However, in these results
some safety issues such as collisions with obstacles are not
considered.

Obstacle avoidance as an important safety objective has
been widely investigated. Many important obstacle avoid-
ance methods have been developed in various multi-agent
coordination controls, such as objective tracking [20], trajec-
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tory tracking [21], formation control [17], navigation control
[19], leader-follower [18] and general coordination controls
[16]. However, few results have been obtained for multi-
agent collision avoidance within the DOC problem frame-
work. Note that the proposed obstacle-avoidance method
in [16] is possibly applicable to the current DOC problem.
However, the obtained approximate solution may not real-
ize the original control objective. In this paper we focus on
simultaneously achieving two objectives: the DOC and the
obstacle avoidance.

In this paper, the obstacle-avoidance DOC problem is s-
tudied for a group of uncertain EL systems which move on
the n-dimensional Euclidean space, possibly populating stat-
ic obstacles. The objective is to guarantee all the EL agents
to achieve consensus while minimizing a given team perfor-
mance function and avoiding collisions with the obstacles.
The technical contributions are summarized as follows:

• By extending the pervious DOC problem [3] and ob-
stacle avoidance problem [20], the obstacle-avoidance
DOC is considered, intrinsically a multi-objective prob-
lem. To the best of our knowledge, this is the first trial
on DOC protocol design with collision-free guarantees.

• A fully distributed algorithm is developed which con-
sists of the secure virtual distributed optimization al-
gorithm and adaptive tracking control structure. Safe-
ty barrier certificates in the closed form of path inte-
grals into adaptive nonlinear control can guarantee the
obstacle-avoidance behaviors.

• By combining Lyapunov method and boundedness
analysis for the barrier functions, it is proved that the
proposed protocol can guarantee the global conver-
gence of the optimal coordination while avoiding colli-
sions with obstacles, even in the presence of parametric
uncertainties.

Notations: The symbols N and R denote the sets of
natural and real numbers, respectively. The subset of
N, {1, · · · , N} is denoted by [N ]. Rn denotes the n-
dimensional Euclidean space. The notation ∥ · ∥ refer-
s to the Euclidean vector norm. Further, for a positive-
define matrix W ∈ Rn×n and a vector y ∈ Rn, denote



∥y∥W =
√

yTWy. In represents the n-dimension iden-
tity matrix. Denote 1N = [1, · · · , 1]T ∈ RN . Given
a set of matrices Xi ∈ Rni×m, i = 1, · · · , N , we de-
note by col(X1, · · · , XN ) ∈ R(

∑N
i=1 ni)×m the block matrix

[XT
1 , · · · , XT

N ]T .

2 Problem Formulation and Preliminaries

Consider a network system composed of N heteroge-
neous EL agents with an associated undirected communi-
cation graph G = (V, E), moving on the n-dimensional Eu-
clidean space, possibly populating static obstacles. The dy-
namics of each agent vi ∈ E is described as follows:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi (1)

where qi, q̇i ∈ Rn denote the generalized position and ve-
locity vectors, respectively; Mi(qi) ∈ Rn×n is the inerti-
a matrix; Ci(qi, q̇i)q̇i ∈ Rn is the vector for Coriolis and
centripetal forces; Gi(qi) ∈ Rn is the gravity vector; and
τi ∈ Rn is the control force.

The dynamics (1) satisfies the following properties [15]:
Property 1. The inertia matrix Mi(qi) is symmetric, pos-

itive definite, and satisfies that ∥Mi(qi)∥ ≤ m, where m is
an unknown constant.

Property 2. Ṁi(qi)− 2Ci(qi, q̇i) is skew symmetric.
Property 3. For any x, y ∈ Rn, Mi(qi)x+ Ci(qi, q̇i)y +

Gi(qi) = Ωi(qi, q̇i, x, y)φ
∗
i , where φ∗

i ∈ Rp is a constant
vector consisting of the uncertain parameters of EL system
(1), and Ωi(qi, q̇i, x, y) ∈ Rn×p is a known regression ma-
trix that is only dependent on state variables.

Remark 1. The EL system is a class of important physical
systems which can be used to describe many mechanical sys-
tems, such as mobile robots, rigid bodies, and autonomous
vehicles [15].

Suppose that there are M ≥ 0 static obstacles and let
dcj ∈ Rn and Dj ⊂ Rn denote the center of mass of the
jth obstacle and the region of the Euclidean space that it
occupies, respectively. In what follows elliptical obstacles
are considered, i.e.,

Dj = {q ∈ Rn : ∥q − dcj∥2Dj
≤ ρ2j}

where ρj > 0 and Dj = DT
j > 0. Note that if a static ob-

stacle is not elliptical, possibly even in the presence of nons-
mooth edges, it is possible to enclose the obstacle within an
ellipse, thus smoothing the obstacle. This can be achieved by
exploiting the notion of geometric moments of the portion of
the Euclidean space that constitutes the obstacle [22, 23]. In
fact, the moments up to order 2 are related to the geometric
parameters of the smallest ellipse that contains the region of
interest, see e.g., [23].

From the safety considerations of the EL systems, it is re-
quired that all agents can bypass the obstacles. An obstacle-
avoidance trajectory for the multi-agent EL system (1) is de-
fined as follows.

Definition 1 [20]. The EL multi-agent system (1) is said
to be obstacle-avoidance if ∥qi(t)−dcj∥Dj > ρj for all t ≥ 0,
i ∈ [N ] and j ∈ [M ].

It should be pointed out that, in this paper we ignore the
critical condition that the running trajectories of the agents
are tangent with the boundaries of the obstacle regions.

In this EL multi-agent system, agent vi ∈ V is associated
with a local cost function fi : Rn → R, which is privately
known by this agent. The global team performance func-
tion of the whole system is defined as f(s) =

∑N
i=1 fi(si),

where s = col(s1, ..., sn). The mission of the EL multi-
agent system (1) is to achieve consensus at the optimal gen-
eralized position q∗ = argmins∈Rn

∑N
i=1 fi(s). Moreover,

we assume that each EL agent can sense all the obstacles
and sufficient time is provided to accomplish the optimiza-
tion task [20].

Assumption 1 [24]. The function fi is differentiable and
convex for all i = 1, · · · , N .

Assumption 2 [24]. The graph G is undirected and con-
nected.

Assumption 3 [20]. The initial position and target po-
sition of each agent do not cross the obstacle region, i.e.,
∥qi(0)− dcj∥Dj > ρj and ∥q∗ − dcj∥Dj > ρj for all i ∈ [N ]
and j ∈ [M ].

Assumptions 1 and 2 are common in the existing litera-
ture on distributed convex optimization [3, 24]. Assumption
3 guarantees that the initial and target positions are outside
the obstacle range. Finally, to guarantee the feasibility of
problem, it is assumed that the static elliptical obstacles do
not form an impermeable boundary about initial and target
positions of one or more agents.

Denote q = col(q1, · · · , qN ) and L = L ⊗ In. Under
Assumption 2, the primary DOC objective is equivalent to

min f(q) =
N∑
i=1

fi(qi), subject to Lq = 0 (2)

Since f(q) is convex and then the equality constraint is lin-
ear, the constrained optimization problem is feasible. The
following lemma gives the analysis on the optimal solution
of (2).

Lemma 1 [24]. Under Assumptions 1 and 2, define

F (q, χ) = f(q) + qTLχ+
1

2
qTLq.

Then F is differentiable and convex in its first argument and
linear in its second, and:

(i) if (q⋆, χ⋆) is a saddle point of F , then q⋆ is a solution
of (2);

(ii) if q⋆ is a solution of (2), there exists χ⋆ with Lχ⋆ =
∇F (q⋆, χ⋆) such that (q⋆, χ⋆) is a saddle point of F .

3 Obstacle-Avoidance DOC Strategy Design

3.1 Algorithm
To derive the secure DOC strategy in presence of the ob-

stacles, we first construct a virtual control command qri as
the solution of the following dynamic equation:

q̇ri =−∇fi(q
r
i )−

∑
j∈Ni

[∆qrij +∆χij ]

χ̇i =
∑
j∈Ni

∆qrij
(3)

where ∆qrij = qri − qrj and ∆χij = χi − χj .
Lemma 2 [24]. The virtual command derived by dynam-

ics (3) satisfies limt→∞ qri (t) = q∗ for all i ∈ [N ].



In fact, Proposition 1 shows that the design protocol of
DOC for single-integrator systems moving in an obstacle-
free environment. However, in an obstacle-populated envi-
ronment the virtual command trajectory qri (t) derived by (3)
may still collide with obstacle Dj , i.e., there may exist a time
t ≥ 0 such that ∥qri (t) − dcj∥Dj ≤ ρj . To derive a secure
command trajectory, we should choose an appropriate initial
value qri (0) such that

∥qri (t)− dcj∥Dj ≥ ρj + δi, ∀t ≥ 0

where δi is a positive constant. The following trajectory ini-
tialization algorithm provides a selection method.

Algorithm 1. Trajectory initialization of agent vi
1. Select any initial value q̂ri (0), and simulate the overall

trajectory q̂ri (t) according to dynamics (3)
2. Set Ti = argminj{T : ∥q̂ri (t)−dcj∥Dj ≥ ρj+δi, ∀t ≥

T}
3. Compute T = maxi∈[N ] Ti as Maximum Consensus

Algorithm [25]
4. Set qri (0) = q̂ri (T )

According to the definition of T in Algorithm 1, it can
be seen that ∥qri (t) − dcj∥Dj ≥ ρj + δi, ∀t ≥ 0 is ensured
along with the trajectory with qri (0) as the initial state. Under
Assumption 3, the existence of T can be guaranteed.

Based on Lemma 2, the DOC problem can be recast in the
following framework of tracking problem.

Problem 1. Consider a multi-agent EL system consisting
of N agents with dynamics (1). Problem 1 can be recast into
finding control inputs τi, i = 1, · · · , N that steer agent vi
asymptotically tracks qri while bypassing the obstacles.

To address Problem 1, we define the barrier function
BDj (qi) = 2/NDj (qi) with

NDj (qi) =

{
0, if ∥qi − dcj∥Dj ≤ ρj

∥qi − dcj∥2Dj
− ρ2j , otherwise

Using the auxiliary dynamics (3), we design the adaptive
tracking controller

αi = −[ki,1 + BD(qi)](qi − qri )−∇fi(q
r
i )

−
∑
j∈Ni

[∆qrij +∆χij ] (4)

ḂD(qi) = −
M∑
j=1

BDj (qi)(qi − dcj)
T q̇i (5)

τi = Ωi(qi, q̇i,−Λi, αi)φ̂i − k̂i(q̇i − αi) + qri − qi (6)
˙̂φi = Γi,1Ωi(qi, q̇i,−Λi, αi)(αi − q̇i) (7)
˙̂
ki = γi∥q̇i − αi∥2 (8)

where ki,1 > 1 is the design parameter and φ̂i and k̂i are
the estimates of φ∗

i and ki, respectively, ki are some con-
stants such that K = diag{k1, · · · , kN} such that K >
MT (q)(L4 + L3)M(q)/4 and

Λi =
∂∇fi(q

r
i )

∂qri
q̇ri +

∑
j∈Ni

(q̇i − q̇j) + [ki,1 + BD(qi)](q̇i − q̇ri )

−

 M∑
j=1

BDj (qi)(qi − dcj)
T q̇i

 (qi − qri ).

3.2 Convergence analysis
The following theorem gives the convergence analysis of

the closed-loop system..
Theorem 1. Consider the multi-agent EL system (1) in

an obstacle-populated environment. Under Assumptions 1–
3, the adaptive distributed controller (3)–(8) globally steers
the multi-agent EL system (1) to achieve consensus with ob-
stacle avoidance guarantee. Moreover, all the closed-loop
systems are uniformly ultimately bounded.

Before beginning the proof of Theorem 1, we introduce
the following notations. Let q⋆ = 1N ⊗ q∗, where q∗ =
argmins∈Rn

∑N
i=1 fi(s). By Lemma 1, there exists χ⋆ such

that (q⋆, χ⋆) is the saddle point of F . We denote

q̇ = col(q̇1, · · · , q̇N ), q̇r = col(q̇r1, · · · , q̇rN ),

∇f(q) = col(∇f1(q1), · · · ,∇fN (qN )),

χ = col(χ1, · · · , χN ), q = col(q1, · · · , qN ),

q̇ = col(q̇1, · · · , q̇N ), τ = col(τ1, · · · , τN ),

φ∗ = col(φ∗
1, · · · , φ∗

N ), φ̂ = col(φ̂1, · · · , φ̂N ),

G(q) = col(G1(q1), · · · , GN (qN )), α = col(α1, · · · , αN )

Γ1 = diag(Γ1,1, · · · ,Γ1,N ),Γ2 = diag(Γ2,1, · · · ,Γ2,N ),

B(q) = diag(BD(q1), · · · ,BD(qN )),

K1 = diag(k1,1, · · · , k1,N ), K̂ = diag(k̂1, · · · , k̂N ),

M(q) = diag(M1(q1), · · · ,MN (qN )),

C(q, q̇) = diag(C1(q1, q̇1), · · · , CN (qN , q̇N )),

Ω(q, q̇,−Λ, α) = diag(Ω1(q1, q̇1,−Λ1, α1),

· · · ,ΩN (qN , q̇N ,−ΛN , αN )).

Then state equations (1) and controller (3)–(8) can be
rewritten as the compact form, respectively,

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (9)

and

q̇r =−∇f(qr)− L(qr + χ)

χ̇ =Lqr

α =− [K1 +B(q)](q − qr)−∇f(qr)− L(qr + χ)

τ =Ω(q, q̇,−Λ, q̇)φ̂− K̂(q̇ − α) + (qr − q)

˙̂φ =Γ1Ω(q, q̇,−Λ, q̇r)(q̇ − α)

˙̂
K =Γ∥q̇ − α∥2

(10)
where

Λ =
∂∇f(q)

∂q
q̇+Lq̇+[K1+B(q)](q̇− q̇r)+ Ḃ(q)(q− qr).

Next, we show the convergence of the closed-loop sys-
tem (9)–(10). The convergence analysis is established based
on Lyapunov method and boundedness analysis for barrier
functions BD(qi) for all i = 1, · · · , N , where the Lyapunov
function candidate is selected as V = V0 + V1 + V2 with

V0 =
1

2
∥qr − q⋆∥2 + 1

2
∥χ− χ⋆∥2

V1 =
1

2
∥q − qr∥2,

V2 =
1

2
zTM(q)z +

1

2
φ̃TΓ−1

1 φ̃+

N∑
i=1

1

2γi
k̃2i ,



where z = q̇ − α and φ̃ = φ∗ − φ̂, and k̃i = ki − k̂i for
i = 1, · · · , N are the corresponding estimate errors.

The proof is divided into three steps. First, we establish a
Lyapunov analysis on V . Then, we prove the boundedness of
barrier functions BD(qi) for i = 1, · · · , N by contradiction.
Finally, we show the convergence of the overall algorithm
and the boundedness of all the closed-loop signals.

Proposition 1. The following inequality holds:

V̇ ≤− ε(∥z∥2 + ∥q − qr∥2)−
N∑
i=1

BD(qi)∥qi − qri ∥2

(11)

where ε is a sufficiently small positive constant.
Proof. We show this result by three steps:
Step 1. The time derivative of V0 along with (10) can be

expressed as

V̇0 =(qr − q⋆)T q̇r + (χ− χ⋆)TLqr

=(qr − q⋆)T [−∇f(qr)− 2Lqr − Lχ] + (χ− χ⋆)TLqr

=(qr − q⋆)T [−∇f(qr)− L(qr + χ)]

+ (χ− χ⋆)TLqr − qTr Lqr

=− (qr − q⋆)T
∂F (qr, χ)

∂qr
+ (χ− χ⋆)TLqr − qTr Lqr

(a)

≤F (q⋆, χ)− F (qr, χ) + (χ− χ⋆)TLqr − qTr Lqr

=F (q⋆, χ)− F (q, χ) + F (q, χ)− F (q, χ⋆)− qTr Lqr

=F (q⋆, χ)− F (q⋆, χ⋆) + F (q⋆, χ⋆)− F (q, χ⋆)− qTr Lqr
(b)

≤ − qTr Lqr (12)

where inequality: (a) follows the fact that F (q, χ) is convex
in its first argument q; (b) follows from the fact that (q⋆, χ⋆)
is the saddle point of F (q, χ).

Step 2. The time derivative of V1 along with (10) can be
expressed as

V̇1 =(q − qr)
T [q̇ +∇f(qr) + Lqr + Lχ]

=− (q − qr)
T [K1 +B(q)](q − qr) + (q − qr)

T z
(13)

Step 3. Consider the dynamics of z = q̇ − α. Its time
derivative can be expressed as

ż =M−1(q)[τ − C(q, q̇)q̇ −G(q)] +K1(q̇ − q̇r) +
∂∇f(q)

∂q
q̇

+ Lq̇ + L2q +B(q)(q̇ − q̇r) + Ḃ(q)(q − qr) (14)

where M−1(q) is well-defined by Property 1.
Then, the time derivative of V2 along with (14) can be

computed by

V̇2 =zTM(q)ż +
1

2
zT Ṁ(q)z − φ̃TΓ−1

1
˙̂φ−

N∑
i=1

1

γi
k̃i
˙̂
ki

(a)
= zT

[
τ − C(q, q̇)q̇ −G(q) +M(q)

(
∂∇f(q)

∂q
q̇ + Lq̇

+L2(q − qr) + L2qr +B(q)(q̇ − q̇r) + Ḃ(q)(q − qr)
)]

+ zTC(q, µ)z − φ̃TΓ−1
1

˙̂φ−
N∑
i=1

1

γi
k̃i
˙̂
ki

(b)

≤zT
[
τ − C(q, q̇)q̇ −G(q) +M(q)

(
∂∇f(q)

∂q
q̇ + Lq̇

+B(q)(q̇ − q̇r) + Ḃ(q)(q − qr)
)

+MT (q)(L4 + L3)M(q)z/4
]
+ zTC(q, q̇)z

− φ̃TΓ−1
1

˙̂φ−
N∑
i=1

1

γi
k̃i
˙̂
ki + qTr Lqr

(c)
=zT [τ + (K − εI)z − Ω(q, q̇,−Λ, q̇)φ] + qTr Lqr

− φ̃TΓ−1
1

˙̂φ+
N∑
i=1

1

γi
k̃i(γiz

2
i − ˙̂

ki) (15)

where equality: (a) follows from Property 2; (b) follows
from the Young’s inequality

zTM(q)L2(q − qr) ≤ ∥q − qr∥2 +
1

4
zTMT (q)L4M(q)z;

zTM(q)L2qr ≤ qTr Lqr +
1

4
zTMT (q)L3M(q)z;

(c) follows from Property 3 and MT (q)(L4+L3)M(q)/4 ≤
K − εI with ε being a sufficiently small positive constant.

Substituting the adaptive controller and update laws in
(10) into (15) yields that

V̇2 ≤− ε∥z∥2 − φ̃TΓ−1
1 [Γ1Ω(q, q̇,−Λ, q̇r)z + ˙̂φ]

+ qTr Lqr − (q − qr)
T z + ∥q − qr∥2

=− ε∥z∥2 + qTr Lqr − (q − qr)
T z + ∥q − qr∥2 (16)

which follows from the design ˙̂φ = −Γ1Ω(q, q̇,−Λ, q̇r)z.
Finally, consider the overall Lyapunov function V . Based

on (12), (13) and (16), the inequality (11) is guaranteed. �
Next, we prove the boundedness of the barrier function.
Proposition 2. The barrier functions BDj (qi) for all i =

1, · · · , N and j = 1, · · · ,M are bounded, and the EL multi-
agent system can avoid colliding with the obstacles.

Proof. We show that the boundedness of BDj (qi) for all
i = 1, · · · , N and j = 1, · · · ,M based on (11) by con-
tradiction. To this end, we assume there exists a time in-
stant T , an agent vi∗ ∈ V and obstacle region Dj∗ such
that limt→T BDj∗ (qi∗(t)) = +∞ or equivalently ∥qi∗(T )−
dcj∗∥Dj = ρj∗ and ∥qi∗(t) − dcj∗∥Dj > ρj∗ ,∀t < T . Since
qi∗(t) is continuous, then there exists a time Tδ ≥ T such
that ∥qi∗(t) − dcj∗∥Dj ≤ ρj∗ for all t ∈ [T, Tδ]

1. Recalling
(11), one has

∥qi∗(t)− qri∗(t)∥Dj = ∥qi∗(t)− qcj∗ + qcj∗ − qri∗(t)∥Dj

≥
∣∣∥qcj∗ − qri∗(t)∥Dj − ∥qi∗(t)− qcj∗∥Dj

∣∣
≥δi, ∀t ∈ [T, Tδ] (17)

Then by computation, we have

BD(qi∗(t))

=−
M∑
j=1

∫ t

α=0

BDj (qi∗(α))(qi∗(α)− dcj)
T q̇i∗(α)dα

=
M∑
j=1

∫ ∥qi∗ (0)−dc
j∥

2
Dj

∥qi∗ (t)−dc
j∥2

Dj

1

2
BDj (qi∗(α))d∥qi∗ − dcj∥2Dj

1Note that here we have ignored the case where the running trajectory
of agent vi∗ is tangent with the obstacle boundary ∂Dj .



≥
∫ ∥qi∗ (0)−dc

j∗∥
2
Dj

∥qi∗ (t)−dc
j∗∥

2
Dj

1

2
BDj∗ (qi∗)d∥qi∗ − dcj∗∥2Dj∗

− ξ

≥
∫ ∥qi∗ (0)−dc

j∗∥
2
Dj

∥qi∗ (T )−dc
j∗∥

2
Dj

1

∥qi∗ − dcj∗∥2Dj∗
− ρ2j∗

d∥qi∗ − dcj∗∥2Dj∗
− ξ

= log(∥qi∗(0)− dcj∗∥2Dj
− ρ2j∗)

− log(∥qi∗(T )− dcj∗∥2Dj
− ρ2j∗)− ξ

= log
∥qi∗(0)− dcj∗∥2Dj

− ρ2j∗

∥qi∗(T )− dcj∗∥2Dj
− ρ2j∗

− ξ

=+∞, ∀t ∈ [T, Tδ] (18)

where constant ξ ≥
∣∣∣∣∑j∈Ψ log

∥qi∗ (0)−dc
j∥

2
Dj

−ρ2
j

∥qi∗ (t)−dc
j∥2

Dj
−ρ2

j

∣∣∣∣, with

Ψ = {j ∈ [M ] : ∥qi∗(t)− dcj∥Dj > ∥qi∗(0)− dcj∥Dj}.
On the other hand, taking integral for two sides of (11)

from t = T to Tδ yields that∫ Tδ

t=T

BD(qi∗(t))∥qi∗(t)− qri∗(t)∥2dt < V (T ) (19)

Combining (18) and (19), we obtain that qi∗(t)−qri∗(t) =
0 for all t ∈ [T, Tδ], a contradiction with (17). Therefore, we
have proved that BDj (qi) is bounded. �

Now based on the above two propositions, we finish the
proof of Theorem 1.

Proof of Theorem 1. From (11), we have that qr, q, χ, z,
φ̂ and k̂i are all bounded. Since BDj (qi) for all i =
1, · · · , N are bounded, i.e., there exists a positive constant
bM such that

|BDj (qi)| ≤ 2bM , ∀t ≥ 0,

then we have

|BDj (qi)|

=
M∑
j=1

∫ ∥qi(0)−dc
j∥

2
Dj

∥qi(t)−dc
j∥2

Dj

1

2
BDj (qi(α))d∥qi − dcj∥2Dj

≤bM

∣∣∣∣∣∣
M∑
j=1

∫ ∥qi(0)−dc
j∥

2
Dj

∥qi(t)−dc
j∥2

Dj

d∥qi − dcj∥2Dj

∣∣∣∣∣∣
≤bM

M∑
j=1

(∥qi(t)− dcj∥2Dj
+ ∥qi(0)− dcj∥2Dj

).

Since q(t) is bounded, then BM (∆q(t)) is bounded. Then
according to (4), α is also bounded. Further, q̇ = z+α is also
bounded. As a result, control signal τ(t) is bounded, and all
the signals in the closed-loop are bounded. From (11), we
have q(t) − qr(t), z(t) ∈ L∞ and q(t) − qr(t), z(t) ∈ L2.
By Barbalat’s Lemma, we can derive that limt→∞ q(t) −
qr(t) = 0 and limt→∞ z(t) = 0. Also, limt→∞ qr(t) = q∗

from Lemma 2. Hence, we have limt→∞ qi(t) = q∗, i =
1, · · · , N . �

Remark 2. Compared with the existing DOC strategy
in [3], the proposed DOC strategy has the following advan-
tages:

• The collisions with obstacles can be eliminated.
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Fig. 1: Motion trajectories of these four EL systems.
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Fig. 2: Motion trajectories of these four EL systems.

• The local cost function fi is only required to be convex
and differentiate. The assumptions that fi is ω-strongly
convex and ∇fi is θ-Lipschitz are unnecessary.

• By introducing an adaptive gain k̂i given in (8), no ad-
ditional algorithm is required to solve the maximum
eigenvalue of the Laplacian matrix L in distribution.

4 Simulations

In this section, we apply our algorithm to the problem of
optimal coordination of multiple EL models which moves
on the obstacle-populated Euclidean plane. In the example,
the specific objective is to steer four EL systems which lie in
different positions to achieve consensus at the location which
is optimal for the whole team. The dynamics of each EL
system [3] is described by (1) with

Mi(qi) =

[
bi1 + 2bi2 cos qiy bi3 + bi2 cos qiy
bi3 + bi2 cos qiy bi3

]
Ci(qi, q̇i) =

[
−bi2 sin qiy q̇iy −bi2 sin qiy(q̇ix + q̇iy)
bi2 sin qiy q̇ix 0

]
and Gi(qi) = [0, 0]T , where qi = col(qix, qiy) and φi =
col(bi1, bi2, bi3) for i = 1, · · · , 4. Note that φi are the un-
known system parameters. Assume that these four agents
communicate with each other over a 2-regular graph given
by Fig. 1. It is easily verified that Assumption 2 is satisfied.

In our simulations, the parameters assoicated with agents
are φ1 = [5, 1, 1]T , φ2 = [5, 1, 2]T , φ3 = [6, 1, 1]T

and φ4 = [6, 1, 2]T . Assume that the initial states
of the EL systems are [qT1 (0), q̇

T
1 (0)]

T = [−4, 2, 0, 0]T ,
[qT2 (0), q̇

T
2 (0)]

T = [−1, 5, 0, 0]T , [qT3 (0), q̇
T
3 (0)]

T =
[2, 0, 0, 0]T and [qT4 (0), q̇

T
4 (0)]

T = [−3, 2, 0, 0]T . The prob-
lem of optimal coordination consists in finding a distributed
control that is able to drive each EL system from the differen-
t initial positions to achieve consensus at the target position
which is nearest from these initial positions. This problem



can be formulated as the following optimization problem:

min

4∑
i=1

∥qi − qi(0)∥2, s.t. q1 = q2 = q3 = q4.

In the simulation, the paths of these four agents are
blocked by two circular obstacles, i.e. D1 = {q ∈ R2 :
∥q − [−2.5, 2.3]T ∥2 ≤ 0.152} and D2 = {q ∈ R2 :
∥q − [−1, 1]T ∥2 ≤ 0.652}.

Now we apply the proposed secure DOC strategy to com-
plete the motion coordination task. In Algorithm 1, we
choose q̂ri (0) = qi(0). The simulated trajectory q̂ri (t) de-
rived by (18) does not collide with the obstacles, and resul-
tantly T = 0. To illustrate the advantage of the use of the
safety barrier function, we also simulate the unsafe algorith-
m by directly letting BD(qi) = 0 in (4), (6) and (7). The
corresponding simulation results are given in Figs. 1 and 2,
where the “blue star” represents the target position. From
Fig. 1, it can be seen that ELs #1 and #3 will collide with the
obstacles by using the existing distributed control strategy,
while the proposed DOC strategy steers the four EL agents
to achieve consensus at the optimal position while avoiding
collision with the obstacles, as illustrated by Fig. 2.
5 Conclusion

In this paper, the problem of DOC with obstacle avoid-
ance for multiple EL systems has been investigated. With the
safety barrier certificates, distributed optimization and adap-
tive nonlinear control, we proposed a fully distributed pro-
tocol for uncertain EL systems to ensure the optimal perfor-
mance with collision avoidance with obstacles, and gave the
corresponding global convergence and collision-free guaran-
tee results. It is important to note that the collisions between
inner agents are also another safety threat in the multi-agent
coordination [26, 27]; the DOC with avoiding collisions be-
tween two agents will be investigated in the future work.
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