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Connected Vehicles Smart Grids Social Networks 

New Systems are Increasingly Interconnected    

Smart City System Biology 
Cloud and Edge 

Computing Network 



Challenges and Opportunities for  

Paradigm Shifting in Control Systems 



• McCulloch-Pitts 

Neuron Model 

• Artificial Neural 

Networks 

• Artificial 

Intelligence 

Norbert Wiener:  
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and the Machine, MIT Press，
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Error Correction 
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Fundamental Feedback Ability and Limitations 

Norbert Wiener 

Yuk Wing Lee  
George Zames 

Late 1970s: H-infinity Theory  

Uncertainty models must be consistent 

with input-output behavior. 

Return to transfer functions and 

operators (from state space models) 

Norms must be consistent with subsystem 

connections: Multiplicative Norms 

L2/H2 norms to H-infinity norm: System 

connections (networked systems) 

Quantified feedback ability: Optimal 

robustness in stability and performance 

Critical for complexity-based theory on 

connected systems 

1960s Foundation for Feedback Robustness,  

Small Gain, Sector Criteria, Passivity 

G. Zames, “Nonlinear operators for 

systems analysis,” Sc.D. dissertation, 

MIT, Cambridge, 1960 

G. Zames, On the input-output 

stability of time-varying nonlinear 

feedback systems: Part I and Part II: 

IEEE TAC, Vol. 11-3,  1966 

 

G. Zames, Feedback and 

optimal sensitivity: Model 

reference transformations, 

multiplicative semi-norms and 

approximate inverses,” IEEE 

TAC, Vol. 26, Apr. 1981. 

Solved Problems: Robust Stability, Nominal Sensitivity Minimization, State-Space Algorithms 

More Difficult (but Important for Complexity Analysis) Problem: Robust Performance 

J. Owen and G. Zames, “Duality theory of MIMO robust disturbance rejection, IEEE TAC, May1993. 

Numerical algorithms: Stephen Boyd (iterative convex optimization) 

G. Zames, On the metric complexity of causal linear systems, ε-entropy 

and ε-dimension for continuous-time systems,  IEEE TAC,  1979. 



My Best Guess:  

Fundamental Complexity-Based  Feedback (Robust, Adaptation, Learning) 

Framework for Cybernetics (Networked Systems)? 

Died 1997 

Late 1980s-1997: Beyond H-infinity 

Slowly time varying systems  

and H-infinity Adaptation 

Identification: Model Complexity (Kolmogorov 

n-widths), Time Complexity (Gelfand n-widths. 

Identification n-widths), Uncertainty Principles 

Combining Deterministic and  

Stochastic Frameworks 

Private Communications with Le Yi Wang 

(unfinished work) 

Complexity-based learning from data 

Building “learning” ability to H-infinity 

George Zames and Le Yi Wang, Local-global double algebras for slow H-

infinity  adaptation, Part I; IEEE TAC 1991. 

Le Yi Wang and George Zames, Local-global double algebras for slow H-

infinity  adaptation, Part II,  IEEE TAC 1991. 

Le Yi Wang and George Yin, Persistent identification of systems with unmodelled 

dynamics and exogenous disturbances, IEEE TAC, Vol. 45-7, 2000. 

Decentralized Feedback for Uncertainty Reduction; 

Coordinating Feedback for Robust Performance  
Feedback Organization 

George Zames, Towards a general complexity-based theory 

of identification and adaptation, LNCIS 222, A.S. Morse, Ed., 

Springer, 1997 

George Zames, Lin Lin and Le Yi Wang, Fast identification 

n-width and uncertainty principle for LTI and slowly time-

varyng systems, IEEE TAC,  Vol. 39, pp. 1827-1837, 1994. 

• Lin Lin, Le Yi Wang, and George Zames, Time complexity and model 

complexity of fast identification of continuous-time LTI systems, IEEE TAC. 1999. 

• L.Y. Wang, Persistent identification of time-varying systems, IEEE TAC, 1997. 

L.Y. Wang and L. Lin, Information-based complexity of uncertainty sets in 

feedback control, IEEE TAC, Vol. 46, No. 4, pp. 519-533, April 2001. 



Uncertainty and Complexity 

In 

Networked Systems 



Information 

Networked systems can be large scale, need 

coordination, information exchange, and data 

Information and data exchange 

needs resources and takes time. 

Information processing and 

computation will consume 

computing resources. 

Much expanded types and severity 

of uncertainty in networked 

systems: Data loss, random time 

delays, network interruption and 

topology switching, …… 

Performance 



Time Complexity 
Irregular and Random Sampling 

Time-varying and Random Delay 

Asynchronous Operation 

Data Complexity 
Signal Quantization 

Data Compression 

Big Data Small Information 

Spatial Complexity 
Data Locations are Distributed  

Physically and in Cyber Space 

Distributed Computation 

Complexity of Networked Systems 

Group Complexity 
Diversity in Members  

Goal Disparity 



(1) Data Complexity: 

Data Size Reduction 

 

Estimation, Identification, Learning 

Under Communication Quantization  



System Configuration under Quantization  

Plant Quantization 

Sensor 

Signals 
Communication 

Channels 

Received 

Signals 
Input 

Signal recovering, state estimation, identification  

with quantized observations 

Signal Recovery 

State Estimation 

System Identification 



System 
Quantized 

Sensor 

u y s 

s 

y 

1 

0 

C 

Binary-Valued Sensors 

Binary Valued 

Sensor 

y s 

y > C S=00000000…. 

y < C S=11111111…. 

Not Sufficient Information to Know y! 

Deterministic Framework 



Fundamental Solution: Randomize the Observations 

Quantized Sensor 

y(k) s 

d(k) 

P(θ) Averaging 
Nonlinear 

Mapping 
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Highly Desirable Results 

ˆ(1) ( ) , w.p.1 

and strong convergence rate has been established

(You cannot fail (almost surely)!)

k 

ˆ(2) ( ) ,  in MS and this convergence rate achieves

the Cramer-Rao Lower Bound asymptotically 

(Best possible rate (in MS)!)

k 

(3) Asymptotic normality (centered and scaled estimates) 

has been established

(Simple for analysis (in distribution)!) 

(4) Large (and moderate) deviation principles have been established

(You can characterize reliability accurately (in probability)!)

Fundamental for Complexity Analysis 



Extension to General Inputs (Still Achieving the CR Lower Bound Asymptotically)  

• Jin Guo, Le Yi Wang, George Yin, Yanlong Zhao, Jifeng Zhang, Asymptotically efficient identification 

of FIR systems with quantized observations and general quantized inputs, Automatica, Vol. 57, 

pp. 113-122, 2015. 

• Jin Guo, Le Yi Wang, George Yin, Yanlong Zhao, Ji-Feng Zhang, Identification of Wiener Systems 

with Quantized Inputs and Binary-Valued Output Observations, Automatica, Vol. 78, pp. 280-286, 

2017. 

Joint Estimation of Systems and Unknown Noise Distributions 

Extension to Nonlinear Wiener and Hammerstein Models 

Error Probability with Large Deviation Principles 

System Complexity Analysis 

Extension to General Nonlinear Systems 

• L.Y. Wang, J.F. Zhang, G. Yin, System Identification Using Binary Sensors,  

IEEE Trans. Automat. Contr., Vol. 48, pp. 1892-1907, 2003. 

• Le Yi Wang, George Yin, Ji-feng Zhang, Yanlong Zhao, System Identification 

with Quantized Observations, Boston, MA: Birkhuser, 2010  

 

Under Periodic Inputs (for achieving the CR Lower Bound and Feedback Invariance)   

Recent Development: Yanlong Zhao’ Group: Data fusion using different sensors  

(Still Achieving the CR Lower Bound Asymptotically)  



(2) Time Complexity 

Data Frequency Reduction 

 

Transmit More Information in Data 



System 
Sampling & 

Quantization 

System 

Output 
Communication 

Channels 

Received 

Signals 
Input 

Question on Information vs Complexity  

How much information about a signal that can be obtained after 

sampling and quantization?   

  

That depends on sampling and quantization schemes. 

Sampling and Quantization Combination 



Sampling and Quantization Schemes  

1. Sampling time is uniformly spaced. 

2. Sampled values are known only within the quantization levels. 

3. Fast sampling may be wasted. 

Clocks at the sending and receiving sites are synchronized, so the sampling 

time itself does not need to be transmitted. 

Traditional Periodic Sampling 

T 2T 3T 

γ1 

γ2 

γ3 

γ4 

1 

2 

5 

4 

3 

Transmitted 

Index values 

This is not a desirable sampling scheme. 



1. Sampling time is irregular.  

2. Unnecessary samples are avoided. Communication resources are saved. 

3. Sampled values are accurate (if no measurement noises are considered). 

4. No guarantee on how many sampled points are generated. 

More efficient sampling scheme, but issues with state estimation and 

control need to be resolved: It may not generate any sampling points for a 

long time. 

Event Triggered  Sampling 

t1 

γ1 

γ2 

γ3 

γ4 

t2 t3 t4 t5 

Transmitted 

Index values 



1. Sampling time is irregular.  

2. Number of sampled points per unit time interval is guaranteed by the 

carrier frequency. 

3. By using synchronized clocks and the known carrier at both sending 

and receiving sites, communications will only be binary bits. 

4. Sampled values are accurate, with an additive noise due to clock 

synchronization errors or delays. 

Effective sampling scheme, control of sampling density, issues of irregular 

sampling with state estimation and control need to be resolved. 

PWM-Based Sampling 

t1 t2 t3 t4 

Transmit only a binary indicator  

at the time of crossing. 



Fundamental Question:  

Will irregularly sampled data provide sufficient information? 

( ) ( ) ( )
 

( ) ( )

x t Ax t Bu t

y t Cx t

 



Observability 

1 2

0.  

Will , , , ,  and z( ) ( ) be sufficient for estimating (0)?  

k

N k k

d N n

t t t t y t x

 



In general, the answer is No! 

Can we use Shannon’s Sampling Theorem to analyze this?  



1. For signal reconstruction 

2. Periodic sampling 

3. Non-causal signal reconstruction 

4. Critical complexity relationship 

Shannon-Nyquist’s Sampling Theorem for Signals 

x(t) 

t 

|X(jw)| 

w 

B

Nyquist frequency of periodic sampling vs. signal bandwidth 

(Fundamental Complexity Relationship) 

BN

T








Why Shannon’s Sampling Theorem cannot be applied? 

1. Under any initial condition, if the corresponding y(t) is not zero, it 

always has unbounded bandwidth.  

2. Sampling time is not periodic. 

3. Shannon’s Sampling Theorem requires an “infinite” data set for 

exact reconstruction. We only have a finite number of sampling 

points. 

4. Shannon’s Sampling Theorem is not causal: You must collect all 

data first. 

5. Observability (and controllability, identifiability, etc.)  is an exact 

statement on the system, no approximation is allowed.  

We need a new sampling theorem for systems! 



Our New General Sampling Theorem for Systems 

1Let the eigenvalues of  be , , .    max Im( )
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          Asymptotically, ,  

          If (sampling density)  /  ,  the state information on the system 

            can be completely recovered from its sampled values.

T
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


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

Characteristic Frequency Bandwidth 

of the System 

Le Yi Wang, Chanying Li, George Yin, Lei Guo, Chengzhong Xu, State Observability and Observers of 

Linear-Time-Invariant Systems under Irregular-Sampling and Sensor Limitations, IEEE Transactions on 

Automatic Control, 56, no. 11, pp. 2639 - 2654, 2011. 



1. For linear time invariant systems 

2. Irregular sampling 

3. Finite Data 

4. Causal state reconstruction 

5. Critical complexity relationship 

This Sampling Theorem for LTI Systems 

1Let the eigenvalues of  be , , .    max Im( )

2( -1)
   

n B i
i
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N n
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
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Sampling density system characteristic bandwidth 

Fundamental Complexity Relationship for Systems 



Extension to Convergence, Convergence Rates, Estimation Accuracy 

 Le Yi Wang, Chanying Li, George Yin, Lei Guo, Chengzhong Xu, State Observability and 

Observers of Linear-Time-Invariant Systems under Irregular-Sampling and Sensor 

Limitations, IEEE Transactions on Automatic Control, 56, no. 11, pp. 2639 - 2654, 2011. 

 

Extension to Joint Estimation of State and Events in Hybrid Systems 

      Le Yi Wang, Wei Feng, George Yin, Joint State and Event Observers for Linear 

Switching Systems under Irregular Sampling, Automatica, 49, pp. 894-905, 2013. 
 

Extension to System Identification 

         Biqiang Mu, Jin Guo, Le Yi Wang, George Yin, Lijian Xu, Wei Xing Zheng, 

Identification of linear continuous-time systems under irregular and random 

sampling, Automatica, Vol. 60, pp. 100-114, 2015. 

This complexity relationship is essential for 

Extension to Controllability 

        Ping Zhao, Le Yi Wang, George Yin, Controllability and adaptation of linear time-

invariant systems under irregular and Markovian sampling, Automatica, Vol. 63, pp. 

92-100, January 2016. 



(3) Group Complexity 

Data Total Volume Reduction 

 

Decision and Complexity Based  

System Identification 



Traditional System Identification  
, 1, ,T

k k ky d k N    Example: 

Algorithms: 

Goals: 
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Convergence: ,  w.p.1, 

Convergence Rate: ( ) ,  

( ) (1),  w.p.1, 
log log

Asymptotic Normality: ( ) (0, ),  

Asymptotic Efficiency: Achieve the CR Lower Bound, 
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 N Common Issue: 
Complexity 

Resource 

Money 

Problem: We cannot spend the money we do not have. 



Decision-Based Identification  

Example 1: Robust Feedback Controller  

If the controller is very robust, then identification accuracy can be reduced. 

But if the plant is close to the boundary of the robust region, identification 

accuracy needs to be enhanced for controller adaptation.   

First Question: How accurate should the estimates be?  

That depends on what the “decisions” you must make. 

Decisions: control, monitoring, diagnosis, prediction, coordination, etc.  

Example 2: Patient Vital Sign Monitoring  

If the patient is healthy, then identification accuracy can be reduced.  

But if a patient is sick with blood pressures near the hypertension thresholds, a 

closer monitoring is needed for patient safety.  



Telemedicine: Connected Patients and Remote Automated Group Monitoring 

1  every  secondN T

1000  every  secondN T

1 1000  the total requested resource 

 total communication bandwidth

N N N

N
B

T

  



Resource Allocation Strategy 1 

All users are assigned the equal number of  data points in 

communication during the updating time interval T.   

Is this a good strategy?  



Improved decision reliability by using 

more data: Larger resource 

Probability Characterization of Estimates 

Use the Central Limit Theorem and Large 

Deviations Principles to obtain asymptotically 

accurate values for the probabilities of missed 

diagnosis and to guide decision algorithms to 

improve it. 

systolic blood  

pressure P 

Blood Pressure Monitoring Example 

C* C hypertension normal 

Estimate density function 

P* 

The tail areas are 

decision errors 

 

Decision Error Probability (for a normal patient)

ˆ( , )  Large Deviation Principletrue N true truep N P p p C p    



Equal Resource Allocation 

(Population Based) 

Large Reliability Variations 

(Individual Reliability) 

• The overall reliability is determined by the worst case 

• Many resources are wasted 

Uniform Reliability 
Dynamic Resource Allocation 

(Individualized and Need Algorithms) 
• The uniform reliability 

• Resources are saved 

P 

P* C* C 

Patient 1 

P 

P* C* C 

Patient 3 

P 

P* C* C 

Patient 2 

0For ( , ) ( )true truep N N f p   

The true parameter is unknown, so we need to estimate N 
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* 2
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New Estimation Problem for finding the optimal : 

(1) Estimation Algorithms for 

(2) Convergence: ,  . .1,  

(3) Convergence Rate: ( ) ,  

( ) (1),  w.p.1., 
log log

(4) Asympto
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 
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*tic Normality: ( ) (0, ),  

(5) Asymptotic Efficiency: Achieve the CR Lower Bound,  

kk N N k

k

   
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N

Adaptive Resource Allocation 

All these properties have been established  

for individual parameters under Gaussian i.i.d. cases 

1.L.Y. Wang, G. Yin, J. Guo, B.Q. Mu, L.J. Xu, From Wiener filtering to recent advances on complexity 

based system identification and state estimation, IEEE Conference on Norbert Wiener for the 21st 

Century, Boston, June 24-26, 2014. 

2.Jin Guo, Bi-Qiang Mu, Le Yi Wang, George Yin, Lijian Xu, Decision-based system identification and 

adaptive resource allocation, IEEE Transactions on Automatic Control, 62-5, pp. 2166-2179, 2017. 

Le Yi Wang, Yanlong Zhao, Ting Wang, Robust control and system identification: A complexity 

perspective. Sci Sin Math, 2016 



(4) Spatial Complexity 

Data Distance Reduction 

 

Distributed Optimization 

In Networked Systems 



Centralized Strategy: One Node is the King 

• The King communicates and computes the whole (optimal) state  

 (high complexity in one node) 

• The King knows everything (node privacy is lost to the King) 

1 12 2 23 3 1000The size of the network: [ , , , , , , ]x x x x x x x

It is actually a simple structure, not very high complexity.   

But it is vulnerable! 

1x
2x

3x

5x

4x

1000x

7x

8x

Physical Network 

 Information Network 

12x

23x

67x

56x

45x

34x

1000,1x



Non-Strict Distributed Strategy: Every Node is a King 

Now, every subsystem has the global information! 

No loss of capability: What can be achieved by a central strategy can always be 

achieved by this “multi-hop” distributed strategy 

1x̂

1000x̂

7x̂

6x̂
5x̂

4x̂

3x̂

2x̂
One-step Distributed Consensus 

Multi-step Global Information 

Each node performs 

global optimization, 

but only implements 

one variable. 

It is actually a complicated structure, very high complexity.   

Much More Expensive than the Centralized Strategy! 

1 12 2 23 3 1000The size of the network: [ , , , , , , ]x x x x x x x



Strictly Distributed Approach: No One is a King 

1

1 12 1000,1
ˆ [ , , ]x x x x

1000x̂

7x̂

6x̂
5x̂

4x̂

3x̂

2x̂
12x

23x

67x

56x

45x

34x

1000,1x

Each link communicates only 

local variables connected to it 

1 12 2[ , , ]x x x

Each node performs only 

local optimization over the 

variables linked to it 

1 12 1000,1[ , , ]x x x

Low communication and computing complexity, high resiliency, good privacy  

Imposing constraints on network structures and achievable performance, but 

many network systems can achieve that! 



Conditions of Strictly Distributed Approach 

(1) Privacy: Subsystems use and maintain only their own and neighbors 

information. No multi-hop information passing is allowed.   

(2) Local Optimization: Subsystems perform only local calculations (e.g., 

local gradient/subgradient) over variables linked to them, independent of 

the network size. 

(3) Local Communication: Communication channels carry only data that are 

linked to it. The data size on each channel is independent of the network 

size.  

(4) Scalability: Adding/deleting a non-neighbor player to the network should 

not affect its control and decision (it is not aware of this addition). 

• Le Yi Wang, Shu Liang, Siyu Xie, George Yin, Masoud Nazari, Strictly distributed optimization for 

cyber-physical networks, in preparation 

• Shu Liang, Le Yi Wang, George Yin, Exponential convergence of a distributed primal-dual convex 

optimization algorithm without strong convexity, Automatica, accepted in 2019. 

• Shu Liang, Le Yi Wang, and George Yin, Distributed Dual Averaging with Iterate-Averaging Feedback 

for Nonsmooth Convex Optimization, Automatica, pp.101:175-181, 2019. 

• Shu Liang, Le Yi Wang, George Yin, Distributed Dual Subgradient Algorithms with Iterate-Averaging 

Feedback for Convex Optimization with Coupled Constraints, IEEE Transactions on Cybernetics, 

accepted in 2019. 



Communication Uncertainty and 

a Stochastic Approximation Framework to  

Deal with Control-Communication Co-Design 



Communication System Reality 

Desirable Channel Models: 

Signal 

Gaussian Noise 

Dynamic Channel 

Fading Models 

Received 

Signal 

Very reasonable and commonly used physical layer and analog channel model  

Open Systems Interconnection Model  

(OSI Model)  

Control/Communication 

 Interfacing Application Layer: 

Digital Communication Network 



Scenarios from Communication Systems 

Information 

Quantization 

Sampling 

Data Compression 

Data Packaging 

Source Coding 

Added Correction Bits 

Receiver: 

Error Detection and Correction 

Decoding 

Error! Resend! 

Correct!  

99.99% Accurate 

No “additive noise”  

from the transmission 

Correct Data Received 

For Processing 

Random Delays 



Communication Network Reality 

• Channels can interrupt randomly  

• To avoid signal interference, 

Channels must operate in a 

certain order 

• Signals arrive at different time 

1. Randomly Switching Topology 

2. Random Delays 

3. Random Sampling and 

Asynchronous Operation 

Channel 1 

Channel 2 

Channel 3 

sent received sent lost 

sent received 

sent received 

delay 

delay 

No transmission 

No transmission 

Interference 

Avoidance 
delay 



How can an SA Structure Accommodate Unique Network System Features? 

1 ( ( , ) ( , ) )
nn n n n n n n n nx x M x W        

System states 

are updated 

The step sizes ensure 

convergence or tracking 

time varying scenarios 

The network matrix ensures 

updating is limited by local 

information only for 

distributed strategies 

The Markov chain captures 

network topology 

uncertainties, system 

scaling (subsystem addition 

and deletion). 

The network noises, either 

i.i.d. or mixing types, 

accommodate 

measurement noise and 

communication 

uncertainties. 

Hybrid control is 

captured by a Markov 

decision variable. 

Random delays are 

modeled by another 

stochastic process. 

Some Appealing Features: 

1. Extensive Convergence Results:  

Strong convergence, MS convergence, asymptotic normality, and the related convergence rates 

2. Suitable Complexity Analysis (best possible rate of convergence) 

 With Post-Iterate Averaging and under some conditions, the MS convergence is asymptotically 

efficient (reaching the Cramer-Rao Lower Bound) 

3. Regime  Switching results are available.  

4. The limiting ODE or SDE can be used to analyze stability and performance under random delays.  

 

Asynchronous 

operation:  Replacing 

n by random time tn 

H.J. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications, 2nd 

Edition, Springer-Verlag, New York, 2003, [Applications of Mathematics, Volume 35]. 



1 ( ( ) ( ) )n n n n n n nx x M x W      

( ) ( ( ), ) ( ( ), ) ( )

( ) { ( ) : 0}

t t

t

dX t f t X dt g t X dw t

X X t

 

   

 

    

Limit Stochastic Functional Differential Equations: 

Three stochastic processes: Brownian Motion, Markov Chain, Random Delays 

Very difficult problems to analyze and solve, especially before 2009. 

Fundamental Mathematics Problem 



Asynchronous Operation 

• G. Yin, Q. Yuan, L.Y. Wang, Asynchronous stochastic approximation algorithms 

for networked systems: Regime-switching topologies and multi-scale structure, 

Multiscale Modeling and Simulation, Vol. 11, No. 3, pp. 813–839, 2013. 
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( ) {1, , } is a continuous-time, finite state Markov chain.

If ( ) is positive recurrent, then there exists a stationary density

0, , 1.  
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Consider the simple case of no-delay and linear (fast) switching systems:  

• R.Z. Khasminskii, C. Zhu, G. Yin, Stability of regime-switching diffusions, Stochastic Processes 

and their Applications, pp. 1037-1051, August 2007. 

• G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer, New 

York, 2010, [Stochastic Modeling and Applied Probability, Volume 63] 

Switching Network Topology 
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 
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max

min

(a) If 0,  then the siwtching diffusion (1) is 

asymptotically stable in probability.

(b) If 0,  then the siwtching diffusion (1) is unstable.









Theorem 

From Drift Part 

similar to deterministic 

systems   

Weighted Average 

Markovian Switching  

From Diffusion Part 

unique to stochastic systems 

Ito Formula  

• Switching among stable systems may lead to unstable systems 

• Switching among unstable systems may lead to stable systems 

• Noise can sometimes assist stability if they are small 



• S.L. Nguyen, D.T. Nguyen, G. Yin, and L.Y. Wang, Modeling and controls of 

large-scale switching diffusion networks with mean-field interactions, 2019 8th 

International Conference on Systems and Control. 

• T. Bui, X. Cheng, Z. Jin, and G. Yin, Approximation of a class of non-zero-sum 

investment and reinsurance games for regime-switching jump-diffusion 

models, Nonlinear Analysis: Hybrid Systems, 32,  276—293, 2019. 

• George Yin, Le Yi Wang, Thu Nguyen, Switching Stochastic Approximation and 

Applications to Networked Systems, IEEE Transactions on Automatic Control, 

accepted in 2018. 

• Thu Nguyen, Le Yi Wang, George Yin, Hongwei Zhang, Shengbo Eben Li, 

Keqiang Li, Impact of Communication Erasure Channels on Control 

Performance of Connected and Automated Vehicles, IEEE Transactions on 

Vehicular Technology, Vol. 67-1, pp. 29-43, Jan. 2018 

• Ge Chen, Le Yi Wang, Chen Chen, George Yin, Critical Connectivity and Fastest 

Convergence Rates of Distributed Consensus with Switching Topologies and 

Additive Noises, IEEE Transactions on Automatic Control, Vol. 62-12, pp. 

6152-6167, April 2017. 

• K. Tran, G. Yin, L.Y. Wang, Hanqing Zhang, Singularly Perturbed Multi-scale 

Switching Diffusions, Dynamic Systems and Applications, 25, pp. 153-174. 

2016. 



Dealing with Random Delays 

One constant delay 

Multiple constant delays 

Time varying delay 

Randomly time-varying and distributed delays 

Interactive random delays with random noise and 

random network structures 

Classical Systems 

Network System Reality 

Important and Promising New Methods: 

Stochastic Functional Differential Systems and Functional Itô Formula 



History:  

• Extensive advance on stochastic delay equations, but no Itô formulas for distributed and 

integral-type delays. 

• In “(2009) B. Dupire,  Functional Itô's Calculus. Bloomberg Portfolio Research Paper No. 

2009-04-FRONTIERS”, Dupire extended the Itô formula to a functional setting using a path-

wise functional derivative.  

• Rigorous mathematical treatment: 2013 by R. Cont, D.-A. Fournie, “Functional Itô calculus 

and stochastic integral representation of martingales”, Ann. Probab., 41, pp. 1109-1133, 2013 

• This work created a new direction in studying stochastic functional equations.  

George Yin’s work: 

• We used this idea in establishing basic properties such as Feller properties, recurrence, 

positive recurrence, and ergodicity of switching diffusions.  

1. D.H. Nguyen, G. Yin, Modeling and analysis of switching diffusion systems: Past-dependent 

switching with a countable state space, SIAM J. Control Optim.  54-5, pp. 2450-2477, 2016. 

2. D. Nguyen and G. Yin, Recurrence and ergodicity of switching diffusions with past-

dependent switching having a countable state space, to appear in  Potential Anal. 

• We applied this formula in studies of consensability in networked systems with distributed 

delays or more general functional-type uncertainties 

Xiaofeng Zong, George Yin, Le Yi Wang, Tao Li, Jifeng Zhang, Stability of stochastic 

functional differential systems using degenerate Lyapunov  functionals and applications, 

Automatica, Volume 91, pp. 197-207, May 2018. 

Theoretical Foundation (George Yin and his collaborators):  

Functional Itô Formula for Random Delays 
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Path-wise functional derivatives (with switching): 

Functional space: 
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ˆFor any bounded stopping time , we have the functional Ito formula:
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if the involved expectations exist.
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Operators: 

Functional Itô Formula: 



• Xiaofeng Zong, George Yin, Le Yi Wang, Tao Li, Ji-Feng Zhang, Stability of Stochastic 

Functional Differential Systems Using Degenerate  Lyapunov  Functionals  and Applications,  

Automatica, Volume 91, pp. 197-207, May 2018. 

• Xiaofeng Zong, Tao Li, George Yin, Le Yi Wang, Ji-Feng Zhang, Stochastic Consentability 

of Linear Systems with Time Delays and Multiplicative Noises, IEEE Transactions on 

Automatic Control,  DOI: 10.1109/TAC.2017.2732823, July  2017. 

• Lijian Xu, Le Yi Wang, George Yin, Hongwei Zhang, Impact of communication erasure 

channels on safety of highway vehicle platoons, IEEE Transactions on Intelligent 

Transportation Systems, Vol. 16-3, pp. 1456-1468, June 2015. 

• Fuke Wu, George Yin, Le Yi Wang, Razumikhin-type theorems on moment exponential 

stability of functional differential equations involving two-time-scale Markovian switching, 

Mathematical Control and Related Fields, Vol. 5, No. 3,  pp. 697-719, September 2015. 

• Fuke Wu, George Yin, Le Yi Wang, Stability of a pure random delay system with two-time-

scale Markovian switching, J. Differential Equations, 253, 878–905, 2012. 

• Wu, F.; Yin, G., Wang, L.Y.; Wang, Moment exponential stability of random delay systems 

with two-time-scale Markovian switching, Nonlinear Analysis Series B: Real World 

Applications, Vol. 13, pp. 2476-2490, 2012. 

• G. Yin, Le Yi Wang, Yu Sun: Stochastic Recursive Algorithms for Networked Systems with 

Delay and Random Switching: Multiscale Formulations and Asymptotic Properties, SIAM J. 

Multiscale Modeling & Simulation, 9(3): 1087-1112, 2011. 



Distributed Robust Control (such as H-infinity): 
• Operator-Based Control 

• Feedback 

• Worst-Case Model Uncertainty 

Stochastic Approximation and Stochastic Functional 

Differential Equations: 
• State-Based Model  

• Markov Decisions 

• Stochastic Uncertainty (sampling, delays, noise, hybrid) 

Challenging Open Question:  

Integration of Robust Control and Stochastic Systems 

1. Combining Deterministic and 

Stochastic Systems 

2. Combining Model-based and 

Data-based Methods 

3. Combining Robust Design 

and Learning/Adaptation 



• Starting of Everything: George Zames （老乔） 

• Everything Stochastic: George Yin （殷刚）and many of his students and collaborators  

• Theoretical Aspects: Lin Lin (藺林），Jifeng Zhang （张纪峰）, Lei Guo （郭雷）, Hanfu Chen （陈翰馥），

Wei Xing Zheng （郑卫新）, Yanlong Zhao （赵延龙）, Fuke Wu （吴付科）, Chanying Li （李婵颖）, Ge 

Chen （陈鸽）, Jin Guo （郭金）, Biqiang Mu （牟必强）, Shu Liang （梁舒）, Wei Feng （冯巍）, Ping 

Zhao （赵平）,  Xiaofeng Zong （宗小峰）, Tao Li （李韬）, Wenxiao Zhao (赵文虓）， and  students 

• Battery and Renewable Energy: Feng Lin （林峰）, Wen Chen （陈文）, Michael Polis, Jiuchun Jiang 

（姜久春）, Weige Zhang （张维戈）, Caiping Zhang （张彩萍）, Yan Bao （鲍谚）, Rui Xiong (熊瑞）, 

Quanqing Yu （于全庆）, and students 

• Autonomous Vehicles: Hongwei Zhang （张洪伟）, Keqiang Li （李克强）, Shengbo Li （李升波), Feng 

Gao （高峰）, Lijian Xu （徐利剑）, and students 
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