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Abstract: Both opinion dynamics and evolutionary game theory have been receiving considerable attention in the control com-
munity in the last decade. In spite of this, they are generally regarded as two different fields and thus have been studied separately.
It is proved in this paper that the voter model on the evolving network in the study of opinion dynamics and the Moran process on
the complete network in evolutionary game theory are equivalent both in fixation probability and in limiting behavior, provided
that the network evolves much faster than the opinions. These results bridge the gap between opinion dynamics and evolutionary
game theory. With the aid of this bridge, we transform the in-group bias opinion dynamics on evolving networks, where individu-
als are likely to keep a steady relationship with those holding similar opinions, to the coordination game on the complete network;
and the out-group bias opinion dynamics to the coexistence game. These equivalence results not only provide game-theoretical
insights into opinion formation but also pave the way to understand fundamental concepts in game theory such as payoff and
Nash equilibrium in the perspective of opinion dynamics.
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1 Introduction

Opinion dynamics, which explore how opinions evolve,
have attracted much attention from various disciplines, e.g.,
control theory, system science, artificial intelligence, ap-
plied mathematics and computer science [1–9]. In particular,
opinion dynamics have a close relationship with multi-agent
systems in control theory [2, 3], and can be insightful for
crowd control [7–9, 11–14]. A basic assumption in opin-
ion dynamics is that individuals would like to adopt popu-
lar opinions. The voter model is one of the classic models
in opinion dynamics. Variants of the voter model are many
with this basic assumption invariant [5–9]. As network sci-
ence keeps developing [10, 15, 16], opinion dynamics on
networks have attracted considerable attention [5–7, 9, 17–
19]. Typically, individuals are assumed to be located on a
network where their opinions are influenced by their neigh-
bours’. Moreover, individuals are prone to adjusting their
social ties. For example, individuals are likely to interact
with those holding the same opinions [20, 21]. It is, thus,
of great interest to investigate opinion dynamics on evolving
social networks [17, 18].

Evolutionary game theory [22–24] is a mathematical tool
to study how rational individuals adjust their strategies over
time, when facing conflicts. It has been successfully ap-
plied in both biological and social systems [25, 26]. Re-
cent decades also see an increasing interest of the control
community in studying large-scale distributed systems via
evolutionary game theory [27–34]. The basic assumption in
evolutionary game theory is rationality, i.e., individuals are
prone to optimizing their payoffs. The Moran process on the
complete network is one of the classic evolutionary process-
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es [25, 35–37], if there are a finite number of individuals in
the system or population. Herein, individuals with higher
payoff are more likely to be imitated. Variants of the Moran
process are many with the assumption of rationality invari-
ant [38–40]. If the population size is sufficiently large, the
Moran process is approximated by the replicator equation
[41]. It has been shown that the internal equilibrium of the
replicator equation, if there is any, must be the Nash equilib-
rium for the underlying game [42], which is the key concept
in game theory, depicting a state in which no player obtains
more if one unilaterally alters its strategy [43]. Therefore,
the Moran process as well as its infinitely large population
size limit, i.e., the replicator equation, provides an algorithm
to seek Nash equilibrium [24],

Opinion dynamics and evolutionary games are generally
regarded as two distinct fields. In this paper we attempt to
bridge the gap between the two fields by showing i) that for a
population with a finite number of individuals, the consensus
probability for the voter model on the evolving network is e-
quivalent to the fixation probability for the Moran process on
the complete network; ii) that for a population with infinitely
many individuals, the voter model on the evolving network
is captured by the replicator equation in evolutionary game
theory.

The paper is organised as follows: Firstly, we propose a
network update rule, in which only social ties are evolving.
We term it as “the evolving network” in our manuscript. In
this way, the voter model on the evolving network is intro-
duced. Secondly, we introduce the Moran process on the
complete network. Thirdly, we show that the voter model
on the evolving network is equivalent to the Moran process
on the complete network both in fixation probability and in
limiting behavior. Fourthly, we give illustrative examples.
Fifthly, we provide further discussions on these equivalence
results. Finally, we end up with conclusions.



2 Voter Model on the Evolving Network

Individuals on real networks would not only adjust their
opinions but also adjust their social relationships. Here we
propose the dynamics of the links, and study the voter model
on the evolving network.

All the individuals are sitting on an undirected network,
whose numbers of nodes and ties are N and L, respective-
ly. Opinion dynamics happen with probability w, and link
dynamics happen with probability 1− w.

For opinion dynamics, we adopt the classic voter mod-
el: There are two opinions, say + and −. An individual
is randomly selected from the nodes. The focal individu-
al adopts the opinion of ± with the probability proportional
to the number of its neighbours with opinion ±. In other
words, the focal individual adopts opinion ± with proba-
bility k±/(k+ + k−), where k± refers to the number of its
neighbours whose opinion is±. Noteworthily, this probabil-
ity does not depend on the opinion of the focal individual.
Thus it refers to a population where individuals have no in-
sistency on their own opinion [8]. For the link dynamics, a
link is randomly chosen. Let us denote the type of the se-
lected link as XY , where XY ∈ {++,+−,−−}. It breaks
off with probability kXY . If it breaks indeed, one of the two
individuals at the extremes of the broken link is randomly
selected. This individual reconnects randomly to another in-
dividual on the network, provided it is not its current neigh-
bour.

When w = 1, the social ties between individuals are in-
variant. The proposed model degenerates to the voter mod-
el on the static network, which has been intensively studied
[5, 7, 9]. In this case, only the fraction of individuals adopt-
ing opinion ±, i.e., x±, evolves. And the social link is never
broken. The system either ends up with the state, in which
all the individuals adopt opinion +, or the state where all
the individuals adopt opinion −. The consensus probability,
with which the system ends up with all using +, indicates the
likelihood of wining the voting for opinion +, and is the key
quantity in opinion dynamics. The consensus probability is
also termed as fixation probability in mathematics. Within
this manuscript, we use the two terminologies simultaneous-
ly.

When w = 0, individuals do not update their opinions,
while the social ties evolve over time. In this case, we note
that the link dynamics have two properties: i) The number
of links is constant over time, leading to a constant average
degree of the evolving network. ii) The smaller the breaking
probability kXY is, the longer the links of type XY endure.
In fact, let us denote DXY as the duration time of the social
tie of type XY . DXY is a random variable, with the distri-
bution law given by P (DXY = j) = (1 − kXY )j−1kXY

(j = 1, 2 · · · ). In other words, DXY follows the geometric
distribution with successful probability kXY . Thus the aver-
age duration time of the social tie of type XY , is (kXY )−1.
Concerning the limiting behavior of the social ties, we pro-
vide the following lemma.

Lemma 1 [20] The link dynamics are a Markov chain with
state space S2 = {++,+−,−−}. If k++k+−k−−x+x− 6=
0, then there is a unique stationary distribution of
the Markov chain and is given by πij = N (2 −

δij)xixj/kij , ij ∈ S2, where δij is Kronecker Delta, and

N =
(∑

ij∈Sn
(2− δij)xixj/kij

)−1
> 0 is the normalisa-

tion factor.

Remark 1 If the undirected network is taken as the directed
network, each undirected link XY , where X,Y ∈ {+,−},
can be taken as two directed links, i.e.,

−−→
XY and

−−→
Y X , Lemma

1 can be rewritten as follows: The stationary distribution of
the link dynamics is a Markov chain with state space S̃2 =
{−→++,

−→
+−,−→−+,

−→−−}. If k++k+−k−−x+x− 6= 0, then there
is a unique stationary distribution of the Markov chain and
is given by π−→

ij
= Nxixj/kij , ij ∈ S̃2, where N is the

normalisation factor.

Remark 2 Lemma 1 can be generalised to the case with
more than two opinions. Denote Sn as the set consisting
of all the link types, when there are n opinions in the popu-
lation. There are n(n + 1)/2 elements in set Sn. The link
dynamics are proved to be a reversible Markov chain with
state space Sn (see the appendix in [44] for the proof). With
the aid of the detailed balance condition, we obtain that if
Πn

i=1xiΠXY ∈Sn
kXY 6= 0, then the stationary distribution

πij is proportional to (2− δij)xixj/kij , ij ∈ Sn.

3 Evolutionary Game Dynamics on the Complete
Network

Evolutionary game dynamics are typically studied on the
complete network [22–24]. Each individual plays the game
with all the rest in the population. Let’s concentrate on the
two-player two-strategy games. In this case, each individual
has two strategies, say strategies 1 and 2. When an individual
taking strategy i meets the other individual taking the same
strategy, each gets aii (i = 1, 2); When an individual taking
strategy 1 meets the other individual taking strategy 2, the
individual with strategy 1 gets a12 and the other obtains a21.
This gives rise to the payoff matrix A = (aij)2×2. Based
on the Darwinian’s evolutionary theory, it is assumed that
individuals with higher payoff are more likely to be imitated
[25, 45].

For the deterministic evolutionary dynamics, the replica-
tor equation on the complete network is the cornerstone. It
is assumed that there are infinitely many individuals. The
replicator equation is given by ẋ1 = x1x2(f1 − f2), where
xi is the frequency of individuals taking strategy i, and
fi = ai1x1 + ai2x2 is the average payoff (i = 1, 2) [24, 42].
Based on the replicator equation, the frequency of the indi-
viduals taking strategy 1 increases, if the payoff of strategy
1 is greater than that of strategy 2.

For the stochastic evolutionary dynamics, the Moran pro-
cess is typically adopted. We concentrate on the Moran pro-
cess on a complete network of a finite size N . Each indi-
vidual plays with a randomly selected individual (including
itself), and gets its own payoffs. An individual with strategy
i (i = 1, 2) gets payoff qi(N1) = ai1

N1

N + ai2
N2

N , where Ni

is the number of individuals taking strategy i. The payoff is
then mapped to Darwinian fitness fi = f(qi), measuring the
number of offsprings an individual has on average. f should
be positive and increasing [37]. An individual is selected to
reproduce an identical offspring with a probability propor-
tional to its fitness. The offspring then replaces another ran-



domly selected individual (including the parent generation)
in the system.

The Moran process is a Markov process. If all the indi-
viduals take strategy 1, then all the individuals would take
strategy 1 for ever. The same applies to the case where all
the individuals are taking strategy 2. Thus all the individu-
als taking strategy i (i = 1, 2) is an absorbing state for the
Moran process. Let us denote the fixation probability ρk as
the probability that the system ends up with a state in which
all the individuals take strategy 1, conditioned on that there
are k individuals take strategy 1 in the beginning. In partic-
ular, the fixation probability ρ1 is taken as the key quantity
to characterize the invasion of a mutant strategy [25, 36]. To
obtain the fixation probability ρk, we introduce the following
lemma.

Lemma 2 [46] For a homogenous Markov chain with state
space S = {0, 1, 2, · · · , N}, if the following four conditions
hold:

i) both state 0 and state N are absorbing states;
ii) state i and state j intercommunicate for i, j ∈

{1, 2, · · · , N − 1};
iii) state i is transient for i ∈ {1, 2, · · · , N − 1};
iv) the transition matrix (pij) is tri-diagonal, i.e., if |i −

j| > 1, i, j ∈ S, then pi,j = 0,
then the fixation probability is given by

ρk =

∑k−1
i=0

∏i
s=1

ps,s−1

ps,s+1∑N−1
i=0

∏i
s=1

ps,s−1

ps,s+1

, 0 ≤ k ≤ N. (1)

Based on Lemma 2, the fixation probability for Moran
process with identity payoff-to-fitness mapping f(x) = x
can be given in the following theorem.

Theorem 1 For the Moran process on the complete net-
work, if the following two conditions hold:

i) all the payoff entries aij (i, j ∈ {1, 2}) are positive,
ii) the payoff-to-fitness mapping is given by the identity

payoff-to-fitness mapping f(x) = x,
then the fixation probability ρk is given by

ρk =

∑k−1
i=0

∏i
s=1

q2(s)
q1(s)∑N−1

i=0

∏i
s=1

q2(s)
q1(s)

, 0 ≤ k ≤ N. (2)

Proof Firstly, we denote the number of individuals taking s-
trategy 1 as the state of the Markov chain. The state space
of the Markov chain is given by {0, 1, 2, · · · , N}. Second-
ly, both state 0 and N are absorbing states, as mentioned
before. Thirdly, any state i, where i ∈ {1, 2, · · · , N − 1}
is transient. In fact, the system reaches state 0, provided an
individual with strategy 2 is selected for reproduction and
an individual with strategy 1 is replaced within the first i
time steps, which is non-zero in probability. Fourthly, if
|i − j| > 1, the transition probability pi,j = 0, since the
number of individuals taking strategy 1, i.e., i either increas-
es by one, or decreases by one, or keeps the same within one
time step. All of the four conditions in Lemma 2 are fulfilled,
thus the fixation probabilities are obtained based on Eq. (1).

On the other hand, pi,i+1 = if(q1(i))
if(q1(i))+(N−i)f(q2(i))

N−i
N ,

where the first term on the right hand side represents the
probability with which an individual taking strategy 1 is se-
lected for reproduction, whereas the second term on the right

hand side indicates the probability with which an individual
taking strategy 2 is replaced by the offspring. The similar ar-
gument yields that pi,i−1 = (N−i)f(q2(i))

if(q1(i))+(N−i)f(q2(i))
i
N . Thus

the ratio pi,i−1/pi,i+1 is given by f(q2(i))/f(q1(i)). Taking
f(x) = x into account, the ratio pi,i−1/pi,i+1 is given by
q2(i)/q1(i). Based on Lemma 2, the fixation probability ρk
is given by Eq. (2). �

Theorem 1 indicates that the fixation probability for the
Moran process is completely determined by the ratios be-
tween payoffs at a given state. Thus we have the following
corollary.

Corollary 1 If all the payoff entries in the payoff matrix A
are positive and there exists a positive number r such that
B = rA, then the fixation probability for the Moran process
with the identity payoff-to-fitness mapping of payoff matrix
B is identical to that of A.

Lemma 3 [41] For the Moran process with a payoff matrix
A, if the population size is infinitely large, i.e.,N →∞, then
the deterministic evolution of the fraction of the individuals
taking strategy 1, i.e., x1, is given by the replicator equation
ẋ1 = x1x2(f1 − f2), where fi = ai1x1 + ai2x2 with x1 +
x2 = 1 .

Lemma 3 shows a clear connection between the Moran
process and the replicator equation. It is shown that the repli-
cator equation can be a good approximation for the Moran
process if the population size is sufficiently large.

4 Equivalence between the Voter Model on the E-
volving Network and the Moran Process on the
Complete Network

The voter model on the evolving network belongs to opin-
ion dynamics, whereas the Moran process on the complete
network belongs to evolutionary game theory. In other word-
s, they belong to distinct fields. Here, we show that they are
equivalent both in fixation probability and in limiting behav-
ior.

Firstly, we show the equivalence in fixation probability.

Theorem 2 If w → 0+ and k++k+−k−− 6= 0, then the fix-
ation probability of the voter model on the evolving network
is equivalent to that of the Moran process on the complete
network with the payoff matrix

M =

( + −
+ 1

k++

1
k+−

− 1
k+−

1
k−−

)
. (3)

Proof For the voter model on the evolving network, if w →
0+, the link dynamics evolve much faster than that of opin-
ions. Since, k++k+−k−− 6= 0, based on Lemma 1, there
exists a unique stationary distribution of the link dynamic-
s, provided x+x− 6= 0, i.e., there are both individuals with
opinion + and −. In this case, the opinion does not change
until the link dynamics reach the stationary regime. In the
stationary regime, based on Remark 1 of Lemma 1, the frac-
tion of directed links

−−→
XY is given by

π−−→
XY

= N 1

kXY

NXNY

N2
, X, Y ∈ {+,−}, (4)



where NX is the number of individuals whose opinion is X ,
and N > 0 is the normalisation factor subject to π−−→

++
+

π−−→
+− + π−−→−+ + π−−→−− = 1.
Let us denote the number of individuals in opinion ±

as N±. We have that N+ + N− = N , and N+ ranges
from 0 to N . The voter model on the evolving network is
a Markov chain with state N+, giving rise to the state s-
pace {0, 1, · · · , N}. Here state 0 and state N are absorbing
states. In fact, both state 0 and state N represent that indi-
viduals reach consensus in opinion. Based on the voter mod-
el, the system keeps in the consensus state, provided that all
the individuals reach consensus. Therefore, N+ is a Markov
chain with two absorbing states.

Additionally, N+, either increases by one or decreases by
one or stays the same within one time step. For example,N+

increases by one if an individual in opinion − is selected.
This happens with probability N−

N . Then the focal individual
in opinion− adopts opinion +, or an individual in opinion−
finds a neighbour in opinion +. This occurs with probability
hπ−−→−+/(hπ−−→−++hπ−−→−−), where h is the average degree of the
evolving network. In our model, h is constant. Therefore the
probability with which the number of individuals in opinion
+, i.e., N+, increases by one is

T+
N+

=
N−
N

π−−→−+
π−−→−+ + π−−→−−

. (5)

Similarly, the transition probability with which the number
of individuals in opinion + decreases by one is

T−N+
=
N+

N

π−−→
+−

π−−→
+− + π−−→

++

. (6)

By the normalisation condition, the transition probability
with which the number of individuals in opinion + stays the
same is T 0

N+
= 1− T+

N+
− T−N+

.
Now, we calculate the likelihood with which the entire

population ends up with consensus in opinion + if there are
k individuals (k = 0, 1, 2, · · · , N) in opinion + in the be-
ginning. That is the consensus probability or fixation proba-
bility in +, i.e., ρ̃k, which is defined in Section 2. We notice
that the voter model on the evolving network fulfills the fol-
lowing conditions: i) the state space of the Markov chain
is {0, 1, · · · , N}; ii) the Markov chain has two absorbing
states, i.e., state 0 and state N ; iii) state i and state j in-
tercommunicate for i, j ∈ {1, 2, · · · , N − 1}; iv) state i is
transient for i ∈ {1, 2, · · · , N − 1}; v) the transition proba-
bility matrix is tri-diagonal. Based on Lemma 2, the fixation
probability in + is given by

ρ̃k =

∑k−1
i=0

∏i
N+=1

T−
N+

T+
N+∑N−1

i=0

∏i
N+=1

T−
N+

T+
N+

. (7)

Based on Corollary 1, the fixation probability ρ̃k is deter-
mined by the ratios between transition probabilities, i.e.,
T−
N+

T+
N+

. Taking Eq. (4) into Eq. (7), we obtain that the ra-

tios are given by

T−N+

T+
N+

=
N+

N−

π−−→−+ + π−−→−−
π−−→
+− + π−−→

++

=

1
k−+

N+

N + 1
k−−

N−
N

1
k++

N+

N + 1
k+−

N−
N

. (8)

The numerator of Eq. (8) is exactly the payoff of an in-
dividual taking strategy − when there are N+ individuals
taking strategy + with payoff matrix Eq. (3) on the com-
plete network, i.e., f−(N+) = k−1−+

N+

N + k−1−−
N−
N . Sim-

ilarly, the denominator of Eq. (8) is exactly the payoff of
an individual taking strategy + when there are N+ individ-
uals taking strategy + in the population, i.e., f+(N+) =

k−1++
N+

N + k−1+−
N−
N . Thus it holds true that

f−(N+)

f+(N+)
=
T−N+

T+
N+

, (1 ≤ N+ ≤ N − 1). (9)

Based on Theorem 1, the fixation probability of strategy +
for the Moran process on the complete network with game
matrix Eq. (3) when there are k strategy + individuals in the
beginning is given by

ρk =

∑k−1
i=0

∏i
N+=1

f−(N+)
f+(N+)∑N−1

i=0

∏i
N+=1

f−(N+)
f+(N+)

, (10)

which is exactly the fixation probability on the evolving net-
work, i.e., Eq. (7).

�

Next, we show the equivalence in limiting behavior for
large population size.

Theorem 3 If w → 0+, k++k+−k−− 6= 0 and the popu-
lation size is infinitely large, i.e., N → ∞, then the deter-
ministic evolution of the fraction of the individuals adopting
opinion + for the voter model on the evolving network is
equivalent to that of the Moran process on the complete net-
work with payoff matrix (3).

Proof On the one hand, since w → 0+ and k++k+−k−− 6=
0 hold, following the same argument in the proof of Theorem
2, the voter model on the evolving network is proven to be a
Markov process, whose transition matrix is tri-diagonal. In
addition, Eqs. (4)(5)(6) still hold.

If the population size is infinitely large, i.e., N → ∞, the
deterministic evolution of the fraction of individuals adopt-
ing opinion +, i.e., x+, is given by

ẋ+ = T+
N+
− T−N+

. (11)

Taking Eqs. (4)(5)(6) into Eq. (11) yields that

ẋ+ =
x+x−
k+−

(
1

q−(x+)
− 1

q+(x+)

)
, (12)

where qi(x+) = k−1i+ x+ + k−1i− x− > 0 is the average payoff
of strategy i (i ∈ {+,−}) with game matrix Eq. (3). Mul-
tiplying k+−q−(x+)q+(x+) > 0 on the right hand side of



Eq. (12) only alters the evolutionary speed with the asymp-
totical behavior invariant. Therefore, the limiting behavior
of voting is captured by

ẋ+ = x+x−(q+(x+)− q−(x+)), (13)

i.e., the replicator equation with payoff matrix (3).
On the other hand, if N →∞, based on Lemma 3, for the

Moran process on the complete network with payoff matrix
(3), the deterministic evolution of the fraction of the individ-
uals taking strategy + is given by the replicator equation Eq.
(13).

Therefore, the replicator equation Eq. (13) with payoff
matrix (3) captures both the limiting behavior of the voter
model on the evolving network and that of the Moran process
on the complete network. �

Remark 3 Theorem 3 not only shows that the voter model
on the evolving network and the Moran process on the com-
plete network are equivalent in their limiting behaviors, but
also indicates that both of the limiting behaviors are cap-
tured by the replicator equation with the same payoff matrix.

Remark 4 The replicator equation is diffeomorphic to the
Lotka-Voltrera equation, the basic equation in ecology with
interacting species [24]. Therefore, Theorem 3 also bridges
opinion dynamics and ecological theory.

We have found that both the fixation probability (Theo-
rem 2) and the limiting behavior (Theorem 3) of the voter
model on the evolving network are captured by evolutionary
processes with the payoff matrix Eq. (3). Concerning the
payoff matrix, it is not assumed a priori, as it is typically
done in evolutionary game theory. In fact, it is an emergent
payoff matrix arising from the microscopic dynamics of the
voter model on the evolving network, in which no game in-
teraction is assumed. Furthermore, the payoff entry Mij is
k−1ij , i.e., the expected duration time of social link of type ij.
Therefore, the payoff in evolutionary games on the complete
network can be taken as the duration time in the voter model
on the evolving network (Fig. 1).

Evolving network

Voter model
with

two opinions

Opinion Dynamics

Equivalent

in fixation probability

and

in limiting behavior

𝑘

𝑘

𝑘

Evolutionary Games

Complete network

Fig. 1: Bridging the gap between opinion dynamics and evo-
lutionary games.

5 Illustrative Examples

The equivalence results, i.e., Theorem 2 and Theorem 3,
help us explore opinion dynamics from evolutionary game
theory. The emergent payoff matrix is the key component
of the bridge. In the following, based on Theorem 3, we

give three examples to show how to tackle limiting behavior
of the opinion dynamics on the evolving network with an
evolutionary game perspective. In fact, analogous results can
be given to obtain the consensus probability for the opinion
dynamics on the evolving network via the existing literature
in evolutionary games [36, 46].

Example 1 In opinion dynamics, the in-group bias refers
to the case where individuals interact more often with those
holding the same opinion. If all the individuals are in-group
bias, it refers to k++ < k+− and k−− < k+− in the context
of our model. Based on Theorem 3, we obtain that for large
population size, the voting behavior is captured by the repli-
cator equation with payoff matrix Eq. (3). Noteworthily, the
payoff matrix represents a coordination game. Standard dy-
namical analysis of the replicator equation [24] shows that
the system ends up with the consensus state in opinion + if
the initial fraction of individuals adopting opinion + exceeds
x∗+ = (k−1−− − k−1+−)/(k−1++ − 2k−1+− + k−1−−). Otherwise, the
system ends up with consensus state in opinion −. Simula-
tions are performed to validate this result in Fig. 2. In addi-
tion, (x∗+, x

∗
+) is exactly the Nash equilibrium of the payoff

matrix Eq. (3).

Fig. 2: If both opinions are in-group bias, the opinion dy-
namics are described by the replicator equation of a coordi-
nation game. Herein k++ = 0.1, k−− = 0.1, k+− = 0.9.
Other parameters: N = 50, w = 0.01.

Example 2 The out-group bias in opinion dynamics indi-
cates that individuals interact more often with those holding
different opinions. If all the individuals are out-group bias,
it refers to k++ > k+− and k−− > k+− in our context.
Theorem 3 transforms the voting behavior on the evolving
network to the replicator equation of a coexistence game. In
this case, standard analysis shows that there is only one in-
ternal equilibrium of the replicator equation and it is stable.
In other words, opinion + and opinion − coexist, provided
that they coexist in the beginning. Furthermore, the repli-
cator equation shows that the stable internal equilibrium is
given by y∗+ = (k−1−− − k−1+−)/(k−1++ − 2k−1+− + k−1−−), which
quantitatively captures the popularity of opinion + in the
long run. Simulations are performed to validate this result
in Fig. 3. In addition, (y∗+, y

∗
+) is exactly the strict Nash

equilibrium of the payoff matrix Eq. (3).



Fig. 3: If both opinions are out-group bias, the opinion dy-
namics are described by the replicator equation of a coexis-
tence game. Herein k++ = 0.9, k−− = 0.9, k+− = 0.1.
Other parameters: N = 50, w = 0.01.

Example 3 If one of the opinions, say + without loss of gen-
erality, is in-group bias, and the other opinion, that is − in
this case, is out-group bias, it refers to k++ < k+− < k−−
in our context. Theorem 3 transforms the voting behavior on
the evolving network to the replicator equation of a domi-
nant game. Strategy + is the Nash equilibrium. Noteworthi-
ly, it is also the Pareto optimum, in which no one can be bet-
ter off by making the other worse off. In other words, there
is no dilemma between group interest and the individual in-
terest in the emergent game. In this case, standard analysis
shows the system would end up with the consensus state +,
provided there are individuals adopting opinion + in the be-
ginning. Simulations are performed to validate this result in
Fig. 4.

Fig. 4: If opinion + is in-group bias and opinion − is out-
group bias, the opinion dynamics are described by the repli-
cator equation of a dominant game. Herein k++ = 0.1,
k−− = 0.9, k+− = 0.5. Other parameters: N = 50,
w = 0.01.

6 Some Further Discussions

Voter model. The adopted voter model in our paper is
widely used in statistical physics. The voter model apparent-

ly differs from the French-DeGroot model, which is widely
used in the control community. The voter model is stochas-
tic whereas the French-DeGroot model is deterministic. On
the other hand, based on the duality between the French-
DeGroot model and the Markov chain [2], the voter model
can be interpreted as the French-DeGroot model with two
constraints: i) all the individuals are not stubborn at all; ii)
all the neighbours have equal weights in influencing the de-
cision making of the focal individual. Therefore, Example
2 also shows that out-group bias in opinion dynamics could
lead to the coexistence of opinions, without introducing s-
tubborn individuals as in [9]. It turns out that the adjustment
of social ties alone could solve the diversity puzzle, which
calls for the explanation why consensus in opinion is rare in
societies [2].

The evolving network. The proposed evolving network
captures the dynamical nature of the social network, which
is also present in evolutionary games [47]. The driving force
of the evolving network is social-bias, or preferential attach-
ment, which also motivates the bounded confidence model
[48, 49] and biased opinion formation process [50, 51] in
opinion dynamics. In contrast with the biased opinion for-
mation process, in which the social bias is at work in the
opinion update rule, our model is the same as the bounded
confidence model in the sense that the social bias is at work
in adjusting the neighbours. In spite of this similarity, our
model not only captures the homophily which is the basic
assumption in the bounded confidence model (see Example
1) but also captures other social preferential attachments be-
yond homophily (see Example 2 and Example 3).

Intuitions of the equivalence results. To obtain the in-
tuitions of the equivalence results, we review some previ-
ous results in evolutionary game theory. It has been shown
that the Moran process of a pairwise game on the evolving
network is captured by the replicator equation with a trans-
formed matrix. The entries of the transformed matrix turns
out to be the product of the original payoff entries and the
corresponding duration time of the social link. The intuition
is that the evolving social network alters the interaction rate
between individuals with different strategies. And the emer-
gent non-uniform interaction rates result in a payoff rescal-
ing [20]. In fact, the voter model is the Moran process with
a payoff matrix, in which all the payoff entries are 1. There-
fore, the voter model on the evolving network is captured by
the replicator equation of the transformed matrix based on
[20]. In this case, the entry of the transformed payoff matrix
is the duration time of the corresponding social link, which
is exactly the emergent payoff matrix Eq. (3). In other word-
s, the non-uniform interaction rates give rise to the emergent
payoff matrix, which can be seen as the product of 1 and the
duration time.

Comparison between our equivalence results and other e-
quivalence results. Efforts have been made to establish the e-
quivalence between game theory and Friedkin-Johnson mod-
el in opinion dynamics [52]. In Friedkin-Johnson model,
each individual not only i) takes the neighbours’ opinion-
s but also ii) takes its initial opinion into account. In fact,
each individual is assigned a utility function. It consists of
two parts, one is for penalising disagreement which refers
to i), and the other is for rewarding consistency in its own



opinion which refers to ii). The two parts are weighted by,
respectively, individuals’ susceptibilities to social influence
and stubbornness to their initial opinions. And every individ-
ual optimises its individual utility function. In this way, the
Friedkin-Johnson model can be interpreted in a game the-
oretical way. The game perspective shows that there is a
conflict between individual interest and global interest. In
short, it is a conflict between i) and ii). In our work, no
one takes its own opinion into account in opinion updating.
In other words, there is no ii). Therefore, there is no con-
flict between i) and ii). Our equivalence results, however,
show that the conflict can also arise between taking opinion
+ and opinion −. In fact, if both opinions are in-group bias,
both consensus states are stable Nash equilibria, as shown
in Example 1. The problem is to figure out which opinion
is dominant eventually in the population. Noteworthily, it is
typically assumed that there is a unique Nash equilibrium,
when problems in such multi-agent systems are addressed
in a game-theoretical way. Our equivalence results, howev-
er, facilitate us to figure out the likelihood for opinion + to
win the vote based on existing results in evolutionary game
theory.

Potential generalisations. The dyadic opinions can be vi-
olated. In fact Remark 2 can help us extend the equivalence
results to the case with more than two opinions. Works along
this line are in progress.

Limitations. The fast link rewiring process is the key tech-
nical assumption to ensure that the equivalence results hold,
which is the limitation of our work.
7 Conclusions

Opinion dynamics and evolutionary game theory are two
distinct fields. To the best of our knowledge, they have been
studied separately up till now. In this paper, we have stud-
ied the classic models in the two fields, i.e., the voter model
in opinion dynamics and the Moran process in evolutionary
game theory. It is proven that the voter model on the evolv-
ing network is equivalent to the Moran process on the com-
plete network both in fixation probability (Theorem 2) and in
limiting behavior (Theorem 3), given that the link rewiring
evolves much faster than the opinion updates. These two e-
quivalence results bridge the gap between opinion dynamics
and evolutionary game theory.

On the one hand, the bridge transforms the in-group bias
[53] of the voter model into the coordination game, which is
widely used in addressing the emergence and maintenance
of the social convention [54]. On the other hand, the bridge
deepens the understanding of the basic concepts in game the-
ory, i.e., payoff as well as Nash equilibrium with the aid of
the voter model on the evolving network.
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