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Proto-Conclusions

Agile stochastic control systems without full state information require the
control signal to provide persistent probing to facilitate state estimation

This comes at a cost to the estimation-free control performance
The control signal balances regulation and excitation - duality

It is inherently part of stochastic optimal control and is very hard to
optimize computationally

Three examples of commercial suboptimal stochastic control will be
presented - wireless power control, TCP/IP, hepatitis B management

Each contains dual action

expending energy to save energy
consuming capacity to save capacity
spending money to save money

You pay to use them
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Engineered Agile Stochastic Control Systems

Objectives Objective Specifications
Part 1 stochastic optimal control Y e
background ideas i Jontpug "
duality and probing are inherent P =

Part 2 familiar agile control system in communications “:m
power control in mobile telephony i
suboptimal practical solution
attempt at optimality
Part 3 familiar agile control in networks
iInternet congestion control
testing the constraints
Part 4 duality in healthcare
paying to save money
Part 5 robotics and autonomy
enforcing observability in hostile environments
Some outrageous comments about the future
good luck with that
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Part 1: stochastic optimal control background

It is a demanding business




Stochastic optimal control problem

System (Mark‘“’j Tht1 = fu (T, Uk, Wis noises

process m/
Yk = hg (T, ug,

starting information 7o = p(xo) the initial state density stage cost

E (X0, Ukte) + ThtN)
/=0 terminal cost

expectation is taken over distribution of {7, vo, wo,v1,...,vn-1,wN_1}

objective  minimize Jy = E

constraints SUbjeCt to: up € Uy < control constraints
Ty € Xy < state constraints
TN € X< terminal constraint

admissible controls  wy = g,(Z") where Z° = {yp, w1, Y1, Us—2, ..., Y0}

nonanticipative control

[The solution depends solely on the Information State: 7wy = p (:UAZE) ]

l.e. Uy = gy (7-@) a “separated” control
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Stochastic optimal control solution

The Bayesian filter propagates the information state using w,—1, vy

Tp—1 = p(ajg_l‘Zg % Ty = g‘ZE from state equation

ZE 1 / p:l?g‘xg 1, Up—1 7Tg 1d:Cg 1 timeupdate

Ty = p(:Eg]Ze) (W’xf)ﬂe X f ( measurement update

z, P ?JE‘:W)WK dxy
Call this 7 = Ty_1[mr—1,ys, up_1] from measurement equation

Bayesian filter state conditional density update; depends on uy_1, Yy
®

\_

The information state recursion integrates densities
Stochastic Dynamic Programming integrates propagated densities  VERY HARD!

®
The Stochastic Dynamic Programming Equation yields the control u, and value
Vi(my) = min {/ co(e, ug)mp day +/ Vit (Te(ﬂe,y£+1,u£))p(ye+1We,ue)dyeH}
we £ Ty Yeo+1
starting from
Vn(mn) = / en(@N)TN=1]- - Ter1[Te, Yors wels Yoo, weta] - - yn, un—1] dzy
-

HARD!

and this is discrete time!
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Stochastic optimal control

1.The solution process comprises a coupled recursion:
@ information state, value function

2.Duality/learning/probing are inherent in the optimality

@ The dependence of the future information state on the current control
IS Incorporated via the T« operator

@ If probing improves the value then it is included via the recursion

3.All feasible future control sequences and information states are explored
and averaged in SDPE

@ There is no concept of a future optimal trajectory
@ There is no concept of a future sequence of information states

< SDPE acts as the oracle
Give it the current information state density 7y
it returns the optimal control value for the current step
It implements the optimal feedback policy
but it does not reveal it

4.1t is the optimal control
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Message 1

Stochastic optimal control provides a framework for output (state-estimate)
feedback which inherently accommodates probing and learning

Probing costs control effort but is part of the optimal control
You cannot do better with less excitation



Part 2: familiar learning systems

engineered adaptive control systems which work without human intervention
billions of times per second




Curating Defunct Non-Agile Technologies

\\4'."‘.‘
w

What is going on here”? We know these signals so well!!
They are training signals known to both ends
No information content but used to identify the channel

In the case of faxes and modems this is used to set data rates
for reliable communication

A once-off transaction in a network of connections
A small overhead and transaction cost

What about packet-switched mobile networks

The channel changes on a 10s of milliseconds basis
The price of connection is eternal vigilance
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Agile Channel Modeling in Mobile Wireless

e —————

Mobility leads to rapid channel variation -
Reflections plus fading
We need power control
We need equalization
We need a channel model!

The GSM mid-amble:

data bits Training data bits

|| ||
| 57 bits | [ 26 bits | | 57 bits |

burst 148 bit

slot 156.25 bit, 0.577 ms

Every packet: 26 bits of training per 114 bits of data

Base station computes a channel model - equalization of data
determines mobile station SNR at receiver - power control
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Opportunity cost of channel modeling

Roughly 19% of all channel capacity is turned over to transmission of
information-free training signals

Without this the system does not function
The channel model is a 6-tap FIR filter

What about power control - one parameter: fade
Why power control?
battery life
interference with other users
This is an energy management problem
The channel fade is dependent on distance from tower and path
This changes rapidly with mobility

The base station estimates SNR and instructs the mobile to
change power by £2 dB every packet

How much energy does it take to save energy?
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The fundamental conundrum

Additive white gaussian noise channel: z;, = fu, + wy
Fade £, signal u,noise wy ~ N(0,02)

Bayes rule for updating the fade density S
Gow densiy————»(117) = 1o e

In the gaussian case

p(zklf) =

The more power, u7, is used to send the training signal, the faster we learn
the value of f

You have to expend energy to save energy
This is sometimes called the exploration-exploitation trade-off

As a formal mathematical problem to optimize the energy, it
goes back to Fel'dbaum in 1960

It is computationally intractable
The sticking point is optimality
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The opportunity cost in mobile power control
The system does not work without models

Modeling requires energy via training signal power

Optimization of the energy budget is so tough as to cost even more
energy in computation

You pay the phone company for a suboptimal system

Real fade = f[3]

4 fade/power values
Gaussian noise
- Zero mean
known variance
o steps

100 —
90 —
80 —
70 —
60 —
50 —
40 —
30 —
20 —
10 -
0 -

Percentage of Controls

7/ hours computation
to yield optimal
powers for a few
microseconds

o B )
f“{..

-

Mac Pro

Fig. 3. Histograms of control values averaged over 10 realizations
of the noise for each adaptive control scheme vs. time. The real
fade is equal to f[3] = —3dB.
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Message 2

Learning in agile systems is hard and comes with a cost
... and a definite benefit

Mobile telephony requires training signals in order to operate
Optimal design, were it tractable, would require accurate probabilistic models

... SO we settle for suboptimality



Part 3: network congestion control

TCP/IP AIMD RED
strategies for the internet




TCP as feedback

J bottle-neck node

.f Acknowledgement (ack)

From the perspective of the source node
packets are sent into the network
a packet arriving at destination produces an ACK packet response

the send rate is controlled into network based on ACK
sequence

the aim is to avoid traffic congestion
the competing traffic is stochastic in nature
normally modeled as dominated by a single bottleneck node
This is a stochastic feedback control problem
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Destination node behavior ,

an acknowledgement packet in reply
Generally ACKs are simple few-bit packets
arriving packet identifier

There are proposals for ACKs to contain more and more useful
data

arrival time
data inserted by intervening nodes
buffer state and/or statistics
traffic state and/or statistics
This is no longer TCP/IP
The ACKs have to travel back through the same network y¥§
They too can be lost
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Data made up into packets with rate 7.
Packet rate into network is the mechanism of congestion control

Rate 71 is adjusted in response to arrival or non-arrival of
ACKs

non-arrival: time-out or ACK out of sequence
Common congestion control law AIMD
Additive Increase / Multiplicative Decrease
ACK arrives: increase rate 7, by one packet
ACK missing: decrease 7't by a factor of two
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Additive increase / multiplicative decrease
ACK arrives: increase rate 1i by one packet
ACK missing: decrease 7. by a factor of two
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Bottleneck node behavior

(hottle-neck) router using RED other

....................... destinations
queues for _ A ]
each source torother Nodes have finite buffers
i - _ sources
from other — 1L ) b ff b
sources v ™ N [y . urrer occupancy k
__ calculate drop| » + competing traffic (random) cCg
M“lr('H send rate, 1‘kh probability, P, Lo : |d .‘ . | ]
o, cstmation | aprival rate from source T
. I "
- .
wo Do ‘ packets deliberately dropped ¢

acknowledgment (ACK), y,

Packets are dropped with a certain probability pi
Random Early Detection (RED) algorithm
Pr. depends on buffer state by by, — tull —  pr— 1
bp — empty — pp — 0
Droptail algorithm drops all packets only when buffer is full
There are other algorithms
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Hidden Markov Model of Bottleneck Node

State Of the bOttleneCk nOde (hottle-neck) router using REED other

b .......... ;]l;(;ll;fs. I'(.)r. ..... : dcjmfﬁuns
I ecach source ‘;;"l'r “:
Ll — from other '4|_|_|_|_|_----.\ o
CL sources ”—'”:m:—__—-lmk <
T s — calculate drop |+, b:m]:-"/
DrOp prObabIIIty pk — f (bk;) M"lr('e send rate, 1':' probability, p, J ! b ! L‘\L\: |dcstir:ation |
: W
—_—
b
. . . drap, (, max
Capacity (traffic) model - Markov chain L ‘

acknowledgment (ACK), ¥,

P(cpr1=¢) =Y P(cps1 = clex = d)P(cp, = d)
d
Hidden Markov Model for bottleneck node state

I, (k+1) A(rp)I, (k)

Known model - input sequence rr and output (ACK) sequence yx
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A control theorist arrives on the scene

(hottle-neck) router using R other

...................... . destinations
queunes for o
cach source forother
- = . SOUICes
from other ° - “
sources v . Il T = <
IS ||| —=
y
calculate drop |, » T
source ~ e : b v
4 sendrate 1~ | probability, p, BN v
b b | destination |
K
. ! CL
—_—
D,
drop, (], max ‘

acknowledgment (ACK), ¥,

Can the source computer reliably estimate the state of the bottleneck?
Buffer length and capacity value
Available data are input rate history and ACK sequence history
This is an observability question about an HMM
A theory of HMM filtering and smoothing exists
But what about the observability questions?

Does the input-output sequence suffice to estimate the state

CBI? Yos with AIMD!
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Performance of the HMM smoother

Comparison of True to Estimated State
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Message 3

TCP/AIMD/RED handle the observability of the varying capacity constraint by
continually exceeding it ... after which we need to retransmit the whole packet

“Unless | exceed a constraint, how could | know its value?”
Bob Shorten, Dublin



Part 4: healthcare modeling and control

POMDP control and duality
Hidden Markov Modeling of Hepatitis B




hepatitis B progression model
hepatitis B

a viral disease of the liver - preventable by vaccination
a number of stages of disease - treatment depends on stage
240 million infected, 0.5-1.2 million die per year

probabilistic progression between stages, depends on treatment

a controlled Markov model
Partially Observed Markov Decision Problem - POMDP

finite state, finite control action set, incomplete state
observation

State observation depends on testing regime

the objective is health versus dollars
costs for morbidity, treatment, testing

duality again - it costs money to test to save money
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healthcare decision making via POMDP

simple POMDP based on hepatitis B disease progression and intervention

State Transitions i Observatlons

i 1= = Disease Stage 1 Test Result 1

T

i L —. Disease Stage 2 Test Result 2

three disease states - progressively more dire

four decisions/controls: do nothing, inspect patient, order expensive
but reliable test, apply costly treatment

measurement outcomes: open-loop, unreliable test, reliable test
decisions can affect the information state - duality
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POMDP stochastic optimal control

partially-observed Markov decision process
The partially-observed stochastic system becomes a Hidden Markov

Model (HMM) with I, (k + 1) = (k) P(k, ar), TI(0)
finitely enumerated state =, (k) =1I,(k)R(k,ay)

finitely enumerated action/control space

'y finitely enumerated output space

P(th_|_1 :.] | Ly = iaut — &) :p?jv
P(yt—l—l =0 \ Tpr1 = ), Ut = a) — 7“?97
state (bayesian) titer t+1,9 — ;
y Zi,jEX Tt,iD5iT 50

Finite-horizon stochastic output-feedback optimal control problem

uecU

Vi () = min {ch(u) + « Z P(y | mg, u) Vk+1(7rk+1)} Vn(mn) = nen.
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Message 4

medical testing as part of treatment is dual control
it helps to focus on the information state




Part 5: autonomous systems and learning

how hard could it be? PN

Four slides used with kind permission from Lorenzo Marconi’s
American Control Conference plenary July 12, 2019
“Aerial Robotics: challenges and opportunities outside the lab
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A.R.V.A.: Observer

e Loitering maneuvers to excite the system

(observability)

, 10
e Observer design :
— Kalman filter, 5 i o
— Recursive Least Squares ;
— Luenberger-like observers 2 i
Victim
5
N. Mimmo. P. Bernard, L. Marconi,

In preparation 10 i




2 A.RV.A.: Gradient descend methods

Extremum seeking algorithm
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Autonomous systems

Elevators as autonomous systems
1924 Elevators without attendants

More challenging environments require
more sophisticated sensing

exploration vs exploitation tradeoff
well understood in robotics ,
not so well in vehicles ... yet i

Even suboptimal control in uncertain
environments requires devotion of
control resources to sensing the
environment

This comes at a cost to control
compared with operating in a
known environment

Without it the systems falil

By Wikimedia Foundation, CC BY-SA 3.0, 240 _Sparks Elevators.jpg
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Message 5

There seem to be two distinct aspects of autonomy
Either
operate in a highly regulated environment, or
devote a significant effort to situational awareness
deliberate maneuvers to improve observability
multiple and mobile sensors
Or maybe operate in distinct modes



Conclusions

Agile stochastic control systems without full state information require the
control signal to provide persistent probing to facilitate state estimation

This comes at a cost to the estimation-free control performance
The control signal balances regulation and excitation - duality

It is inherently part of stochastic optimal control and is very hard to

optimize computationally were

Three examples of commercial suboptimal stochastic control wittbe
presented - mobile wireless, TCP, hepatitis B management

Each contains dual action
expending energy to save energy

consuming capacity to save capacity
spending money to save money

Settle for suboptimal control

but do not forget the excitation requirements
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