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Proto-Conclusions
Agile stochastic control systems without full state information require the 

control signal to provide persistent probing to facilitate state estimation 

This comes at a cost to the estimation-free control performance 

The control signal balances regulation and excitation - duality 

It is inherently part of stochastic optimal control and is very hard to 
optimize computationally 

Three examples of commercial suboptimal stochastic control will be 
presented - wireless power control, TCP/IP, hepatitis B management 

Each contains dual action 

expending energy to save energy 
consuming capacity to save capacity 
spending money to save money 

You pay to use them

!2
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Engineered Agile Stochastic Control Systems
Objectives 

Part 1 stochastic optimal control 
background ideas 

duality and probing are inherent 
Part 2 familiar agile control system in communications 

power control in mobile telephony 
suboptimal practical solution 
attempt at optimality 

Part 3 familiar agile control in networks 
internet congestion control 

testing the constraints 
Part 4 duality in healthcare 

paying to save money 
Part 5 robotics and autonomy 

enforcing observability in hostile environments 
Some outrageous comments about the future 

good luck with that

!3



Part 1: stochastic optimal control background

It is a demanding business
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Stochastic optimal control problem

!5

System

subject to: u` 2 U`

x` 2 X`

xN 2 XN

constraints

starting information ⇡0 = p(x0) the initial state density

nonanticipative control

noises

stage cost

terminal cost

control constraints

state constraints

terminal constraint

admissible controls u` = g`(Z
`) where Z` = {y`, u`�1, y`�1, u`�2, . . . , y0}

objective minimize JN = E

"
N�1X

`=0

c`(xk+`, uk+`) + cN (xk+N )

#

expectation is taken over distribution of {⇡0, v0, w0, v1, . . . , vN�1, wN�1}

i.e. u` = g`(⇡`) a “separated” control

The solution depends solely on the Information State:⇡` = p
�
x`|Z`

�

Markov 
process

xk+1 = fk(xk, uk, wk)

yk = hk(xk, uk, vk)
<latexit sha1_base64="D8VJra0tazBJuME9/XRjvke9Ue4="></latexit>
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Stochastic optimal control solution

!6

The information state recursion integrates densities

⇡�
` = p(x`|Z`�1) =

Z

x`�1

p(x`|x`�1, u`�1)⇡`�1 dx`�1

⇡` = p(x`|Z`) = p(y`|x`)⇡
�
` ⇥ 1R

x`
p(y`|x`)⇡

�
` dx`

time update

measurement update

Call this ⇡` = T`�1[⇡`�1, y`, u`�1]

V`(⇡`) = min
u`2U`

(Z

x`

c`(x`, u`)⇡` dx` +

Z

y`+1

V`+1 (T`(⇡`, y`+1, u`)) p(y`+1|⇡`, u`) dy`+1

)
The Stochastic Dynamic Programming Equation yields the control      and valueu`

VN (⇡N ) =

Z

xN

cN (xN )TN�1[. . . T`+1[T`, y`+1, u`], y`+2, u`+1] . . . , yN , uN�1] dxN

starting from 

from state equation

from measurement equation

Stochastic Dynamic Programming integrates propagated densities VERY HARD!

The Bayesian filter propagates the information state using
⇡`�1 = p(x`�1|Z`�1) ! ⇡` = p(x`|Z`)

u`�1, y`

and this is discrete time!

Bayesian filter state conditional density update; depends on u`�1, y`
<latexit sha1_base64="1ZZ1HIQOC7vaE6ho3c3BAzeCNMk=">AAAB+3icbZDLSsNAFIYnXmu9xbp0M1gEFxqSWqm6KrhxWcFeoA1hMp20QyeTMDMRS8iruHGhiFtfxJ1v46QNqNUfBj7+cw7nzO/HjEpl25/G0vLK6tp6aaO8ubW9s2vuVToySgQmbRyxSPR8JAmjnLQVVYz0YkFQ6DPS9SfXeb17T4SkEb9T05i4IRpxGlCMlLY8s5J46YAwdupkJ3Dq5eiZVdtq1M8d+xLalj3TNzgFVEGhlmd+DIYRTkLCFWZIyr5jx8pNkVAUM5KVB4kkMcITNCJ9jRyFRLrp7PYMHmlnCINI6McVnLk/J1IUSjkNfd0ZIjWWi7Xc/K/WT1Rw4aaUx4kiHM8XBQmDKoJ5EHBIBcGKTTUgLKi+FeIxEggrHVdZh+AsfvkvdGqWc2bVbuvV5lURRwkcgENwDBzQAE1wA1qgDTB4AI/gGbwYmfFkvBpv89Ylo5jZB79kvH8BVReT9Q==</latexit>

HARD!
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Third step backward:
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Stochastic optimal control
1.The solution process comprises a coupled recursion:  

 information state, value function 
2.Duality/learning/probing are inherent in the optimality 

 The dependence of the future information state on the current control 
is incorporated via the Tk operator 

 If probing improves the value then it is included via the recursion 
3.All feasible future control sequences and information states are explored 

and averaged in SDPE 
 There is no concept of a future optimal trajectory 
 There is no concept of a future sequence of information states 

 SDPE acts as the oracle 
Give it the current information state density  
  it returns the optimal control value for the current step 

It implements the optimal feedback policy 
  but it does not reveal it 

4.It is the optimal control

!8

⇡`



Message 1

Stochastic optimal control provides a framework for output (state-estimate) 
feedback which inherently accommodates probing and learning


Probing costs control effort but is part of the optimal control

You cannot do better with less excitation



Part 2: familiar learning systems

engineered adaptive control systems which work without human intervention 
billions of times per second
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Curating Defunct Non-Agile Technologies

What is going on here? We know these signals so well!! 
They are training signals known to both ends 

No information content but used to identify the channel 
In the case of faxes and modems this is used to set data rates 

for reliable communication 
A once-off transaction in a network of connections 
A small overhead and transaction cost 

What about packet-switched mobile networks 
The channel changes on a 10s of milliseconds basis  

The price of connection is eternal vigilance

!11
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Agile Channel Modeling in Mobile Wireless

Mobility leads to rapid channel variation 
Reflections plus fading 

We need power control 
We need equalization 

We need a channel model!

!12

Andreas Willig GSM Channel Access Procedure

GSM TDMA Frame Structure

76543210

Trainingdata bits data bits

57 bits 26 bits 57 bits3 1 1 3

burst 148 bit

slot 156.25 bit, 0.577 ms

Figure 4: Structure of Normal Bursts (from: [3, p.139])

GSM Air Interface: Fundamentals and Protocols, page 34

The GSM mid-amble:

Every packet: 26 bits of training per 114 bits of data

Base station computes a channel model - equalization of data 
determines mobile station SNR at receiver - power control
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Opportunity cost of channel modeling
Roughly 19% of all channel capacity is turned over to transmission of 

information-free training signals 
Without this the system does not function 

The channel model is a 6-tap FIR filter 
What about power control - one parameter: fade 

Why power control? 
battery life 
interference with other users 

This is an energy management problem 
The channel fade is dependent on distance from tower and path 

This changes rapidly with mobility 
The base station estimates SNR and instructs the mobile to 

change power by ±2 dB every packet

!13

How much energy does it take to save energy?
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The fundamental conundrum
Additive white gaussian noise channel: 

Fade   , signal     ,noise  
Bayes rule for updating the fade density 

in the gaussian case 

The more power,     , is used to send the training signal, the faster we learn 
the value of 
You have to expend energy to save energy 

This is sometimes called the exploration-exploitation trade-off 
As a formal mathematical problem to optimize the energy, it 

goes back to Fel’dbaum in 1960 
It is computationally intractable 
The sticking point is optimality

!14

p(f |Zk) =
p(zk|f)p(f |Zk�1)R

f p(zk|f)p(f |Zk�1) df

p(zk|f) =
1

2
p
⇡�w

exp


� (zk � fuk)2

2�2
w

�

zk = fuk + wk

wk ⇠ N (0,�2
w)f uk

f
u2
k

new density
prior density

normalization

sharpening 
function
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Spending energy to save energy

!15

prior density

posterior densities

same prior density

posterior densities

high transmission 
power

medium  
transmission power

low transmission 
power

different conditional means, different conditional variances
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The opportunity cost in mobile power control
The system does not work without models 

Modeling requires energy via training signal power 
Optimization of the energy budget is so tough as to cost even more 

energy in computation 
You pay the phone company for a suboptimal system

!16

7 hours computation 
to yield optimal 
powers for a few  
microseconds

Time horizon ODAC & ODAC-100 CE H

4-step 3300s 7ms 7ms

3-step 42s 0.3ms 0.3ms

2-step 1s 0.2ms 0.2ms
Table 2
Computation time of the control laws with a single realization of
the measurement noise and differing time horizons.

evident with every noise sequence. Indeed, within the
ten realizations there are some where CE outperforms
ODAC for that specific noise realization.

• ODAC-100, even though a result of the full stochastic
dynamic programming algorithm, is suboptimal for the
ODAC cost. The balance between probing and regula-
tion leans towards probing when compared to ODAC.

• CE displays its suboptimality, reflecting its lack of
probing or, equivalently, undue focus on regulation.

• As expected from its construction, the performance of
policy H falls in between ODAC and CE, being very
close to ODAC. Its computational complexity is very
close to that of CE.

• Computational time for SDP increases extremely
rapidly with increasing SDP time horizon.

• The computational times of ODAC and H differ by a
factor of nearly 500, 000 in the case of 4-step SDP. This
demonstrates the benefit of choosing u⇤

0 based on ⇡0.

5.2 Examination of control laws

Figure 3 is a collection of 20 histograms of the optimal con-
trol sequences, u?

0 through u?
4, averaged over the 10 differ-

ent channel noise realizations. The histograms are indexed
by time 0-4 (also indicated by color) and by control law H,
CE, ODAC-100, ODAC. Fade f [3] = �3dB is the actual
fade of the channel and

⇡0 = [0.35, 0.15, 0.1, 0.4]. (22)

We offer the following observations regarding Figure 3.

• The histograms in Figure 3 for time 0 demonstrate Re-
mark 2, that the initial control u?

0 for ODAC is a func-
tion solely of ⇡0 and does not depend on the noise real-
ization. This holds for the other three control policies,
although each controller selects its own value of u?

0.
This is shown by a single value of the initial control
for each policy occurring for every realization.

• As expected, ODAC-100 is the most reliable in terms
of selecting the correct power level by the terminal
time, followed by ODAC. This reflects the choice of
cost function to emphasize probing.

• This example has a particularly poorly informed ⇡0

in (22). The actual fade value has a priori probability
0.1. Indeed, ⇡0 is rather uninformative and we see that
ODAC, (and therefore) H and ODAC-100 select larger
control values early than does CE. This is probing to
resolve the actual fade. This is costly but to obtain full

Time
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Fig. 3. Histograms of control values averaged over 10 realizations
of the noise for each adaptive control scheme vs. time. The real
fade is equal to f [3] = �3dB.

benefits of probing a long time horizon must be used
[3].

The two collections of histograms in Figure 4 illustrate, for
each control policy, the evolution of the information state
averaged over 10 different noise sequences, with differing
real fade values: f [3] (upper) and f [4] (lower). Note that
f [3] has low a priori probability in (22), while f [4] has max-
imal a priori probability. This highlights the control value
of the quality of the initial information state. From a mobile
communications perspective, where fade estimation is part
of every transmitted packet, the propagation of ⇡N from one
packet to provide as accurate as possible a value of ⇡0 for
the next is important. This demonstrates the substance of
Heuristic 2.

6 More complete problem

A more complete analysis of the mobile wireless power con-
trol problem requires an extension of the set up developed
in Section 2 and illustrated in Figure 1. In practice, the com-
munication link between the MS and BS is not perfect – the
signal tk from MS to BS is: limited in bitrate, is corrupted
by its own channel noise, and is subject to either the same
or a different fade. The MS and BS can now be seen as
two distinct parts of the controller that communicate via tk.
This is a much harder (and therefore even more intractable
to optimize) problem since the signaling between MS and
BS needs to be incorporated into the ODAC scenario.

For practical mobile systems, the BS transmits a single bit to
the MS, which then interprets this as go up in power by 2dBm
or go down in power by 2dBm depending on sign. Alternative
methods have been proposed by others. For example, the
MS transmitted power is changed by a multiple of 2dBm
steps based on the number of consecutive requests from BS
to change the transmitted power in one direction [11]. In

7

4 fade/power values 
Gaussian noise 
- zero mean 
- known variance 
5 steps



Message 2

Learning in agile systems is hard and comes with a cost

      … and a definite benefit


Mobile telephony requires training signals in order to operate

Optimal design, were it tractable, would require accurate probabilistic models

      … so we settle for suboptimality



Part 3: network congestion control

TCP/IP AIMD RED

strategies for the internet
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TCP as feedback

From the perspective of the source node 
packets are sent into the network 
a packet arriving at destination produces an ACK packet response 

the send rate is controlled into network based on ACK 
sequence 

the aim is to avoid traffic congestion 
the competing traffic is stochastic in nature 

normally modeled as dominated by a single bottleneck node 
This is a stochastic feedback control problem

!19
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Destination node behavior

Upon receipt of a packet from the source, the destination node sends 
an acknowledgement packet in reply 
Generally ACKs are simple few-bit packets 

arriving packet identifier 
There are proposals for ACKs to contain more and more useful 

data 
arrival time 
data inserted by intervening nodes 

buffer state and/or statistics 
traffic state and/or statistics 

This is no longer TCP/IP 
The ACKs have to travel back through the same network 

They too can be lost

!20

ACK
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Data made up into packets with rate  
Packet rate into network is the mechanism of congestion control 

Rate      is adjusted in response to arrival or non-arrival of 
ACKs 

non-arrival: time-out or ACK out of sequence 

Common congestion control law AIMD 
Additive Increase / Multiplicative Decrease 

ACK arrives: increase rate       by one packet 
ACK missing: decrease      by a factor of two

!21

rk

rk

rk

rk

Source node behavior
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ACK arrives: increase rate       by one packet 
ACK missing: decrease      by a factor of two

!22
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Bottleneck node behavior

Packets are dropped with a certain probability  
Random Early Detection (RED) algorithm  
         depends on buffer state 

Droptail algorithm drops all packets only when buffer is full  
There are other algorithms

!23

bk

ck

rk

Nodes have finite buffers

buffer occupancy  

competing traffic (random)

arrival rate from source 

packets deliberately dropped qk

pk

bkpk bk ! full =) pk ! 1
bk ! empty =) pk ! 0
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Hidden Markov Model of Bottleneck Node
State of the bottleneck node 

Drop probability 

Capacity (traffic) model - Markov chain 

Hidden Markov Model for bottleneck node state 

Known model - input sequence rk and output (ACK) sequence yk

!24

xk =

(

bk

ck

)

P (ck+1 = c) =
∑

d

P (ck+1 = c|ck = d)P (ck = d)

Πx(k + 1) = A(rk)Πx(k)
Πy(k) = CΠx(k)

pk = f(bk)
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A control theorist arrives on the scene

Can the source computer reliably estimate the state of the bottleneck? 
Buffer length and capacity value 

Available data are input rate history and ACK sequence history 
This is an observability question about an HMM 

A theory of HMM filtering and smoothing exists 
But what about the observability questions?

!25

Aha!

Does the input-output sequence suffice to estimate the state 
(ck,bk)? Yes with AIMD!
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Performance of the HMM smoother
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Message 3

TCP/AIMD/RED handle the observability of the varying capacity constraint by 
continually exceeding it … after which we need to retransmit the whole packet


“Unless I exceed a constraint, how could I know its value?” 

                                                                                    Bob Shorten, Dublin



Part 4: healthcare modeling and control

POMDP control and duality 

Hidden Markov Modeling of Hepatitis B
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hepatitis B progression model
hepatitis B 

a viral disease of the liver - preventable by vaccination 
a number of stages of disease - treatment depends on stage 

240 million infected, 0.5-1.2 million die per year 

probabilistic progression between stages, depends on treatment 
a controlled Markov model 

Partially Observed Markov Decision Problem - POMDP 
finite state, finite control action set, incomplete state 

observation 
State observation depends on testing regime 

the objective is health versus dollars 

costs for morbidity, treatment, testing 

duality again - it costs money to test to save money

!29
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healthcare decision making via POMDP
simple POMDP based on hepatitis B disease progression and intervention 

three disease states - progressively more dire 
four decisions/controls: do nothing, inspect patient, order expensive 

but reliable test, apply costly treatment 
measurement outcomes: open-loop, unreliable test, reliable test 

decisions can affect the information state - duality 

!30

Disease	Stage	1

Disease	Stage	2

Disease	Stage	3

Test	Result	1

Test	Result	2

Test	Result	3

State	Transitions Observations
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POMDP stochastic optimal control
partially-observed Markov decision process 

The partially-observed stochastic system becomes a Hidden Markov 
Model (HMM) with 

finitely enumerated state 

finitely enumerated action/control space 

finitely enumerated output space 

HMM state (Bayesian) filter 

Finite-horizon stochastic output-feedback optimal control problem

!31

P (xt+1 = j | xt = i, ut = a) = paij ,

P (yt+1 = ✓ | xt+1 = j, ut = a) = raj✓,

⇡t+1,j =

P
i2X ⇡t,jpaijr

a
j✓P

i,j2X ⇡t,jpaijr
a
j✓

,

Vk(⇡k) = min
u2U

8
<

:⇡kc(u) + ↵
X

y2Y

P (y | ⇡k, u)Vk+1(⇡k+1)

9
=

; , VN (⇡N ) = ⇡NcN .

⇧x(k + 1) = ⇧x(k)P (k, ak), ⇧(0)

⌅y(k) = ⇧x(k)R(k, ak)
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dual optimal vs certainty equivalence control

!32
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Message 4

medical testing as part of treatment is dual control 
it helps to focus on the information state

it costs money now  

to save money in the future



Part 5: autonomous systems and learning

how hard could it be?

too 
hard

Four slides used with kind permission from Lorenzo Marconi’s 
American Control Conference plenary July 12, 2019 
“Aerial Robotics: challenges and opportunities outside the lab



3rd	Searching	for	the	
minimum	distance

2nd	Following	the	flux	lines

1st	Looking	for	the	first	
valid	signal

Three	phases:

First Signal 
Reception

Last known victim 
position

A.R.V.A.  
Appareil	de	Recherche	de	Victims	d'Avalanche



The	magnetic	field

Flux	lines

Iso-power	lines

Projection	of	the	flux	lines	strongly	dependent	 
on	the	victim	orientation

Victim/ 
Transmitter

Drone/ 
Receiver

[modified	from	original	slide]



• Loitering	maneuvers	to	excite	the	system	
(observability)	

• Observer	design	
– Kalman	filter,		
– Recursive	Least	Squares		
– Luenberger-like	observers	

8

Victim

N.	Mimmo.	P.	Bernard,	L.	Marconi,	 
in	preparation

A.R.V.A.:	Observer



88888

Two time-scale reference trajectory: 

• “High-frequency” loitering for estimation of the distance gradient 

• “Low-frequency” trajectory  straight to the victim

A.R.V.A.:	Gradient	descend	methods

Extremum	seeking	algorithm	
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Autonomous systems
Elevators as autonomous systems 

1924 Elevators without attendants 
More challenging environments require 

more sophisticated sensing 
exploration vs exploitation tradeoff 

well understood in robotics 
not so well in vehicles … yet 

Even suboptimal control in uncertain 
environments requires devotion of 
control resources to sensing the 
environment 
This comes at a cost to control 

compared with operating in a 
known environment 

Without it the systems fail

!39

By Wikimedia Foundation, CC BY-SA 3.0, 240_Sparks_Elevators.jpg 

https://upload.wikimedia.org/wikipedia/commons/5/54/240_Sparks_Elevators.jpg


Message 5

There seem to be two distinct aspects of autonomy

Either

   operate in a highly regulated environment, or

   devote a significant effort to situational awareness

      deliberate maneuvers to improve observability

      multiple and mobile sensors

Or maybe operate in distinct modes
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Conclusions
Agile stochastic control systems without full state information require the 

control signal to provide persistent probing to facilitate state estimation 
This comes at a cost to the estimation-free control performance 
The control signal balances regulation and excitation - duality 

It is inherently part of stochastic optimal control and is very hard to 
optimize computationally 

Three examples of commercial suboptimal stochastic control will be 
presented - mobile wireless, TCP, hepatitis B management 
Each contains dual action 

expending energy to save energy 
consuming capacity to save capacity 
spending money to save money 

Settle for suboptimal control 

but do not forget the excitation requirements

!41

were
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a b s t r a c t

A new formulation of Stochastic Model Predictive Output Feedback Control is presented and analyzed
as a transposition of Stochastic Optimal Output Feedback Control into a receding horizon setting. This
requires lifting the design into a framework involving propagation of the conditional state density, the
information state, and solution of the Stochastic Dynamic Programming Equation for an optimal feedback
policy, both stages of which are computationally challenging in the general, nonlinear setup. The upside
is that the clearance of three bottleneck aspects of Model Predictive Control is connate to the optimality:
output feedback is incorporated naturally; dual regulation and probing of the control signal is inherent;
closed-loopperformance relative to infinite-horizon optimal control is guaranteed.While themethods are
numerically formidable, our aim is to develop an approach to Stochastic Model Predictive Control with
guarantees and, from there, to seek a less onerous approximation. To this end, we discuss in particular
the class of Partially Observable Markov Decision Processes, to which our results extend seamlessly, and
demonstrate applicability with an example in healthcare decision making, where duality and associated
optimality in the control signal are required for satisfactory closed-loop behavior.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC), in its original formulation, is a
full-state feedback law. This underpins two theoretical limitations
of MPC: accommodation of output feedback, and extension to in-
clude a cogent robustness theory since the state dimension is fixed.
This paper addresses the first question. There have been a number
of approaches, mostly hinging on replacement of the measured
true state by a state estimate, which is computed via Kalman filter-
ing (Sehr & Bitmead, 2016; Yan & Bitmead, 2005), moving-horizon
estimator (Copp & Hespanha, 2014; Sui, Feng, & Hovd, 2008), tube-
basedminimax estimators (Mayne, Rakovi¢, Findeisen, & Allgöwer,
2009), etc. Apart from Copp and Hespanha (2014), these designs,
often for linear systems, separate the estimator design from the
control design. The control problem may be altered to accommo-
date the state estimation error by methods such as: constraint
tightening (Yan & Bitmead, 2005), chance/probabilistic constraints
(Schwarm & Nikolaou, 1999), and so forth.

In this paper, we first consider Stochastic Model Predictive
Control (SMPC), formulated as a variant of Stochastic Optimal

I The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Riccardo
Scattolini under the direction of Editor Ian R. Petersen.
* Corresponding author.

E-mail addresses: martin.sehr@siemens.com (M.A. Sehr), rbitmead@ucsd.edu
(R.R. Bitmead).

Output Feedback Control (SOOFC), without regard to computa-
tional tractability restrictions. By taking this route, we establish
a formulation of SMPC which possesses central features: accom-
modation of output feedback and duality/probing; examination of
the probabilistic requirements of deterministic and probabilistic
constraints; guaranteed performance of the SMPC controller ap-
plied to the system. Performance bounds are stated in relation
to the infinite-horizon optimally controlled closed-loop perfor-
mance. We then particularize our performance results to the class
of Partially Observed Markov Decision Processes (POMDPs), as is
discussed explicitly in Sehr and Bitmead (2018). For this special
class of systems, application of our results and verification of
the underlying assumptions are computationally tractable, as we
demonstrate using a numerical example in healthcare decision-
making based on Sehr and Bitmead (2017b).

This paper does not seek to provide a comprehensive survey
of the myriad alternative approaches proposed for SMPC. For that,
we recommend the numerous available references such as Good-
win, Kong, Mirzaeva, and Seron (2014), Kouvaritakis and Cannon
(2016), Mayne (2014) and Mesbah (2016). Rather, we present a
new algorithm for SMPC based on SOOFC and prove, particularly,
performance properties relative to optimality. As a by-product, we
acquire a natural treatment of output feedback via the Bayesian
Filter and of the associated controller duality required to balance
probing for observability enhancement and regulation. The price
we pay for general nonlinear systems is the suspension of disbelief
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a b s t r a c t

Mobile wireless channels change persistently and rapidly, so power control needs to adapt similarly in
order to save battery power and mitigate interference. Training signals in every data packet are used to
achieve this in current systems, albeit in a suboptimal fashion fromapower consumptionperspective. This
problem is used as the basis for posing and solving in detail an optimal dual adaptive control problem and
then deriving heuristic controllers from this optimal solution. Dual refers to the joint requirements of the
control signal to probe the system for parameter estimation and to regulate the total energy use; these
are conflicting requirements which reveal the complexity of optimal stochastic control in general. The
information state is defined, computed and explicitly incorporated into the optimization. Performance
and computational load comparisons are made between: the optimal control, the certainty equivalence
control, and a simplified heuristic approach. The contribution of the paper is the explicit solution of a
classically hard optimal stochastic control problem to expose the role of the information state.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mobility inwireless communications causes rapid channel vari-
ation which, in turn, forces the persistent adaptation of transmis-
sion power levels on a per-packet basis. Without this adaptation,
battery life is seriously compromised and interference occurs be-
tween users. In the PCS1900 standard, rapid (re)acquisition of the
correct power (and equalizer) is aided by a training signal present
as a mid-amble in the center of every packet sent from the mo-
bile station (MS) to the base station (BS) or vice versa. OFDM based
systems use pilot signals in a similar fashion. From a control sys-
tems perspective, this is an example of an adaptive control system
functioning without human interventionmany billion of times per
hour. It is highly non-stationary and this paper seeks to explore as-
pects of optimal adaptive control evident from this context.

In existing applied control laws the BS estimates the received
signal-to-noise ratio (SNR) and sends a one-bit power control
signal to the MS to increase or decrease current power by 2 dB.
We consider the situation in which the MS has knowledge of
the SNR estimate and seeks to adjust its transmission power of

I This material is based upon work supported by the US National Science
Foundation under Grant No. 1102384. Thematerial in this paper was not presented
at any conference. This paper was recommended for publication in revised form by
Associate Editor Xiaobo Tan under the direction of Editor Miroslav Krstic.

E-mail addresses: hahongminh@gmail.com (M.H. Ha), rbitmead@ucsd.edu
(R.R. Bitmead).

the training signal in an optimal adaptive fashion. This brings
in duality as introduced by Fel’dbaum (Fel’dbaum, 1960, 1961,
1965), since higher power facilitates accurate SNR estimation
while compromising energy usage. The contributions of the paper
are the study of duality in a functioning adaptive control system
and the exploration of alternative approaches associated with
optimality.

An Optimal Dual Adaptive Control (ODAC) is derived using
the information state (Bayesian filter) recursion coupled with the
Stochastic Dynamic Programming Equation (SDPE) as in Kumar
and Varaiya (1986). We believe that this is the first formulation
of a meaningful practical persistent adaptation problem in such
full detail. The ODAC learning is active and the fade parameter
uncertainty is managed inherently in the control. We contrast
this with suboptimal controllers by comparing: ODAC; Certainty
Equivalence (CE) control; probing-enhanced ODAC; and a close-
to-optimal heuristic. The comparison is in terms of performance
versus computational complexity, since ODAC is effectively
intractable . . . but optimal.

Most other works on dualized adaptive control (DAC) are
suboptimal and borrow from the inclusion of probing into the
control signal without optimality. For a thorough survey of
suboptimal dual adaptive control methods, the reader is referred
to Filatov and Unbehauen (2004), Wittenmark (1995). There are a
number of successful industrial applications of dualized adaptive
controllers, Allison, Ciarniello, Tessier, and Dumont (1995), Bugeja
and Fabri (2009), Ismail and Dumont (2003) and Wittenmark
and Elevitch (1985). From the perspective of this paper, current
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a b s t r a c t

A hidden Markov model for the traffic congestion control problem in transmission control protocol (TCP)
networks is developed, and the question of observability of this system is posed. Of specific interest are
the dependence of observability on the congestion control law and the interaction between observability
ideas and the effectiveness of feedback control. Analysis proceeds with a survey of observability concepts
and an extension of some available definitions for linear and nonlinear stochastic systems. The key
idea is to link the improvement of state estimator performance to the conditioning on the output data
sequence. The observability development proceeds from linear deterministic systems to linear Gaussian
systems, nonlinear systems, etc., with backwards compatibility to deterministic ideas. The principal
concepts relate to the entropy decrease of scalar functions of the state, which in the linear case are
describable in terms of covariancematrices. A feature of nonlinear systems is that the estimator properties
may affect the closed-loop control performance. Results are derived linking stochastic reconstructibility
to strict improvement of the optimal closed-loop control performance over open-loop control for the
hidden Markov model. The entropy provides a means to quantify and thus order simulation results for
a simplified TCP network. Motivated by the link between feedback control and reconstructibility, the
entropy formulation is also explored as a means to discriminate between different control strategies for
improving estimator performance. This approach has connections to dual-adaptive control ideas, where
the control has the simultaneous and opposing goals of regulating the system and of exciting the system
to prevent estimator divergence.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Our aim is to study network-state estimation. By this we mean
that a computer connected to a network uses its transmission rate
and measurements from the network to estimate the state of the
bottleneck router constraining throughput. In contrast to other
control-theoretic studies which aggregate network traffic into
continuous-time, typically deterministic, averaged flows (Low,
Paganini, Wang, Adlakha, & Doyle, 2003), we define the system
as a discrete-time, discrete-state hidden Markov model (HMM),
as it captures important stochastic features and the properties
of congestion management control laws at the source and
intervening nodes. We will use this HMM formulation of the
network control problem as a vehicle to explore fundamental
issues in (nonlinear) stochastic observability. In particular, we

I The material in this paper was partially presented at the 48th IEEE Conference
for Decision and Control, December 15–17, 2009, Shanghai, China. This paper was
recommended for publication in revised form by Associate Editor Tongwen Chen
under the direction of Editor Ian R. Petersen.
⇤ Corresponding author.

E-mail addresses: aliu@ucsd.edu, liu.reizhi@gmail.com (A.R. Liu),
rbitmead@ucsd.edu (R.R. Bitmead).

expose and explore the dual probing and regulating effects of
the source rate (network control input) in the state estimation
problem for realistic protocols such as the transmission control
protocol (TCP).We also study and quantify the benefit to estimator
performance of augmenting the measurements with additional
information, and the connection between estimation and control
performance.

In formalizing a definition for complete stochastic observability
of nonlinear systems, we will traverse a multitude of domains
of definition of observability for systems described variously
as linear, nonlinear, deterministic, stochastic, Gaussian, etc. Our
endpoint is the study of complete stochastic observability of
the HMM which describes the congestion-controlled bottleneck
router in a TCP network. Since the HMM system description
is a discrete-time one, we limit the observability formulation
and analysis to discrete-time systems, avoiding the analytical
difficulties of continuous time (see, for example, Ugrinovskii,
2003). The eventual definition of complete stochastic observability
that we settle upon is an extension of the conditional entropy
formulation of Mohler and Hwang (1988), which in turn is capable
of extending the concepts of linear stochastic observability due to
Chen (1985) and of estimability due to Baram and Kailath (1988).
Our extension includes the addition of the adjective ‘‘complete’’ to
the definition, whosemeaning is that no non-trivial function of the
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Probing and Duality in Stochastic Model
Predictive Control

Martin A. Sehr and Robert R. Bitmead

1 Introduction

In a general nonlinear setting, stochastic optimal control involves the propagation
of the conditional probability density of the state given the input signal and output
measurements. This density is known as the information state in control circles and
as the belief state in artificial intelligence and robotics squares. The choice of con-
trol signal affects the information state so that state observability becomes control-
dependent. Thus, the feedback control law needs to include aspects of probing in
addition to, or more accurately in competition with, its function in regulation. This
is called duality of the control. In the linear case, this connection is not problem-
atic since the control signal simply translates or recenters the conditional density
without other effect. But for nonlinear systems, this complication renders all but the
simplest optimal control problems computationally intractable.

The usual recourse for receding horizon stochastic optimal control or stochas-
tic MPC (SMPC) is to drop optimality and to use a more simply computed or ap-
proximated statistic from the conditional density, such as the conditional mean, and
to move on from there. There have been a number of approaches, mostly hinging
on replacement of the measured true state by a state estimate, which is computed
via Kalman filtering [30, 39], moving-horizon estimator [36], tube-based minimax
estimators [26], etc. These designs, often for linear systems, separate the estima-
tor design from the control design. The control problem may be altered to accom-
modate the state estimation error by methods such as: constraint tightening [39],
chance/probabilistic constraints [28], and so forth. We do not seek to provide a com-
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Saša V. Raković • William S. Levine
Editors

Handbook of Model
Predictive Control

Tractable Dual Optimal Stochastic Model Predictive Control:
An Example in Healthcare

Martin A. Sehr & Robert R. Bitmead

Abstract— Output-Feedback Stochastic Model Predictive
Control based on Stochastic Optimal Control for nonlinear
systems is computationally intractable because of the need to
solve a Finite Horizon Stochastic Optimal Control Problem.
However, solving this problem leads to a control law possessing
optimal probing properties, called dual control, which trades off
benefits of exploration and exploitation. In practice, intractabil-
ity of Stochastic Model Predictive Control is typically overcome
by replacement of the underlying Stochastic Optimal Control
problem by more amenable approximate surrogate problems,
which however come at a loss of the optimal probing nature
of the control signals. While probing can be superimposed in
some approaches, this is done sub-optimally. In this paper,
we examine approximation of the system dynamics by a
Partially Observable Markov Decision Process with its own
Finite Horizon Stochastic Optimal Control Problem, which
can be solved for an optimal control policy, implemented in
receding horizon fashion. This procedure enables maintaining
probing in the control actions. We further discuss a numerical
example in healthcare decision making, highlighting the duality
in stochastic optimal receding horizon control.

I. INTRODUCTION

Stochastic Optimal Control on the infinite time horizon is a
computationally intractable problem. Unfortunately, the same
holds even after replacing the infinite-horizon control prob-
lem by receding horizon implementation of a finite-horizon
stochastic optimal control law. While a number of approaches
have been devoted to Stochastic Model Predictive Control
(SMPC), including [1]–[4], none of these involve solution
of a Finite Horizon Stochastic Optimal Control Problem
(FHSOCP), which is required for optimal probing in the
resulting control inputs but is computationally intractable in
practice. Assuming an available solution of the FHSOCP in
principle leads to a dual optimal SMPC law, which enjoys a
number of desirable properties discussed in [5]. These prop-
erties include recursive feasibility, stochastic stability and,
particularly, bounds relating infinite-horizon performance of
the SMPC control with computed finite-horizon performance
and optimal infinite-horizon performance. This result, which
requires explicit solution of the FHSOCP, encourages a
tractable version of dual optimal SMPC.

In this paper, we discuss a version of SMPC motivated by
the structure of dual optimal SMPC as in [5]. In particular,
we suggest approximation of the system dynamics by a
Partially Observable Markov Decision Process (POMDP),
the finite-horizon solution of which is tractable for small
to moderate problem instances (see e.g. [6], [7]). The main

The authors are with the Department of Mechanical and Aerospace
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benefit of this approach is that duality of the resulting control
inputs is naturally maintained by the approximation via
optimality. Moreover, given that POMDPs are a subclass of
general nonlinear systems, the results in [5] hold in modified
form for the resulting approximate dynamics. These two
observations lead us to propose SMPC on the approximate
POMDP with explicit solution of the resulting approximate
FHSOCP. Receding horizon control in POMDPs has been
discussed for instance with respect to UAV guidance [8],
sensor scheduling in [9], and robotic manipulation in [10].
We discuss a specifc example in medical decision making,
involving decisions regarding appointment scheduling, the
use of costly diagnostic tests, and patient treatment. This
example highlights the probing nature of the dual optimal
SMPC on a POMDP.

The paper evolves as follows. After briefly introducing
SMPC in Section II, we transition to receding horizon control
of POMPDs in Section III. We transition to the use of
POMDPs in healthcare in Section IV, which includes our
numerical example highlighting duality in receding horizon
implementations of optimal POMDP solutions. The paper
closes with some concluding remarks in Section V.

II. STOCHASTIC MODEL PREDICTIVE CONTROL

A. Stochastic Optimal Control in a Nutshell
We consider receding horizon output-feedback control for

nonlinear stochastic systems of the form

xt+1 = f(xt, ut, wt), x0 2 Rn, (1)
yt = h(xt, vt), (2)

where xk 2 Rn, uk 2 Rm, yk 2 Ro, starting from known
initial state density ⇡0|�1 = pdf(x0). We denote the data
available at time t by

⇣t , {y0, u0, y1, u1, . . . , ut�1, yt}, ⇣0 , {y0}.

We further impose the following standing assumption on the
random variables and control inputs.

Assumption 1. The signals in (1-2) satisfy:
1. wt and vt are i.i.d. sequences with known densities.
2. x0, wt, vl are mutually independent for all t, l � 0.
3. The control input ut at time instant t � 0 is a function

of the data ⇣t and given initial state density ⇡0|�1.

The information state, denoted ⇡t, is the conditional
probability density function of state xt given data ⇣t,

⇡t , pdf
�
xt | ⇣t

�
,
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Abstract

Background: With up to 240 million people chronically infected with hepatitis B
worldwide, including an estimated 2 million in the United States, widespread
screening is needed to link the infected to care and decrease the possible
consequences of untreated infection, including liver cancer, cirrhosis and death.
Screening is currently fraught with challenges in both the developed and developing
world. New point-of-care tests may have advantages over standard-of-care tests in
terms of cost-effectiveness and linkage to care. Stochastic modeling is applied here
for relative utility assessment of point-of-care tests and standard-of-care tests for
screening.

Methods: We analyzed effects of point-of-care versus standard-of-care testing using
Markov models for disease progression in individual patients. Simulations of large
cohorts with distinctly quantified models permitted the assessment of particular
screening schemes. The validity of the trends observed is supported by sensitivity
analyses for the simulation parameters.

Results: Increased utilization of point-of-care screening was shown to decrease
hepatitis B-related mortalities and increase life expectancy at low projected expense.

Conclusions: The results suggest that standard-of-care screening should be
substituted by point-of-care tests resulting in improved linkage to care and decrease
in long-term complications.

Keywords: Hepatitis B virus, Screening, Markov modeling, Point-of-care, Standard-of-
care, Testing

Background
With up to 240 million people chronically infected with hepatitis B virus (HBV) world-
wide [1], including an estimated 2 million people in the United States [2, 3], widespread
testing to identify the infected is needed in order to link them to care and decrease the
possible consequences of untreated HBV infection, which include approximately 500,000
to 1.2 million deaths yearly from liver cirrhosis and its complications, including primary
liver cancer [1]. Limitations related to funding and access to commercially available tools
for chronic HBV testing are particularly important in developing countries where the
burden of chronic HBV is heaviest. Success of traditional standard-of-care (SOC) testing
for HBV infection hinges on the existence of a systematic process of following up test
results that return several days after testing, notifying patients of results, and arranging
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