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Abstract: Time-varying formation control, formation tracking control, and formation-containment control for multi-agent sys-
tems have attracted significant attention recently, where the formation feasibility is a crucial common problem. For a given
linear multi-agent system, not all the time-varying formations can be realized due to the dynamic restriction of each agent. The
formation feasibility constraint reveals the requirement on the desired time-varying formation to be compatible with the agent
dynamics. Formation reference is a representation for the macroscopic movement of the whole multi-agent system. Novel
features of the formation feasibility constraint and the formation reference are the main focus of the current paper. Firstly, a time-
delayed formation control protocol with switching directed topologies is constructed using local neighboring information. Then
time-varying formation feasibility constraint is derived based on nonsingular transformations. It is proven that the time-varying
formation feasibility constraint is independent of the time-varying delays and the switching directed topologies. Moreover, an
explicit expression of the formation reference function is proposed. It is shown that neither the time-varying delays nor the
switching directed topologies have influence on the obtained formation reference function.
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1 Introduction

As a fundamental branch of cooperative control for multi-
agent systems, formation control has attracted significant in-
terest in recent two decades [1]. The control strategies in the
vast majority of the published studies can be roughly cate-
gorized into leader follower based, virtual structure based,
behavior based, and consensus based ones. The first three
strategies have been studied a lot in the robotics community
[2]. It has been shown by Ren [3] that consensus based for-
mation control strategy is more general, robust and scalable
than the first three ones. One typical feature of the consen-
sus based formation control is that only local neighbor-to-
neighbor information exchange is required.

In many practical applications, such as target enclosing
and obstacle avoidance, the desired formation for the multi-
agent system may be time-varying. Note that time-invariant
formation is just a special case of the time-varying one.
Therefore, time-varying formation for linear multi-agent
systems is more practical and general [4, 5]. Dong and Hu
[6] studied the time-varying formation analysis and design
problems for general multi-agent systems with switching di-
rected topologies. Time delays were considered in [7], where
necessary and sufficient conditions for multi-agent systems
to achieve a given time-varying formation were presented.
In [8], only output information of each agent was available,
and a time-varying output formation controller was designed
by using dynamic output feedback control. Outdoor exper-
iments for formation control of a group of unmanned aerial

This work was supported by the National Natural Science Foundation
of China under Grants 61873011 and 61803014, the Beijing Natural Sci-
ence Foundation under Grant 4182035, the Young Elite Scientists Spon-
sorship Program by CAST under Grant 2017QNRC001, the Aeronautical
Science Foundation of China under Grant 20170151001, the Special Re-
search Project of Chinese Civil Aircraft, Key Laboratory of System Control
and Information Processing, Ministry of Education, and the Fundamental
Research Funds for the Central Universities under Grant YWF-18-BJ-Y-73.

vehicles (UAVs) on fixed/switching graphs were performed
in [9] and [10], respectively. Necessary and sufficient con-
ditions for linear multi-agent systems with multiple leaders
to realize time-varying formation tracking were presented
in [11]. Considering a leader of unknown control input,
distributed time-varying formation tracking protocols were
presented for homogeneous/heterogeneous multi-agent sys-
tems in [12] and [13]. The proposed formation tracking ap-
proaches were applied to solve the target enclosing prob-
lems for UAV swarm systems in [14] and [15], where for-
mation flying experiments were respectively carried out un-
der the influences of switching undirected/directed graphs.
In the case with more than one leader, a more complicated
formation-containment control problem were considered in
[16–18], where the leaders need to accomplish a desired for-
mation and the followers are required to converge to the con-
vex hull spanned by the leaders simultaneously.

For time-varying formation control, formation tracking
control, and formation-containment control of multi-agent
systems, the formation feasibility is a crucial common prob-
lem since it determines whether the predefined formation can
be realized or not. In [6], time-varying formation feasibil-
ity constraints and explicit expressions of the formation ref-
erence function for linear multi-agent systems with switch-
ing directed topologies were proposed. Formation feasibil-
ity problems for linear multi-agent systems subject to con-
stant time delays were studied in [7]. For practical net-
worked multi-agent systems, the communication time delay
and topology switching may exist simultaneously. The time
delay may be time-varying and the topology can be directed.
To the best of our knowledge, time-varying formation con-
trol problems for linear multi-agent systems with both time-
varying delays and switching directed topologies are still
open. Moreover, for a given multi-agent system, whether
a predefined formation can be realized is of essential impor-



tance before designing formation protocols, and how to de-
scribe the macroscopic movement of a multi-agent system is
also an interesting topic.

Motivated by the facts stated above, this paper focuses on
analyzing the effects of time-varying delays and switching
directed topologies on the time-varying formation control
of linear multi-agent systems. More specifically, the rela-
tionships among time delays, switching topologies, forma-
tion feasibility constraint and formation reference function
are investigated. Compared with the previous results on for-
mation control, the contributions of this paper are threefold.
Firstly, the formation can be time-varying, and the time-
varying delays and switching directed topologies are consid-
ered simultaneously. In [19], the formation is time-invariant.
Although the topology in [6] can be switching, it is required
that there exist no time delays. In [7], only constant time
delays were considered. Secondly, the time-varying forma-
tion feasibility constraint is presented and is proven to be in-
dependent of the time-varying delays and the switching di-
rected topologies. The formation feasibility constraints in
[7, 10, 19] can be treated as special cases of the one in the
current paper. Thirdly, an explicit expression of the forma-
tion reference function is proposed. It is verified that neither
the time-varying delays nor the switching directed topolo-
gies have effects on the formation reference function.

Throughout this paper, for simplicity of notation, 0 is used
to denote zero matrices of appropriate size with zero vectors
and zero number as special cases. 1 is used to represent a
column vector of appropriate size with 1 as its elements. I
stands for an identity matrix with appropriate dimension. ⊗
denotes the Kronecker product.

2 Preliminaries and problem formulation

2.1 Preliminaries on graph theory
Let a triplet G = {S,E,W} denote a weighted directed

graph of order N with S = {s1, s2, · · · , sN} the node
set, E ⊆ {(si, sj) : si, sj ∈ S, i 6= j} the edge set
and W = [wij ] ∈ RN×N the weighted adjacency ma-
trix. An edge of G is denoted by eij = (si, sj). The ad-
jacency elements wij > 0 if and only if eji ∈ E, and
wij = 0 otherwise. The neighbor set of node si is de-
noted by Ni = {sj ∈ S : (sj , si) ∈ E}. The in-
degree and out-degree of node si are defined, respectively,
as degin(si) =

∑N
j=1 wij and degout(si) =

∑N
j=1 wji.

The node si is balanced if and only if its in-degree and out-
degree are equal, i.e., degin(si) = degout(si). Denote by
D = diag {degin(si), i = 1, 2, · · · , N} the degree matrix
associated with G. The Laplacian matrix of G is defined as
L = D −W . A directed path from node si1 to sil is a se-
quence of ordered edges with the form of (sik , sik+1

) with
sik ∈ S (k = 1, 2, · · · , l − 1). A directed graph G is called
balanced if and only if all of its nodes are balanced. A di-
rected graph is said to have a spanning tree if there exists at
least one node having a directed path to all the other nodes.

The directed graph in the current paper can be switching.
Assume that there exists an infinite sequence of uniformly
bounded non-overlapping time intervals [tk, tk+1) (k ∈ N),
where t0 = 0, 0 < τ0 6 tk+1 − tk, and N is the set of
natural numbers. The time sequence tk (k ∈ N) is named as
the switching sequence, at which the directed graph changes.

τ0 is called the dwell time, during which the graph keeps
fixed. Let σ(t) : [0,+∞) → {1, 2, · · · , p} be a switch-
ing signal whose value at time t is the index of the graph
with p ∈ N and p > 1. Let Gσ(t), Lσ(t) and w

σ(t)
ij de-

note the directed graph, the associated Laplacian matrix and
the adjacency element at σ(t), respectively. Let N i

σ(t) repre-
sent the neighbor set of the ith agent at σ(t). For any given
σ(t) ∈ {1, 2, · · · , p}, the Laplacian matrix Lσ(t) has the fol-
lowing properties.

Lemma 1 ([20]) IfGσ(t) is balanced, thenLσ(t) has at least
one zero eigenvalue, and 1 is both the left and right eigen-
vectors of Lσ(t) associated with the zero eigenvalue, i.e.,
1TLσ(t) = 0 and Lσ(t)1 = 0.

Lemma 2 ([21]) IfGσ(t) has a spanning tree, thenLσ(t) has
a simple zero eigenvalue with the associated right eigenvec-
tor 1, and all the other N − 1 eigenvalues have positive real
parts.

2.2 Problem description
Consider a general linear multi-agent system described by

ẋi(t) = Axi(t) +Bui(t), (1)

where i = 1, 2, · · · , N , xi(t) ∈ Rn are the states, ui(t) ∈
Rm are the control inputs, A ∈ Rn×n and B ∈ Rn×m
with rank(B) = m. The interaction topology among the
N agents in multi-agent system (1) is described by the
switching directed graph Gσ(t) with node si representing
the agent i and eij denoting the interaction channel from
agent i to agent j. The agents are required to form the
predefined time-varying formation specified by the vector
h(t) = [hT1 (t), hT2 (t), · · · , hTN (t)]T ∈ RnN , where hi(t)
and ḣi(t) (i = 1, 2, · · · , N ) are uniformly continuous.

Definition 1 ([5]) Multi-agent system (1) is said to achieve
the time-varying formation specified by h(t) if for any given
bounded initial states, there exists a vector-valued function
r(t) ∈ Rn such that

lim
t→∞

(xi(t)− hi(t)− r(t)) = 0 (i = 1, 2, · · · , N),

where r(t) is called the formation reference function.

Remark 1 In Definition 1, hi(t) (i = 1, 2, · · · , N ) are used
to characterize the desired time-varying formation shape
and r(t) is a representation of the macroscopic movement
of the whole formation. Moreover, hi(t) can be regarded as
the relative offset vector of xi(t) with respect to r(t) in the
state space.

Assumption 1 Each possible interaction topology Gσ(t) is
balanced and has a spanning tree.

Since rank(B) = m, there exists a nonsingular matrix
T = [B̃T , B̄T ]T with B̃ ∈ Rm×n and B̄ ∈ R(n−m)×n such
that B̃B = Im and B̄B = 0. Consider the following time-
varying formation control protocol with both time-varying
delays and switching topologies

ui(t)=K
∑

j∈Ni
σ(t)

w
σ(t)
ij [(xi(t− τ(t))−hi(t− τ(t)))

−(xj(t−τ(t))−hj(t−τ(t)))]

− B̃(Ahi(t)−ḣi(t)),

(2)



where i = 1, 2, · · · , N , K ∈ Rm×n is a constant gain ma-
trix, τ(t) is the time-varying delay satisfying that 0 ≤ τ(t) ≤
τ̄ and |τ̇(t)| ≤ δ < 1 with τ̄ and δ known constants.

Remark 2 It should be pointed out that the proposed pro-
tocol (2) presents a general framework for consensus-based
formation control approaches. Besides the neighboring rel-
ative information feedback term, a formation compensa-
tion signal dependent on hi(t) (i.e., −B̃(Ahi(t)− ḣi(t)))
is also given to expand the feasible time-varying formation
set. Many existing protocols, such as protocols presented in
[3, 16, 18, 19] can be viewed as special cases of protocol
(2). Choosing hi(t) ≡ 0 (i = 1, 2, · · · , N), formation con-
trol protocol (2) becomes the well-known consensus protocol
with both time-varying delays and switching topologies.

Definition 2 A formation specified by h(t) is said to be fea-
sible for multi-agent system (1) under control protocol (2),
if there exists a gain matrix K such that the desired forma-
tion can be realized. The constraint on h(t), which should
be satisfied by the feasible formation, is called the formation
feasibility constraint.

Let x(t) = [xT1 (t), xT2 (t), · · · , xTN (t)]T . Under protocol
(2), the closed-loop dynamics of multi-agent system (1) can
be written in a compact form as follows

ẋ(t)=(IN ⊗A)x(t)+
(
Lσ(t) ⊗BK

)
x(t− τ(t))

−
(
Lσ(t) ⊗BK

)
h(t− τ(t))

− (IN ⊗BB̃A)h(t)

+ (IN ⊗BB̃)ḣ(t), t > 0,
x(t)=ϕ(t), t ∈ [−τ(t), 0],

(3)

where ϕ(t) is a continuous vector-valued function on t ∈
[−τ(t), 0].

The current paper mainly focuses on studying the explicit
expressions and features of the formation feasibility con-
straint and the formation reference function for time-delayed
multi-agent system (3) under switching topologies.

3 Main results

In this section, explicit expressions of the formation fea-
sibility constraint and the formation reference function are
derived. It is proven that both the formation feasibility con-
straint and the formation reference function are independent
of the switching topologies and the time-varying delays.

Theorem 1 If multi-agent system (1) under the time-delayed
formation protocol (2) with switching directed topologies
achieves time-varying formation specified by h(t), then the
formation feasibility constraint is independent of the time-
varying delays or the switching topologies, and satisfies

lim
t→∞

B̄
(
A(hi(t)− hj(t))− (ḣi(t)− ḣj(t))

)
= 0, (4)

where i, j ∈ {1, 2, · · · , N}.

Proof : Let θi(t) = xi(t) − hi(t) and θ(t) = [θT1 (t), θT2 (t),
· · · , θTN (t)]T . Then the time-delayed multi-agent system (3)
with time-varying topologies can be rewritten as

θ̇(t) = (IN ⊗A)θ(t) + (Lσ(t) ⊗BK)θ(t− τ(t))

+ (IN ⊗ (A−BB̃A))h(t)

+ (IN ⊗ (BB̃ − In))ḣ(t).

(5)

Let U = [1N/
√
N, Ū ] be an orthogonal constant ma-

trix. If Assumption 1 holds, it follows from Lemma 1 that
(1TN/

√
N)Lσ(t) = 0, Lσ(t)(1N/

√
N) = 0 and

UTLσ(t)U =

[
0 0
0 ŪTLσ(t)Ū

]
. (6)

Let ξ(t) = (UT ⊗ In)θ(t) = [ξT1 , ξ
T
2 , · · · , ξTN ]T and ς(t) =

[ξT2 , ξ
T
3 , · · · , ξTN ]T . From (6), multi-agent system (5) can be

transformed into

ξ̇1(t) = Aξ1(t) +
(

1√
N
1TN ⊗ (A−BB̃A)

)
h(t)

+
(

1√
N
1TN ⊗ (BB̃ − In)

)
ḣ(t),

(7)

and

ς̇(t)=(IN−1⊗A) ς(t)+
(
(ŪTLσ(t)Ū)⊗BK

)
ς(t−τ(t))

+(ŪT⊗(A−BB̃A))h(t)+(ŪT⊗(BB̃−In))ḣ(t). (8)

Let

θF (t) = (U ⊗ In)[ξT1 (t), 0]T . (9)

Note that [ξT1 (t), 0]T = e1⊗ξ1(t) with e1 anN -dimensional
column vector having 1 as its first component and 0 else-
where. It follows from (9) that

θF (t) = (U ⊗ In) (e1 ⊗ ξ1(t)) =
1√
N

1N ⊗ ξ1(t). (10)

Recalling that ξ(t) = [ξT1 (t), ςT (t)]T and θ(t) = (U ⊗
In)ξ(t), one gets

θ(t)− θF (t) = (U ⊗ In)[0, ςT (t)]T . (11)

Because U ⊗ In is nonsingular, from (11), one has that
limt→∞(θ(t)− θF (t)) = 0 if and only if

lim
t→∞

ς(t) = 0, (12)

that is, for any i ∈ {1, 2, · · · , N},

lim
t→∞

(
xi(t)− hi(t)−

1√
N
ξ1(t)

)
= 0 (13)

if and only if limt→∞ς(t) = 0. Therefore, ς(t) represents
the time-varying formation error.

Since the time-delayed multi-agent system (3) with
time-varying directed interaction topologies achieves
the time-varying formation specified by h(t), one gets
that limt→∞ς(t) = 0. Let Fσ(t) (ς (t) , ς (t− τ (t))) =

(IN−1 ⊗A) ς (t) +
(
(ŪTLσ(t)Ū)⊗BK

)
ς (t− τ (t)).

Since limt→∞ ς (t) = 0, it follows that
limt→∞ Fσ(t) (ς (t) , ς (t− τ (t))) = 0. Let H (t) =

(ŪT ⊗ (A−BB̃A))h(t) + (ŪT ⊗ (BB̃ − In))ḣ(t). Note
that h (t) and ḣ (t) are uniformly continuous, which implies
that H (t) is uniformly continuous. Thus, (8) can be
rewritten as

ς̇ (t) = Fσ(t) (ς (t) , ς (t− τ (t))) +H (t) . (14)

In what follows, one will prove that limt→∞H (t) = 0 by
contradiction. Assume that limt→∞H (t) = c 6= 0 with c
denoting a nonzero constant or H (t) does not have a limit.



i) If limt→∞H (t) = c 6= 0, then it holds from (14) that
limt→∞ ς̇ (t) = c 6= 0, which contradicts limt→∞ ς (t) = 0.

ii) IfH (t) does not have a limit, then there exist a positive
constant ε and an infinite time sub-sequence {ti, i ∈ N}with
limi→∞ ti =∞ such that ‖H (ti)‖ > ε > 0. Since H (t) is
uniformly continuous, there is a positive constant δ such that
the following inequality holds for t ∈ [ti − δ, ti + δ]

‖H (t)‖ > 1

2
‖H (ti)‖ >

1

2
ε. (15)

Note that limt→∞ Fσ(t) (ς (t) , ς (t− τ (t))) = 0. Then,
there exists a time instant tε > τ̄ > 0 such that when t > tε
it holds that∥∥Fσ(t) (ς (t) , ς (t− τ (t)))

∥∥ < 1

4
ε. (16)

Thus, when ti > tε+2δ, for any t ∈ [ti − δ, ti + δ], one can
obtain from (15) and (16) that

‖ς̇ (t)‖ =
∥∥Fσ(t) (ς (t) , ς (t− τ (t))) +H (t)

∥∥ > 1

4
ε. (17)

For ς̇ (ti) > 0, calculating the integral of (17) in
[ti − δ, ti + δ] gives∫ ti+δ

0

ς̇ (s)ds >
∫ ti−δ

0

ς̇ (s)ds+
1

2
εδ. (18)

Since {ti} is an infinite sequence, by taking the limit of ti →
∞ on both sides of (18), one can obtain that limt→∞ ς (t) =

limt→∞
∫ t
0
ς̇ (s)ds cannot have a finite limit, which is con-

tradictory with limt→∞ ς (t) = 0. For ς̇ (ti) < 0, a contra-
diction can be obtained in the same way.

Therefore, if limt→∞ ς (t) = 0, one can prove that
limt→∞H (t) = 0, that is

lim
t→∞

((
ŪT ⊗ (A−BB̃A)

)
h(t)

+
(
ŪT ⊗ (BB̃ − In)

)
ḣ(t)

)
= 0,

(19)

which means that the formation feasibility constraint on h(t)
is determined by (19). In what follows, it will be proven that
condition (4) is equivalent to condition (19).

On the one hand, if condition (4) holds, then for any i, j ∈
{1, 2, · · · , N}, it can be verified that

lim
t→∞

(
B̄
(
A−BB̃A

)
(hi(t)−hj(t))

+B̄
(
BB̃−In

)(
ḣi(t)−ḣj(t)

))
=0,

(20)

and

lim
t→∞

(
B̃
(
A−BB̃A

)
(hi(t)−hj(t))

+B̃
(
BB̃−In

)(
ḣi(t)−ḣj(t)

))
=0.

(21)

It follows from (20) and (21) that

lim
t→∞

(
T
(
A−BB̃A

)
(hi(t)−hj(t))

+T
(
BB̃−In

)(
ḣi(t)−ḣj(t)

))
=0.

(22)

For any i, j ∈ {1, 2, · · · , N}, pre-multiplying the both sides
of (22) by T−1 gives

lim
t→∞

((
A−BB̃A

)
(hi(t)−hj(t))

+
(
BB̃−In

)(
ḣi(t)−ḣj(t)

))
=0.

(23)

Note that
(
Lσ(t) ⊗ In

)
h(t) = [fT1 (t), fT2 (t), · · · , fTN (t)]T ,

where fi(t) =
N∑
j=1

w
σ(t)
ij (hi(t)− hj(t)) (i = 1, 2, · · · , N ).

From (23), one has

lim
t→∞

(
(Lσ(t) ⊗ (A−BB̃A))h(t)

+(Lσ(t) ⊗ (BB̃−In))ḣ(t)
)

=0.
(24)

Substituting

Lσ(t)(t) = U

[
0 0
0 ŪTLσ(t)Ū

]
UT

into (24) and pre-multiplying the both sides of (24) by UT ⊗
In yields

lim
t→∞

((
ŪTLσ(t)Ū Ū

T ⊗ (A−BB̃A)
)
h(t)

+
(
ŪTLσ(t)Ū Ū

T ⊗ (BB̃ − In)
)
ḣ(t)

)
= 0.

(25)

It follows from Lemma 2 that all the eigenvalues of
ŪTLσ(t)Ū have positive real parts, which means that
ŪTLσ(t)Ū is invertible. Pre-multiply the both sides of (25)
by (ŪTLσ(t)Ū)−1 ⊗ In gives

lim
t→∞

(
(ŪT ⊗(A−BB̃A))h(t)+(ŪT ⊗(BB̃−In))ḣ(t)

)
=0,

that is, condition (19) holds.
On the other hand, since rank(ŪT ) = N − 1, without

loss of generality, let ŪT = [û, Û ] with û ∈ R(N−1)×1 and
Û ∈ R(N−1)×(N−1) being of full rank. If condition (19)
holds, one gets

lim
t→∞

(
([û, Û ]⊗ (A−BB̃A))h(t)

+([û, Û ]⊗ (BB̃−In))ḣ(t)
)

=0.
(26)

Note that ŪT1
/√

N = 0. One has û = −Û1. Let ĥ(t) =

[hT2 (t), hT3 (t), · · · , hTN (t)]T . Then it follows from (26) that

lim
t→∞

(
Û ⊗ In

)(
Ψ̂−Ψ

)
= 0, (27)

where

Ψ̂=(IN−1⊗ (A−BB̃A))ĥ(t)+(IN−1⊗ (BB̃− In))
˙̂
h(t),

Ψ = (1⊗ (A−BB̃A))h1(t) + (1⊗ (BB̃ − In))ḣ1(t).

Because Û is invertible, one can pre-multiply the both
sides of (27) by Û−1 ⊗ In and obtain that for any i ∈
{2, 3, · · · , N}

lim
t→∞

(
(A−BB̃A)(hi(t)−h1(t))

+(BB̃−In)(ḣi(t)−ḣ1(t))
)

=0.
(28)



From (28), it can be obtained that for any i, j ∈
{1, 2, · · · , N}

lim
t→∞

(
(A−BB̃A)(hi(t)−hj(t))

+(BB̃−In)(ḣi(t)−ḣj(t))
)

=0.
(29)

Pre-multiplying the both sides of (29) by T , one gets ∀i, j ∈
{1, 2, · · · , N}

lim
t→∞

(
B̄A (hi(t)− hj(t))− B̄

(
ḣi(t)− ḣj(t)

))
= 0, (30)

which means that condition (19) is sufficient for condition
(4). Therefore, condition (4) is equivalent to condition
(19) which describes the formation feasibility constraint for
multi-agent system (1) under time-delayed formation proto-
col (2) with switching directed topologies. Moreover, from
(4), one sees that the formation feasibility constraint is inde-
pendent of the time-varying delays or the switching topolo-
gies. This completes the proof of Theorem 1. �

Remark 3 From Theorem 1, one sees that formation feasi-
bility constraint (4) is a necessary condition for multi-agent
system (1) under protocol (2) to achieve the desired forma-
tion specified by h(t). The physical meaning behind the
formation feasibility constraint is that the predefined time-
varying formation specified by h(t) should be compatible
with the dynamics of the multi-agent systems. By utilizing
the properties of the Laplacian matrix and applying nonsin-
gular transformations, the time-varying formation feasibility
constraint (4) is derived. The formation feasibility analysis
is a novel problem after a time-varying vector h(t) is applied
to specify the desired formation shape, which has not been
considered in the consensus control.

In the following, an explicit expression of the formation
reference function is derived to describe the macroscopic
movement of the time-varying formation under the influence
of the switching topologies and time-varying delays.

Theorem 2 If multi-agent system (1) under the time-delayed
formation protocol (2) with switching directed topologies
achieves time-varying formation specified by h(t), then
the formation reference function r(t) is independent of the
switching topologies and the time-varying delays, and satis-
fies

lim
t→∞

(r(t)− r0(t)− rh(t)) = 0, (31)

where

r0(t) = eAt

(
1

N

N∑
i=1

xi(0)

)
,

rh(t) = 1
N

N∑
i=1

(BB̃−In)hi(t)−eAt
(

1
N

N∑
i=1

BB̃hi(0)

)
+
∫ t
0
eA(t−s)

(
1
N

N∑
i=1

(ABB̃ −BB̃A)hi(s)

)
ds.

Proof : If multi-agent system (1) under the time-delayed
formation protocol (2) with switching directed topologies
achieves time-varying formation specified by h(t), then (13)
holds. From Definition 1 and (13), one gets

lim
t→∞

(
r(t)− 1√

N
ξ1(t)

)
= 0. (32)

Therefore, the formation reference function is determined by
the state of subsystem (7). Note that ξ(t) = (UT ⊗ In)θ(t),
θ(t) = x(t)−h(t) andU = [1N/

√
N, Ū ]. It can be obtained

that

ξ1(0) =
1√
N

(
1TN ⊗ In

)
(x(0)−h(0)) . (33)

It can be verified that
1√
N

∫ t
0
eA(t−s)(1TN ⊗ (BB̃ − In))ḣ(s)ds

= 1√
N
eA(t−s)(1TN ⊗ (BB̃ − In))h(s)

∣∣∣s=t
s=0

− 1√
N

∫ t
0
d
dse

A(t−s)(1TN ⊗ (BB̃ − In))h(s)ds

= 1√
N

(1TN ⊗ (BB̃ − In))h(t)

− 1√
N
eAt(1TN ⊗ (BB̃ − In))h(0)

− 1√
N

∫ t
0
eA(t−s)(−A)(1TN ⊗ (BB̃ − In))h(s)ds,

(34)

and
1√
N
A(1TN ⊗ (BB̃ − In))h(s)

= 1√
N

(
1TN ⊗ (ABB̃ −A)

)
h(s).

(35)

From (7) and (32)-(35), one gets that the formation reference
function r(t) satisfies (31). Moreover, from (31), one sees
that r(t) is independent of the switching topologies and the
time-varying delays. Therefore, the conclusion of Theorem
2 can be obtained. �

Remark 4 In the case where h(t) ≡ 0, the time-varying for-
mation control problem becomes a consensus control prob-
lem, and the formation reference function r(t) becomes
the consensus function c(t) which determines the consensus
value; that is,

lim
t→∞

(
c(t)− eAt

(
1

N

N∑
i=1

xi(0)

))
= 0. (36)

From (36), one can conclude that both the time-varying de-
lays and switching topologies have no effect on the consen-
sus function. More specifically, if h(t) ≡ 0 and A = 0, the
consensus function (36) becomes

lim
t→∞

(
c(t)−

(
1

N

N∑
i=1

xi(0)

))
= 0, (37)

which is just the average consensus function for first-order
multi-agent systems with constant/time-varying delays or
switching topologies studied in [20, 25, 26].

4 Conclusions

Time-varying formation feasibility and reference func-
tion of linear multi-agent systems with time-varying delays
and switching directed topologies were studied. A time-
varying formation control protocol was constructed using lo-
cal neighbor-to-neighbor information. The time-varying for-
mation feasibility constraint was derived to reveal the com-
patible relationship between feasible formation and the dy-
namics of each agent. An explicit expression of the forma-
tion reference function was proposed to describe the macro-
scopic movement of the whole time-varying formation. It is
proven that both the formation feasibility constraint and the
formation reference function are independent of the time-
varying delays and the switching directed topologies.
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