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Tolstoy(托尔斯泰):

All happy families are alike. 

1 2 implies "network stabili y   t ". Id  

1 2 1 2 1 2where :  gain from  to  and :  gain from  to y y y y 

because they all satisfy the 

small-gain condition!

Why so?
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第二集
Learning-Based Control



Why Learning-Based Control Theory?



Data and Learning-Based Control

Use i/o data to learn better (adaptive/optimal) 

controllers in the absence of exact model 

knowledge

• Rapid response

• Stability/robustness/safety guarantee

• Optimality for reduced energy consumption



Adaptive Optimal Control Problem

( )

0
0How to solve min ( ; ) ( , )

subject to

           unknow , ,  with n    

t
J x u r x u dt

x f x u f



=

=



Model-based approach

• For linear systems, many published papers by several authors:

Guo/Duncan/Pasik-Duncan, Bitmead, Kumar, HF Chen, etc

• For nonlinear systems,

None“Almost”



Limitations of Dynamic Programming (DP)

Bellman’s Dynamic Programming is not applicable, 

because of

( )

0
0How to solve min ( ; ) ( , )

subject to

           unknow , ,  with n    

t
J x u r x u dt

x f x u f



=

=



• Curse of dimensionality   (Bellman, 1959)

• Curse of modeling           (Bertsekas, 1996)



Outline

➢Robust Adaptive Dynamic Programming

❖ Adaptive LQR for continuous-time linear systems

❖ Extensions: nonlinear and robust

➢Application:

Connected and Autonomous Vehicles

➢Conclusions and Future Work

➢Data-Driven Learning-based Control Theory: Why?



Why Data-driven Learning-based Control?

• “System modeling is expensive, time consuming, 

and inaccurate.” (Frank Lewis @ASCC’09)

• Brought together “stability” and 

“reinforcement learning” (for c-t systems)

• “Adaptive Dynamic Programming” (ADP):

An active research area, integrating reinforcement learning (RL) and       

controls to remove the curses of dimensionality and of modeling.



Reinforcement Learning  (RL)

Maximizing the cumulative reward, through

1) Exploration (finding better policies).

2) Agent-environment interaction.

Agent

Environment

reward action

Figure: Reinforcement Learning (Minsky, 1954).

Model-free approach



RL and Approximate DP

Figure: Reinforcement Learning (Minsky, 1954).

1. CS perspective (Barto, Dayan, Sutton, Watkins, Kaelbling, Littman, Doya).  

Finite state/action space; early ideas.

2. OR perspective (Bertsekas, Tsitsiklis, Van Roy, Nedic, Borkar, Powell).  

Countable state/action space; advanced convergence analysis (stochastic  

approximation, function approximation).

Agent

Environment

reward action

Many papers



The history of DP and RL

1952

1954

1960

1960s

1968

1983

1984

1989

1990s 

2010s 

2013

Dynamic programming (Bellman)

Reinforcement learning                     (Minsky)  

DP algorithms (VI, PI) for MDPs (Bellman; Howard)  

Positive & Negative DP (Blackwell; Strauch)

RL + approximate DP (Werbos)  

Actor-critic algorithm (Barto)

TD-learning (Sutton)  

Q-learning (Watkins)  

Neuro-DP (Bertsekas)  

Adaptive DP (Lewis)

Abstract DP (Bertsekas)

Continuous-time

ADP: still in its infancy

2012 – Robust Adaptive DP (here)     



Outline

➢Robust Adaptive Dynamic Programming

❖ Adaptive LQR for continuous-time linear systems

❖ Extensions: nonlinear and robust

➢Application:

Connected and Autonomous Vehicles
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➢Data-Driven Learning-based Control Theory: Why?



Data-Driven Adaptive LQR Problem @ASCC’09

LTI system ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢, 𝑥 0 = 𝑥0

When            are unknown, find an “i/s data-driven” linear control 

policy

𝑢 = −𝐾𝑥

that minimizes   𝐽 = 0׬
∞
(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 = 𝑥0

𝑇𝑃𝑥0

( ),  A B

where 𝑄 = 𝑄𝑇 ≥ 0, 𝑅 = 𝑅𝑇 > 0, 𝐴, 𝐵 is controllable, and 𝐴, 𝑄1/2 is observable.



Linear-quadratic regulator (LQR)

Algebraic Riccati equation:

➢ 𝑢∗ = −𝐾∗𝑥,

➢ 𝒥 𝑥0; 𝑢
∗ = 𝑥0

𝑇𝑃∗𝑥0, 𝑤𝑖𝑡ℎ 𝑃
∗ = 𝑃∗𝑇 > 0

𝐴𝑇𝑃∗ + 𝑃∗𝐴 − 𝑃∗𝐵𝑅−1𝐵𝑇𝑃∗ + 𝑄 = 0, 𝐾∗= 𝑅−1𝐵𝑇𝑃∗.

1. Policy Iteration (PI)

2. Value Iteration (VI)

Question 1:

How to learn suboptimal controllers, from i/s data, that converge to 

the (unknown) optimal controller?

Optimal Controller:



Learning-based Policy Iteration

ADP for partially unknown linear systems (Lewis et al., 2009)

𝑥𝑇 𝑡 𝑃𝑗𝑥 𝑡 = න
𝑡

𝑡+𝛿𝑡

𝑥𝑇 𝑄 + 𝐾𝑗
𝑇𝑅𝐾𝑗 𝑥𝑑𝜏 + 𝑥𝑇 𝑡 + 𝛿𝑡 𝑃𝑗𝑥 𝑡 + 𝛿𝑡 ,

𝑲 𝒋+𝟏 = 𝑅−1𝐵𝑇𝑃𝑗.

𝐵 is required.  𝑥( t ) is generated by 𝑢 = −𝐾𝑗 𝑥 (on-policy).

Integral RL 

equation.

( ) ( ) ( )
t t

T T T T T T

t t t t
x Qx u Ru d x Qx u Ru d x Qx u Ru d




  

 + 

+
+ = + + +  

Assume the knowledge of an initial stabilizing policy 
0K

From 

,   .j jP P K K → →
Under mild conditions,



Learning-based Policy Iteration

ADP for fully unknown linear systems (Jiang & ZPJ, 2012)

𝑥𝑇 𝑡 𝑃𝑗𝑥 𝑡 = න
𝑡

𝑡+𝛿𝑡

𝑥𝑇 𝑄 + 𝐾𝑗
𝑇𝑅𝐾𝑗 𝑥 − 2 𝐾𝑗+1𝑥

𝑇
𝑅 𝑢′ + 𝐾𝑗𝑥 𝑑𝜏 + 𝑥𝑇 𝑡 + 𝛿𝑡 𝑃𝑗𝑥 𝑡 + 𝛿𝑡 ,

𝐵 is not required. 𝑥 is generated by 𝑢 = 𝑢′ (off-policy).  Usually, we choose

𝑢
′
= −𝐾𝑗𝑥 + 𝜉 or  𝑢

′
= −𝐾0𝑥 + 𝜉

ADP for partially unknown linear systems (Lewis et al., 2009)

𝑥𝑇 𝑡 𝑃𝑗𝑥 𝑡 = න
𝑡

𝑡+𝛿𝑡

𝑥𝑇 𝑄 + 𝐾𝑗
𝑇𝑅𝐾𝑗 𝑥𝑑𝜏 + 𝑥𝑇 𝑡 + 𝛿𝑡 𝑃𝑗𝑥 𝑡 + 𝛿𝑡 ,

𝑲 𝒋+𝟏 = 𝑅−1𝐵𝑇𝑃𝑗.

𝐵 is required.  𝑥( t ) is generated by 𝑢 = −𝐾𝑗 𝑥 (on-policy). Integral RL equation.



On-line Off-policy PI-based ADP algorithm

Θ𝑘
෠𝑃𝑘

𝑣𝑒𝑐(𝐾𝑘+1)
= Ξ𝑘

For 𝑃 ∈ ℝ𝑛×𝑛 and 𝑥 ∈ ℝ𝑛,

𝛿𝑥𝑥 = ҧ𝑥 𝑡1 − ҧ𝑥 𝑡0 , ҧ𝑥 𝑡2 − ҧ𝑥 𝑡1 , ⋯ , ҧ𝑥 𝑡𝑙 − ҧ𝑥(𝑡𝑙−1)
𝑇 ∈ ℝ𝑙×

𝑛 𝑛+1
2 ,

𝐼𝑥𝑥 = න
𝑡0

𝑡1

𝑥 ⊗ 𝑥𝑑𝜏 ,න
𝑡1

𝑡2

𝑥 ⊗ 𝑥𝑑𝜏 ,⋯ ,න
𝑡𝑙−1

𝑡𝑙

𝑥 ⊗ 𝑥𝑑𝜏

𝑇

∈ ℝ𝑙×𝑛2 ,

𝐼𝑥𝑢 = න
𝑡0

𝑡1

𝑥 ⊗ 𝑢𝑑𝜏 ,න
𝑡1

𝑡2

𝑥 ⊗ 𝑢𝑑𝜏 ,⋯ ,න
𝑡𝑙−1

𝑡𝑙

𝑥 ⊗ 𝑢𝑑𝜏

𝑇

∈ ℝ𝑙×𝑛𝑚 ,

ҧ𝑥 = 𝑥1
2, 𝑥1𝑥2, ⋯ , 𝑥1𝑥𝑛, 𝑥2

2, 𝑥2𝑥3, ⋯ , 𝑥𝑛−1𝑥𝑛 , 𝑥𝑛
2, 𝑇 ∈ ℝ

𝑛 𝑛+1
2 ,

෠𝑃 = 𝑝11, 2𝑝12, ⋯ , 2𝑝1𝑛 , 𝑝22, 2𝑝23, ⋯ , 2𝑝2𝑛 , 𝑝𝑛𝑛
𝑇 ∈ ℝ

𝑛 𝑛+1
2 .

Jiang & ZPJ, 2012

* *

1) Full rank of  

 unique solution of (**)

(due to exploration noise )

2) ,   as .

3) Stability + suboptimality

    without .
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




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 
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Learning-based Value Iteration

Question:

Can we remove the assumption on the knowledge of an initial,

stabilizing policy 𝑲𝟎 , when the system dynamics are not known?

Yes! 

Generalize & apply the “Value Iteration” (VI) method 

to continuous-time dynamical systems.



History of Value Iteration (VI)

Value iteration: Policy iteration:

1959 • VI for MDPs (Bellman) 1960 • PI for MDPs (Howard)

1960 • The name of Value iteration 1969 • PI for CT linear systems.

was introduced (Howard) (Kleinman)
1995 • VI for DT linear systems.  

(Lancaster & Rodman)
1976 • PI for DT linear systems.  

(Bertsekas)

2015 • VI for DT nonlinear systems  
(Bertsekas, Lewis, …)

1995 • PI for CT affine nonlinear  
systems (Beard & Saridis)

2014 • PI for CT nonaffine nonlinear

systems (Bian, ZPJ, etc)

2015 • PI for DT nonlinear systems
(Bertsekas, D. Liu, Lewis, …)➢VI is more difficult.

➢ It is still an open problem to develop VI for continuous-time systems.

➢We give a VI by combining DMRE and stochastic approximation theory.



VI for Linear-quadratic regulator (LQR)

Continuous-time VI:  lim
𝑡→∞

𝑀 𝑡 = 𝑃
∗
, where

ሶ𝑀 = 𝐴𝑇𝑀+𝑀𝐴−𝑀𝐵𝑅−1𝐵𝑇𝑀+ 𝑄, 𝑀 0 = 𝑀𝑇 0 > 0

Stochastic Approximation:

𝜃𝑡+1 = 𝜃𝑡 + 𝜖𝑡 𝑔 𝜃𝑡 + 𝛿𝑀𝑡 + 𝑍𝑡

where

➢𝑍𝑡 is a projection term;

➢𝜖𝑡 is the step size;

➢{𝛿𝑀𝑡} is a sequence of i.i.d random variables, 𝐸 𝛿𝑀𝑡 = 0, 𝑉𝑎𝑟 𝛿𝑀𝑡 < ∞;

➢ 𝑔(⋅) is measurable and locally Lipschitz.

Convergence:  𝜃𝑡 → 𝜃
∗

with probability 1,

ሶ𝜃 = 𝑔(𝜃) is asymptotically stable at 𝜃∗. (Kushner-Yin, 2003)

Bian & ZPJ, Automatica, 2016



Choose 

Loop
෨𝑃𝑘+1 ← 𝑃𝑘 + 𝜖𝑘(𝐴

𝑇𝑃𝑘 + 𝑃𝑘𝐴 − 𝑃𝑘𝐵𝑅
−1𝐵𝑇𝑃𝑘 + 𝑄)

if ෨𝑃𝑘+1 ∉ 𝐵𝑞 then

𝑃𝑘+1 ← 𝑃0. 𝑞 ← 𝑞 + 1

else if 
෨𝑃𝑘+1−𝑃𝑘

𝜖𝑘
< 𝜀 then return ෠𝑃∗ = 𝑃𝑘

else 𝑃𝑘+1 ← ෠𝑃𝑘+1
𝑘 ← 𝑘 + 1

VI for Linear-quadratic regulator (LQR)

Algorithm 1 SA-based continuous-time VI  algorithm (Bian & ZPJ, 2016):

➢ Convergence: 

➢ Stability: If Q > εIn , then is Hurwitz, where , and     is  

obtained from the VI algorithm.

𝐵𝑝 𝑞=0

∞
: 𝐵𝑞⊆ 𝐵𝑞+1, lim

𝑞→∞
𝐵𝑞 = {𝑃 ∈ ℝ𝑛×𝑛: 𝑃𝑇 = 𝑃 ≥ 0}

𝜖𝑘 𝑘=0
∞ : 𝜖𝑘 > 0, lim

𝑘→∞
𝜖𝑘 = 0 ,෍

𝑘=0

∞

𝜖𝑘 = ∞ . 𝜀 > 0 is a threshold

𝑃0 = 𝑃0
𝑇 > 0. 𝑘, 𝑞 ← 0.

𝑃𝑘 → 𝑃∗

𝐴 − 𝐵 ෠𝐾∗ ෠𝐾∗ = 𝑅−1𝐵𝑇 ෠𝑃∗ ෠𝑃∗



On-line Off-policy ADP algorithm (Bian & ZPJ, 2016):

Solve H k  and K k from

where H k = AT Pk + Pk A.

𝑥𝑇 𝑡 + 𝛿𝑡 𝑃𝑘 𝑡 + 𝛿𝑡 = ׬
𝑡

𝑡+𝛿𝑡
𝑥𝑇𝐻𝑘𝑥𝑑𝑠 + ׬2

𝑡

𝑡+𝛿𝑡
𝑢𝑇𝑅𝐾𝑘𝑥𝑑𝑠 + 𝑥𝑇 𝑡 𝑃𝑘𝑥 𝑡 . (1)

Continuous-time VI-based ADP algorithm

𝑃0 = 𝑃0
𝑇 > 0. 𝑘, 𝑞 ← 0.

Figure: Bounded learning trajectory.

Choose

Apply a locally bounded input u to the system. 

Loop

Solve (𝑯𝒌, 𝑲𝒌) from (1)
෨𝑃𝑘+1 ← 𝑃𝑘 + 𝜖𝑘 𝐴𝑇𝑃𝑘 + 𝑃𝑘𝐴 − 𝑃𝑘𝐵𝑅

−1𝐵𝑇𝑃𝑘 + 𝑄
= 𝑃𝑘 +𝜖𝑘(𝐻𝑘 − 𝐾𝑘

𝑇𝑅𝐾𝑘 + 𝑄)
if ෨𝑃𝑘+1 ∉ 𝐵𝑞 then

𝑃𝑘+1 ← 𝑃0. 𝑞 ← 𝑞 + 1

else if 
෨𝑃𝑘+1−𝑃𝑘

𝜖𝑘
< 𝜀 then return ෠𝑃∗ = 𝑃𝑘

else 𝑃𝑘+1 ← ෠𝑃𝑘+1
𝑘 ← 𝑘 + 1



How about general nonlinear systems?

ሶ𝑥 = 𝑓 𝑥, 𝑢 , min 𝒥 𝑥0; 𝑢 = න
0

∞

𝑟 𝑥, 𝑢 𝑑𝑡 .

with unknown dynamics f ?

• No distinction between linear and nonlinear problems

• First solution to adaptive/nonlinear optimal control



Policy iteration for nonaffine systems

HJB equation:

Policy iteration

1.  Policy evaluation: 𝜕𝑥𝑉𝑗 𝑥 𝑓 𝑥, 𝜇𝑗 𝑥 + 𝑟 𝑥, 𝜇𝑗 𝑥 = 0, 𝑉𝑗 0 = 0.

2. Policy improvement:

➢Convergence:  If 𝜇0 is admissible, 𝑉𝑗 → 𝑉
∗
, 𝜇𝑗 → 𝜇

∗
.

➢Stability: 𝜇𝑗 is stabilizing and, 𝒥 𝑥0; 𝑢𝑗(𝑥) < ∞

ሶ𝑥 = 𝑓 𝑥, 𝑢 , 𝒥 𝑥0; 𝑢 = න
0

∞

𝑟 𝑥, 𝑢 𝑑𝑡 .

0 = min
𝑣∈ℝ𝑚

{𝜕𝑥𝑉
∗ 𝑥 𝑓 𝑥, 𝑣 + 𝑟(𝑥, 𝑣)} , 𝑉∗ 0 = 0,

𝜇∗ 𝑥 = arg min
𝑣∈ℝ𝑚

{𝜕𝑥𝑉
∗ 𝑥 𝑓 𝑥, 𝑣 + 𝑟(𝑥, 𝑣)}

𝜇𝑗+1 𝑥 = arg min
𝑣∈ℝ𝑚

{𝜕𝑥𝑉
∗ 𝑥 𝑓 𝑥, 𝑣 + 𝑟(𝑥, 𝑣)} , ∀𝑥 ∈ ℝ𝑛

(Bian, Jiang & ZPJ, 2014)

Nonaffine system:



Basis function approximation

O

(𝑥 𝑡 , 𝑢0(𝑡)

𝔸 × 𝕌

𝑉𝑗 𝑥 =෍

𝑖=1

𝑁

ෝ𝑤𝑖
𝑗
𝜙𝑖(𝑥) + 𝑒𝜙

𝑗
𝑥 ,

𝜕𝑥𝑉𝑗 𝑥 𝑓 𝑥, 𝑣 =෍

𝑖=1

𝑁

Ƹ𝑐𝑖
𝑗
𝜓𝑖(𝑥, 𝑣) + 𝑒𝜓

𝑗
𝑥, 𝑣 ,

𝜇𝑗 𝑥 =෍

𝑖=1

𝑁

መ𝑙𝑖
𝑗
𝜃𝑖 𝑥 + 𝑒𝜃

𝑗
(𝑥)

➢ 𝜙𝑖 𝑖=1
𝑁 , 𝜓𝑖 𝑖=1

𝑁 , 𝑎𝑛𝑑 𝜃𝑖 𝑖=1
𝑁 ,

with 𝜙𝑖: ℝ
𝑛 → ℝ,𝜓𝑖: ℝ

𝑛 × ℝ𝑚 → 𝑅, 𝑎𝑛𝑑 𝜃𝑖: ℝ
𝑛 → ℝ𝑚,

are three sets of linearly independent and continuous functions;

➢ 𝑒𝜙
𝑗
, 𝑒𝜓

𝑗
, 𝑎𝑛𝑑 𝑒𝜃

𝑗
are the approximation errors.

Using basis function approximation, we have for all x ∈ A and v ∈  U,

Linear-like problem



Assumption (Persistent excitation (PE))

ADP algorithm:

For all , there exist ഥ𝑀 > 0 and 𝛾 > 0, such that for all 𝑀 ≥ ഥ𝑀,

The ADP algorithm:

1. Apply 𝑢0 𝑡 to the system.  𝑗 ← 0.

2.  Policy evaluation:

3. Policy update:

Convergence on 𝔸:

ො𝜇𝑗 𝑗=0

∞

1

𝑀
σ𝑘=1
𝑀 Θ𝑘

𝑗 𝑇
Θ𝑘
𝑗
≥ 𝛾𝐼2𝑁 , Θ𝑘

𝑗
∈ ℝ1×2𝑁 is the vector of input-state data

ෝ𝑤𝑗 , Ƹ𝑐𝑗
𝑇
= − ෍

𝑘=1

𝑀

Θ𝑘
𝑗 𝑇
Θ𝑘
𝑗

−1

෍

𝑘=1

𝑀

Θ𝑘
𝑗 𝑇
න
𝑡𝑘−1

𝑡𝑘

𝑟 𝑥, Ƹ𝜇𝑗 𝑥 𝑑𝑡 .

መ𝑙𝑗+1 = arg min
{𝑙|𝑙𝜃 𝑥 ∈𝕌}

Ƹ𝑐𝑗𝜓 𝑥, 𝑙𝜃 𝑥 + 𝑟 𝑥, 𝑙𝜃 𝑥 , Ƹ𝜇𝑗 = መ𝑙𝑗𝜃.

lim
𝑁→∞

σ𝑖=1
𝑁 መ𝑙𝑖

𝑗
𝜃𝑖 𝑥 − 𝜇𝑗 𝑥 = 0 , lim

𝑁→∞
σ𝑖=1
𝑁 ෝ𝑤𝑖

𝑗
𝜙𝑖 𝑥 − 𝑉𝑗 𝑥 = 0 .

Bian, Jiang & ZPJ, 2014

Semiglobal stabilization



Robust Adaptive Dynamic Programming

Question 2:

How to learn suboptimal controllers with guaranteed robustness 

to dynamic uncertainties?



System

Model (x)

Controller

Dynamic

Uncertainty (z)
dim(z, x) unknown, 

with possibly huge dim(z)

Note: Previous ADP algorithms assume the system order is known!

Dynamic uncertainties:

• Mismatch between model and plant

• Observation errors

• Subsystems in large-scale networks

• Model reduction

Robust Adaptive Dynamic Programming



RADP: Robust Adaptive Dynamic Programming

For illustration, consider partially linear composite systems
with “dynamic uncertainty”.

System

Model

Controller

Dynamic

Uncertainty ( , )

[ ( , )]

w q w y

x Ax B u E w y

y Cx

=

= + + 

=

Challenge: How to learn robust/adaptive nonlinear optimal controllers via 
real-time and partial-state information? 

where 𝐴, 𝐵, 𝐶, 𝐸 are unknown matrices, 𝑞 and Δ are unknown locally 
Lipschitz functions vanishing at the origin.

Jiang & ZPJ; TNNLS, 2013



RADP for partially linear composite systems

Challenge

1

2

Input-to-state stability (ISS) and
Input-to-output stability (IOS) 
[Sontag 1989], [Sontag & Wang 
1995].

The state-space nonlinear small-gain 
theorem proposed in [Jiang, Teel, & 
Praly 1994] is an important tool for 
network stability and control.

A simplified version of the small-gain theorem: If                 .  

then, the overall system is globally asymptotically stable at the origin. 

1 2 Id  

System
Model

Controller

Dynamic

Uncertainty

2How to achieve gain assignment      i/o data and ADP?via



Special Case: Linear Gain Assignment

Lemma (Gain assignment): Let                         be the optimal control policy of system 

S1 and assume the weighting matrices satisfying                    and                   . Then, 

there exists a continuously differentiable, positive definite and radially unbounded function 

𝑉(𝑥) , such that along the solutions of S2, we have

S1:
x Ax Bu

y Cx

= +


=

( )
S2 :

x Ax B u Ew

y Cx

= + +


=

*u K x= −
TQ C C -1 TR EE

2 2| | | |V y w − +

Remark: The constant              can be arbitrarily assigned by choosing appropriate 

weighting matrices    and , without knowing       and      .

0 

Q R A B

Jiang & ZPJ; TNNLS, 2013



Linear Gain Assignment

Lemma (Global Stabilization): Under mild assumptions, the overall system is globally 

asymptotically sable under the control policy                 

if the following small-gain condition holds:

*u K x= −

2

1

1
1

c

c


Assumption: There exist a continuously differentiable,  positive definite and radially 

unbounded function       and two constants                 ,  such thatW
1 2, 0c c 

2 2

1 2( , ) | ( , ) | | |
W

q w y c w y c y
z


 −  +



Jiang & ZPJ; TNNLS, 2013



Application to a Power System

( )

( )1 2 12 12 12 12

1 2

2

0

2

2

1 1 1

12

Mechanical Dynamics [P. Kundur et al. 1994]

-      1, 2
2 2

Governor Dynamics  

1
[ ]       1, 2

Active Power

cos nsin si
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i
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P P i
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dP
P u i
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V
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  

  

= + − =

= − + =
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=

： 
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Control Challenges:

1. Unknown dynamics

2. Locally available state variables

3. Prevent oscillation

Robust-ADP Approach:

1. Online learning

2. Partial state feedback

3. Stability and Suboptimality



RADP: Robust Adaptive Dynamic Programming

Tools: 
Semiglobal ADP, Global ADP, Decentralized ADP, 
with applications in electric power systems, human motor control

Recent extensions:

• Value iteration (c-t) 

• Output feedback ADP

• Adaptive/optimal output 
regulation via ADP

• ADP for multi-agent systems

• Stochastic systems



Outline

➢Robust Adaptive Dynamic Programming

➢ Adaptive LQR for continuous-time linear systems

➢ Extensions: nonlinear and robust

➢Application:

Connected and Autonomous Vehicles

➢Conclusions and Future Work

➢Data-Driven Learning-based Control Theory: Why?



1. Reinforcement Learning for Vision-Based Lateral Control

Connected and Autonomous Vehicles

Lane centerline
(a) Raw image

(b) Processed image including detected lane boundaries, lane centerline and 

𝜉 = 𝑑, 𝜃𝑒
𝑇.

Image before and after processing



Experimental Results

Learning behavior



Car Following and Lane Keeping

Control and Networks Lab,

New York University



Control and Networks Lab,

New York University



Microscopic Simulation in SUMO

Red: Autonomous; Blue: Human-Operated

2. Robust autonomous driving with humans in the loop



Robustness Evaluation

The speed of the leading vehicle is 𝑣0 = 𝑣∗ + 𝑣0
amp

sin ω𝑓𝑡 with amplitude 𝑣0
amp

= 5 𝑚/𝑠 , frequency  ω𝑓 =

1 𝑟𝑎𝑑/𝑠 and 𝑣∗ = 15 𝑚/𝑠 . 

Red: Autonomous; Blue: Human-Operated



Other scenarios: merging and splitting

We also test the cut-out scenario: 



Other scenarios: merging and splitting

The merging of two platoons

In both cases, after learning, the learned controllers can stabilize the new platoon as wanted. 



“Flappy Bird” with RL                               using RADP-based Learning Controller 

3. Data-efficient Reinforcement Learning



● Learning-based nonlinear control is a promising field, yet still 

in its infancy. 

● RADP (Robust Adaptive Dynamic Programming) for data-driven, 

learning-based robust/adaptive optimal control design.

● Validations via applications to power systems and CAVs.

Conclusions



下集预告 Future Work: Human Motor Control

• Is RADP a computational mechanism of human motor control?

• A case study: reaching problem



● Is RADP a computational mechanism of human motor control?

● A case study: reaching problem

Human Motor Control

Sensorimotor Control:

• One of the most common activities in daily 

lives

• Highly stereotyped trajectories have been 

reported

• Still unclear how the trajectories are 

formulated

• Research in this area may be helpful for 

better understanding related diseases.

1

cos

 

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= − +

= − + +
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Human Motor Control

Transformed system

ሶ𝑤 = −
1 + 𝜏𝑁
𝜏𝑁

𝑤 + 𝐼𝑥2

ሶ𝑥1 = 𝑥2

ሶ𝑥2 =
2𝑚𝑔𝑙

𝐼
sin

𝑥1
2

sin
𝑥1
2
+ 𝜃0 +

1

𝐼
(𝑢 + 𝐼𝑥2 +𝑤)

State and input transformation

𝑥1 = 𝜃 − 𝜃0
𝑥2 = ሶ𝜃

𝑤 = 𝜂 −
𝜏_𝑁𝑚𝑔𝑙𝑐𝑜𝑠𝜃0

𝜏𝑁 + 1
sin − 𝐼𝑥2

Original System Model

ሶ𝜂 = −
1

𝜏𝑁
𝜂 + 𝑇𝑚

𝐼 ሷ𝜃 = −𝑚𝑔𝑙cos𝜃 + 𝜂 + 𝑇𝑚

Cost

𝐽 = න
0

∞

100𝑥1
2(𝑡) + 𝑥2

2(𝑡) + 𝑢2(𝑡) 𝑑𝑡

Yu Jiang/ZPJ, 2013



A sensorimotor control problem (Cont’d)

Experimental observations

a) [Harris & Wolpert, Nature, 1998]

b) [Morasso, Exp Brain Research, 1981]

c) [Abend et al, Brain: A Journal of Neurology, 

1982]

d) [Atkeson et al. J of Neuroscience, 1985]

e) [Cooke, Neurobiology of Aging, 1989]

f) [Flash et al, J of Neuroscience, 1985]

Figure: Velocity profilesFigure: Cost 

functions
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