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Abstract: In this paper we study delay robustness of PID controllers in stabilizing systems containing uncertain, variable delays.
We consider second-order unstable systems and seek analytical characterization and exact computation of the PID delay margin,
where by PID delay margin we mean the maximal range of delay values within which the system can be robustly stabilized by a PID
controller. Our contribution is threefold. First, we show that the delay margin achieved by PID control coincides with that by PD
controllers. Second, we show that other than helping stabilize the delay-free part of a plant, the proportional control contributes no
action to increase the delay margin. Finally, we show that the PID delay margin can be computed efficiently by solving a unimodal
problem, that is, a univariate optimization problem that admits a unique maximum and hence is a convex optimization problem in one
variable. This unimodal problem is one of pseudo-concave optimization and hence can be solved using standard convex optimization
or gradient-based methods. As such, from a computational perspective, the PID delay margin problem is completely resolved in this
paper! The results not only insure that the PID delay margin problem be readily solvable, but also provide fundamental conceptual
insights into the PID control of delay systems, and analytical justifications to long-held engineering intuitions and heuristics, thus
lending useful guidelines in the tuning and analytical design of PID controllers.
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1 Introduction

A central problem in the stabilization of time-delay systems
is that of delay margin, which defines the largest range of de-
lay values so that a delay system can be robustly stabilized,
despite that the delay is unknown and may vary within that
range. Determination of the delay margin is of fundamen-
tal interest and can aid control design in several ways. First
and foremost, it provides a fundamental limit of robustness
against uncertainties in the time delay, establishing a defini-
tive boundary beyond which the delay system cannot be ro-
bustly stabilized via feedback. Secondly, it furnishes a per-
formance benchmark in feedback design, that can help guide
the tuning and redesign of the controller parameters. As such,
knowledge on the delay margin is much desired and at times
may be necessary, especially for circumstances where the sys-
tem delay is uncertain or difficult to estimate. The traditional
industrial processes and the modern interconnected systems
such as distributed networks and cyber-physical systems be-
long to this category, in which long, variable delays in mass
and information exchanges are commonplace.

It should be pointed out at the outset, nonetheless, that for
a stable plant the delay margin problem is itself a moot issue;
one recognizes readily that in this case the delay margin is
infinite. It is also known that when employing certain sophis-
ticated control laws, the delay margin can be made as large
as desirable. To this effect, various nonlinear, time-varying
controllers have been constructed, such as linear periodic con-
trollers [19], nonlinear periodic controllers [8], and nonlinear
adaptive controllers [3], which can be used to stabilize an un-
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stable linear time-invariant (LTI) plant with arbitrarily long
delays. On the other hand, when confined to LTI controllers,
the problem remains open except for simple, isolated cases.
There has been considerable, long-held research interest de-
voted to this problem, seeking to stabilize robustly LTI delay
plants using LTI controllers. By far it is generally known that
LTI controllers can only achieve a finite delay margin for un-
stable plants, and various bounds have been derived to esti-
mate the margin (see, e.g., [4, 6, 9, 16, 18, 21, 22, 26, 27, 31].
Specifically, upper bounds on the delay margin are obtained
in [9, 18, 21], while lower bounds are made available in
[13, 16, 22, 25–27, 31], based on methods ranging from
frequency-domain analysis to predictor feedback design, with
controller complexity ranging from that of PID control to
infinite-dimensional controllers.

Despite the considerable advances in the study of time-
delay systems, the delay margin problem remains to be
a formidable challenge in general, due to the fact that it
in essence requires solving an infinite-dimensional optimal
control synthesis problem which in turn poses an infinite-
dimensional best approximation problem of analytic func-
tions. Indeed, as of now the exact determination of the de-
lay margin is possible only for systems containing one sin-
gle unstable pole [18, 21], while the aforementioned bounds
generally suffer from a varying degree of conservatism. It
is worth noting that conventional feedback design methods
such as LQR and H∞ optimal control methods (see, e.g.,
[20, 29] and the references therein), predictor feedback de-
sign [10, 30], and LMI-based solutions [7, 17] are generally
restricted to synthesis problems with a fixed delay and thus
are not readily amenable to addressing delay robustness prob-
lems, lest that of the delay margin.

Inspired by the recent developments in [14, 24], in this pa-
per we study the delay margin achievable by PID controllers.



Our work is motivated both by the fundamental quest for the
exact delay margin, and by the broad practical applications of
PID control. In the latter regard, it is reassuring that among a
multitude of advanced control design methods, PID control re-
mains to stand out as the most favored method for its simplic-
ity, robustness, ease of implementation and cost-effectiveness;
indeed, a recent survey serves an awe-inspiring testimony of
its widespread acceptance by the industrial control commu-
nity [23]. Unsurprisingly, PID controllers have been widely
adopted in industrial processes, which are typically subject to
time delays. Earlier work on the delay margin achievable by
PID control [16, 24] shows that for first-order unstable plants,
PID controllers and more general LTI controllers result in the
same delay margin. Inadvertently, this reveals that for first-
order delay plants, PID controllers are in fact among the op-
timal LTI controllers in maximizing the delay margin. It was
further shown in [14] that this result holds more generally for
systems with one unstable pole and one nonminimum phase
zero, and that a PD controller suffices to achieve the maxi-
mum.

In the present paper we focus on second-order unstable
systems. Unlike in the previous work [14, 24], the analyti-
cal characterization of the PID delay margin now appears to
be highly nontrivial a task and requires a significant leap of
faith, both conceptually and analytically. Indeed, as we noted
above, no analytical characterization nor exact computation
of the delay margin has been found for second-order systems.
Apart from the aforementioned bounds, the computation of
the delay margin generally requires a brute-force search in
three parameters, that is, the three PID controller coefficients
constrained on a highly intricate manifold. Analytical results
of this kind will thus help advance the PID control of delay
systems by a major step. In this vein, it is useful to note that
in industrial applications, it is typical and often adequate to
model process dynamics by first- and second-order systems.
In spite of its successes, however, with only three control pa-
rameters, PID control is also known to be essentially limited
to first- and second-order systems [11, 28]. One is readily con-
vinced (see, e.g., [14]) that in general PID controllers cannot
stabilize a third- and higher-order system free of delay, lest
that the system may contain delays.

In a distinctively different approach, we reformulate the de-
lay margin problem as a constrained nonlinear programming
problem over a parameter space of the PID controller coeffi-
cients. This problem is then tackled by using the Fritz John
conditions [2]. It is interesting to note that while nonlinear
programming is generally used as a numerical tool, in the
present work we employ it to arrive at an analytical solution,
which leads to a number of important findings, with funda-
mental conceptual insights and significant computational im-
plications. First, we show that the delay margin achieved by
PID control coincides with that by PD controllers; in other
words, the integral control coefficient in the PID controller
can be made vanishingly small. A highly nontrivial yet rather
pleasant surprise from both a conceptual and technical stand-
point, this result is consistent with and indeed provides an ana-
lytical proof to the long-held intuition that the integral control
does no more than to achieve asymptotic tracking but plays no
role in feedback stabilization.

Secondly, we show that other than helping stabilize the
delay-free part of the plant, the proportional control con-
tributes no action to increase the delay margin; mathemat-

ically, this means that in maximizing the delay margin, the
proportional control coefficient will lie on the boundary of the
PID design parameter space defined by the task of stabilizing
the delay-free plant. Finally, having determined the integral
and proportional coefficients as alluded to above, the delay
margin problem is effectively reduced to a univariate opti-
mization problem, defined by the derivative control coefficient
alone, thus pointing to the observation that the derivative con-
trol action constitutes the sole force in countering the destabi-
lizing effect of the time delay. This too unveils a deep impli-
cation: with its phase lead, the derivative control attempts to
balance the phase lag resulted from time delay. In yet another
surprising discovery, we show that this univariate optimization
problem is in fact one on a pseudo-concave function. Stated
alternatively, the function admits a unique maximum which
can be computed using standard convex optimization meth-
ods, or any gradient-based and bisection methods. In conclu-
sion, the PID delay margin problem for second-order systems
can be solved efficiently and in high precision as a unimodal
problem. In other words, the problem is completely resolved
from a numerical perspective.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the definition of delay margin, along with
a summary of its analytical solution for first-order systems.
Section 3 gives a concise exposure to the mathematical tools
required in the sequel, including the Fritz John conditions for
nonlinear programming problems and the notion of pseudo-
concavity. The main proper of the paper then begins with Sec-
tion 4, where we present our results for second-order systems
with real unstable poles. Section 5 addresses systems with
complex conjugate poles. In each case, an analytical charac-
terization of the delay margin is provided, together with ex-
plicit a priori bounds on the delay margin. Section 6 extends
the analysis to nonminimum phase plants, followed by an il-
lustrative example given in Section 7. The paper concludes in
Section 8.

2 The Delay Margin Problem

We consider the feedback system depicted in Fig. 1, in
which Pτ (s) denotes the plant subject to an uncertain delay
τ , whose transfer function is given by

Pτ (s) = P0(s)e−τs, τ ≥ 0, (1)

where P0(s) represents a finite dimensional delay-free plant.
Assume that P0(s) can be stabilized by a certain finite-

Fig. 1. Feedback control of a time-delay system.

dimensional LTI controller K(s). The delay margin [18, 22]
of the system achievable by a LTI controller is defined as

τ̄ = sup {µ ≥ 0 : There exists some K(s) stabilizing
Pτ (s), ∀τ ∈ [0, µ)}.



Of particular interest in this paper is the delay margin
achievable by PID controllers K(s) = KPID(s),

KPID(s) = kp +
ki
s

+ kds, (2)

defined by

τ̄PID = sup {µ ≥ 0 : There exists some KPID(s)
stabilizing Pτ (s), ∀τ ∈ [0, µ)}.

Let

τ(kp, ki, kd) = sup {µ ≥ 0 : KPID(s) stabilizes
Pτ (s), ∀τ ∈ [0, µ)}.

It follows that

τ̄PID = sup {τ(kp, ki, kd) : KPID(s) stabilizes
Pτ (s), ∀τ ∈ [0, µ)}.

For purpose of comparison, it is also of interest to consider the
class of PD controllers

KPD(s) = kp + kds, (3)

and accordingly, the delay margin achievable by PD control:

τ̄PD = sup {µ ≥ 0 : There exists some KPD(s)
stabilizing Pτ (s), ∀τ ∈ [0, µ)}.

Consider the open-loop transfer function

L0(s) = P0(s)KPID(s). (4)

From a practical design perspective, we impose the following
assumption throughout the paper.

Assumption 1 performance
(i) |L0(0)| > 1,
(ii) |L0(∞)| < 1.

The assumptions (i) is necessary to insure the system’s dis-
turbance attenuation capability at low frequencies, while the
assumption (ii) is required for noise reduction at high frequen-
cies, both of which are standard requirements in feedback de-
sign.

Before proceeding, it is instructive to examine the delay
margin of first-order unstable system

Pτ (s) =
1

s− p
e−τs, p ≥ 0. (5)

Note that for the PID controller KPID(s) to stabilize this
plant free of delay and to satisfy Assumption 1, it is neces-
sary and sufficient that kp > p, ki > 0, and |kd| < 1. It was
shown in [18] that τ̄ = 2/p, and further in [14, 24] that

τ̄ = τ̄PID = τ̄PD =
2

p
. (6)

This shows that for a first-order unstable plant, PID controllers
are in fact among the optimal to achieve the largest possible
delay margin and that the integral control has no effect on the
delay margin. The optimal PID controller that asymptotically
attains the delay margin is constructed in [14]:

kp = p+ ε2, ki = ε3, kd = 1− ε, (7)

for sufficiently small ε > 0. From this construction, it is
clear that the integral control coefficient ki is immaterial to

the robust stabilization of Pτ (s). This is intuitively plausible,
since the integral control is generally implemented for achiev-
ing such performance objectives as asymptotic tracking, with
no regard to feedback stabilization. It is also of interest to
see that the optimal PID coefficients all lie on their respective
boundaries required to stabilize the delay-free plant.

3 Mathematical Background

3.1 Fritz John Condition
The Fritz John condition [2] concerns general constrained

nonlinear programming problems whose objective function
and constraints are differentiable, and the constraints may be
equalities or inequalities. A general description of this class
of problems can be stated as

min f(x)

s.t. gi(x) ≤ 0, i ∈ I1 = {1, 2, · · · ,m} ,
hj(x) = 0, j ∈ I2 = {m+ 1,m+ 2, · · · , k} ,

(8)

where f : Rn → R, gi : Rn → R and hj : Rn → R all have
continuous first-order partial derivatives on Rn. The Fritz
John condition provides a first-order necessary condition of
optimality to the programming problem above, which is given
in the following lemma.

Lemma 1 The Fritz John Condition: If x∗ is an optimal so-
lution of f(x) in (8), then there exists a row vector λ =
[λ0, λ1, λ2, . . . , λk] such that:

λ0∇f(x∗) +
∑
i∈I1

λi∇gi(x∗) +
∑
j∈I2

λj∇hj(x∗) = 0 (9)

∑
i∈I1

λigi(x
∗) = 0 (10)

λi ≥ 0, i ∈ {0} ∪ I1 (11)
λ 6= 0, (12)

where ∇θ(x) = [∂θ(x)/∂x1, · · · , ∂θ(x)/∂xn]> denotes the
gradient of θ(x).

It is useful to note that the Fritz John condition is appli-
cable to problems where the constraints may not satisfy cer-
tain regularity conditions, specifically when the gradient vec-
tors ∇gi(x∗) (i = 1, · · ·,m) and ∇hj(x∗) (j=m + 1, · · ·, k)
are linearly dependent, to which the seemingly better-known
Karush-Kuhn-Tucker condition [12] may fail to apply. For a
comprehensive development of Fritz John condition, we refer
to [2, 15].

3.2 Concavity, Quasi-Concavity and Pseudo-Concavity
We next give a brief exposure of concavity and its general-

ized notions.

Definition 1 A function θ : Rn → R is said to be concave
over a convex set Γ ∈ Rn if for any x, y ∈ Γ,

θ((1−α)x+αy) ≥ (1−α)θ(x)+αθ(y), α ∈ [0, 1], (13)

and quasi-concave if

θ((1−α)x+αy) ≥ min{θ(x), θ(y)}, α ∈ [0, 1]. (14)

Apparently, every concave function is quasi-concave. It is
well-known that concave and quasi-concave functions admit
a unique maximum, which can be found using convex opti-
mization methods. In particular, for a univariate concave or



quasi-concave optimization problem, known alternatively as a
unimodal optimization problem, the optimal solution can be
solved efficiently and in high precision by gradient-based and
bisection methods.

For a first-order differentiable function, pseudo-concave
functions possess properties essentially similar to those of
concave functions, and for that reason, can be computed in
a similar manner.

Definition 2 A differentiable function θ : Rn → R is said
to be pseudo-concave over a convex set Γ ∈ Rn if for any
x, y ∈ Γ,

∇θ(x)>(y − x) ≤ 0⇒ θ(y)− θ(x) ≤ 0. (15)

The pseudo-concave function also guarantees the existence of
a unique maximum.

4 Second-Order Systems with Real Unstable Poles

The delay margin problem for second-order unstable sys-
tems appears considerably more difficult. At present, no ana-
lytical characterization of the delay margin is available. The
exact computation of the PID delay margin generally requires
a brute-force search in the three PID coefficients kp, ki, kd.

Consider the following plant with two real unstable poles:

Pτ (s) =
1

(s− p1)(s− p2)
e−τs, p1 > 0, p2 > 0. (16)

Our main result of this section is given below.

Theorem 1 Let Pτ (s) be given by (16). Define the set

Ω = {(kp, ki, kd) : ki > 0, kd > p1 + p2,

(kp − p1p2)(kd − (p1 + p2))− ki > 0} .
(17)

Then the following statements hold:
(i)

τ̄PID = τ̄PD. (18)

(ii)
τ̄PD = sup

kd>p1+p2

τ̂(kd), (19)

where
τ̂(kd) = τ(p1p2, 0, kd), (20)

τ(kp, ki, kd) = min
l
τl(kp, ki, kd), (21)

with τl(kp, ki, kd) defined on Ω as

τl(kp, ki, kd) =
tan−1 ωl

p1

ωl
+

tan−1 ωl

p2

ωl
+

tan−1
kdωl−

ki
ωl

kp

ωl
− π
ωl
,

(22)
and ωl > 0 being the solutions of the polynomial equation

ω6− (k2
d− (p2

1 + p2
2))ω4− (k2

p− p2
1p

2
2− 2kdki)ω

2− k2
i = 0.

(23)
(iii) τ̂(kd) is pseudo-concave for kd > p1 + p2.
(iv)

τ̄PD ≤ min


 tan−1

√
2p2
p1√

2p2
p1

 1

p1
,

 tan−1
√

2p1
p2√

2p1
p2

 1

p2

 .

(24)

Proof. To streamline the proof, we choose to highlight each
key step with a subtitle.
The set Ω of the triple (kp, ki, kd). Consider first the delay-
free system. The closed-loop characteristic polynomial is
given by

s3 + (kd − (p1 + p2))s2 + (kp + p1p2)s+ ki = 0.

It follows form the Routh-Hurwitz criterion that P0(s) can be
stabilized by the PID controller if and only if (kp+p1p2)(kd−
(p1 + p2))− ki > 0, kd > p1 + p2 and ki > 0. On the other
hand, to satisfy Assumption 1, it is necessary that |kp| > p1p2.
Thus, the set Ω defines the set of all feasible coefficients that
enable the PID controller KPID(s) to stabilize P0(s).
The delay margin τ(kp, ki, kd) with a fixed (kp, ki, kd).
Consider the open-loop frequency response

L0(jω) =
1

(−p1 + jω)(−p2 + jω)

(
kp +

ki
jω

+ jkdω

)
.

We examine its magnitude

|L0(jω)|2 =
(k2
p − 2kdki) + k2

dω
2 +

k2i
ω2

(ω2 + p2
1)(ω2 + p2

2)

and solve all crossover frequencies ωl such that |L0(jωl)|=1.
This gives rise to the crossover frequencies ωl > 0 as the
solutions to the equation in (23). At these frequencies,

]L0(jωl) = 2π+tan−1 ωl
p1

+tan−1 ωl
p2

+tan−1
kdωl − ki

ωl

kp
.

Since L0(jωl) = ej]L0(jωl), we can match the phase of
L0(jωl) with that of the delay, by setting

τlωl = tan−1 ωl
p1

+ tan−1 ωl
p2

+ tan−1
kdωl − ki

ωl

kp
− π

for some τl ≥ 0. Evidently,

1 + P0(jωl)KPID(jωl)e
−jτlωl = 0.

In other words, the system becomes unstable at τl. On the
other hand, for any τ < min

l
τl,

1 + P0(jω)KPID(jω)e−jτω 6= 0, ∀ω ≥ 0;

that is, the system is stable for all τ < min
l
τl. Write

τl = τl(kp, ki, kd). It follows at once that τ(kp, ki, kd) =
min
l
τl(kp, ki, kd).

Optimization of τ(kp, ki, kd). A key idea in this paper, one
that differs distinctively from the previous work, is to recast
the maximization of τ(kp, ki, kd) as a constrained nonlinear
programming problem. Toward this end, we note that

τ̄PID = sup
(kp,ki,kd)∈Ω

τ(kp, ki, kd)

= sup
(kp,ki,kd)∈Ω

min
l
τl(kp, ki, kd)

≤ min
l

sup
(kp,ki,kd)∈Ω

τl(kp, ki, kd). (25)

Consider then the constrained problem

min f(kp, ki, kd, ωl)

s.t. g1 = p1 + p2 − kd ≤ 0

g2 = −ki ≤ 0

g3 = ki − (kp − p1p2)(kd − (p1 + p2)) ≤ 0

h = ω6
l − (k2

d − (p2
1 + p2

2))ω4
l

− (k2
p − p2

1p
2
2 − 2kdki)ω

2
l − k2

i = 0,



where

f(kp, ki, kd, ωl) = −
2∑
i=1

tan−1 ωl

pi

ωl
−

tan−1
kdωl−

ki
ωl

kp

ωl
+
π

ωl
.

Clearly,

sup
(kp,ki,kd)∈Ω

τl(kp, ki, kd) = − min
g1,g2,g3,h

f(kp, ki, kd, ωl).

Note that in this formulation, the first three inequality con-
straints represent the set Ω, where the less than or equal sign
(≤) is brought in to enable the equivalence between the infi-
mum and minimum. The last equality constraint characterizes
the crossover frequency ωl.

Next, we invoke the Fritz-John condition and examine the
first-order conditions

λ0 5 f(k∗p, k
∗
i , k
∗
d, ω
∗
l ) +

3∑
i=1

λi 5 gi(k
∗
p, k
∗
i , k
∗
d, ω
∗
l )

+ λ4 5 h(k∗p, k
∗
i , k
∗
d, ω
∗
l ) = 0

3∑
i=1

λigi(k
∗
p, k
∗
i , k
∗
d, ω
∗
l ) = 0

λi ≥ 0, i ∈ {0, 1, 2, 3}
λ = [λ0, λ1, λ2, λ3, λ4] 6= 0.

In this vein, we first evaluate the partial derivatives of
f(kp, ki, kd, ωl), h(kp, ki, kd, ωl) and gi(kp, ki, kd, ωl), i =
1, 2, 3 with respect to kd, ki and kp, which results in the equa-
tions

∂

∂kd
: λ0

1

1 + Π2

1

k∗p
+ λ1 + λ3(k∗p − p1p2)

+ 2λ4(k∗dω
∗2
l − k∗i )ω∗2l = 0 (26)

∂

∂ki
: λ0

1

1 + Π2

1

k∗p
− λ2ω

∗2
l + λ3ω

∗2
l

+ 2λ4(k∗dω
∗2
l − k∗i )ω∗2l = 0 (27)

∂

∂kp
: λ0

1

1 + Π2
(k∗d −

k∗i
ω∗2l

)
1

k∗2p
+ λ3(−k∗d + p1 + p2)

+ 2λ4(−k∗p)ω∗2l = 0, (28)

where Π =
k∗dω

∗
l −

k∗i
ω∗
l

k∗p
. Solving the equation (28) gives rise to

λ4 =

λ0
1

1 + Π2
(k∗d −

k∗i
ω∗2l

)
1

k∗2p
+λ3(−k∗d + p1 + p2)

2k∗pω
∗2
l

. (29)

By substituting (29) into (26) and (27), we obtain that

λ0ω
∗2
l

1

1 + Π2
+ λ1k

∗
pω
∗2
l + λ3(k∗p − p1p2)k∗pω

∗2
l

+ λ0
1

1 + Π2
(k∗dω

∗2
l − k∗i )2 1

k∗2p

+ λ3(−k∗d + p1 + p2)(k∗dω
∗2
l − k∗i )ω∗2l = 0

(30)

and

λ0ω
∗2
l

1

1 + Π2
+ (λ3 − λ2)k∗pω

∗4
l

+ λ0
1

1 + Π2
(k∗dω

∗2
l − k∗i )2 1

k∗2p

+ λ3(−k∗d + p1 + p2)(k∗dω
∗2
l − k∗i )ω∗2l = 0.

(31)

In light of the condition
∑3
i=1 λigi(k

∗
p, k
∗
i , k
∗
d, ω
∗
l ) = 0, it

follows that gi(k∗p, k
∗
i , k
∗
d, ω
∗
l ) = 0 whenever λi > 0, which

means that the constraint gi ≤ 0 is active.
Assume that λ3 = 0. Since k∗p ≥ p1p2 > 0 and ω∗l > 0,

it follows from (30) that λ0 = λ1 = 0 . In turn, we find that
λ2 = 0 by (31). Since λ0 = λ1 = λ2 = λ3 = 0, λ4 6= 0
by the fact that λ 6= 0. Hence, from (28), it is necessary that
k∗p = 0 or ω∗l = 0, which leads to contradiction. Therefore,
we assert that λ3 > 0 and

g3 = k∗i − (k∗p − p1p2)(k∗d − (p1 + p2)) = 0.

Assume then that λ1 > 0. It follows that k∗d = p1 + p2

and k∗i = (k∗p − p1p2)(k∗d − (p1 + p2)) = 0, that is, the
controller reduces to a PD controller. From [14], however,
τ(kp, 0, p1 + p2) = 0. Thus, it suffices to consider λ1 = 0
only. Assume that λ2 = 0. We now have λ1 = λ2 = 0
and λ3 > 0. From (26) and (27), it is necessary that ω∗2l =
k∗p − p1p2. Substituting ω∗2l = k∗p − p1p2 and k∗i = (k∗p −
p1p2)(k∗d−(p1 +p2)) into the equality constraint h, we obtain
that

0 = h(k∗p, k
∗
i , k
∗
d, ω
∗2
l ) = −4p1p2ω

∗2
l ,

which results in contradiction again since pi > 0, i = 1, 2
and ω∗l > 0. Consequently, we assert that λ2 > 0, and hence
k∗i = 0. Since k∗i = (k∗d − (p1 + p2))(k∗p − p1p2) = 0 and
k∗d > p1 + p2, it follows that k∗p = p1p2. From the inequality
(25), we now have τ̄PID ≤ τ̄PD and

sup
(kp,kd)∈Ω

τl(kp, 0, kd) = sup
kd>p1+p2

τl(p1p2, 0, kd).

The proof of (i) and (ii) is completed by noting that τ̄PID ≥
τ̄PD.
Pseudo-concavity of τ̂(kd). For k∗p = p1p2 and k∗i = 0,
it is immediately seen that the polynomial equation (23) ad-
mits one unique positive solution ωl > 0, that is, ωl =√
k2
d − (p2

1 + p2
2). Denote ω0 =

√
k2
d − (p2

1 + p2
2). It follows

that

τ̂(kd) =
tan−1 ω0

p1

ω0
+

tan−1 ω0

p2

ω0
+

tan−1 kdω0

p1p2

ω0
− π

ω0
. (32)

We examine the first-order derivative of τ̂(kd), denoted as
τ̂
′
(kd). Then τ̂(kd) is a pseudo-concave function if and only

if there exists a unique k̄d such that τ̂
′
(kd) > 0 for p1 + p2 <

kd < k̄d and τ̂
′
(kd) < 0 for kd > k̄d. To facilitate the proof,

we rewrite τ̂(kd) = n(g(kd)), where

n(ω0) =

2∑
i=1

tan−1 ω0

pi

ω0
+

tan−1 ω0

√
ω2

0+(p21+p22)

p1p2

ω0
− π

ω0

with ω0 ≥
√

2p1p2 and g(kd) =
√
k2
d − (p2

1 + p2
2). Tak-

ing the derivative of τ̂(kd), we have τ̂
′
(kd) = n

′
(ω0)g

′
(kd),

where g
′
(kd) = kd√

k2d−(p21+p22)
> 0. Furthermore,

n
′
(ω0) =

(
2∑
i=1

(
ω0

pi

1 + (ω0

pi
)2
− tan−1 ω0

pi

)
+

m1(ω0)

1 +m1(ω0)2

− tan−1m1(ω0) +
m2(ω0)

1 +m1(ω0)2
+ π

)
1

ω2
0

,

where
m1(ω0)=

ω0

√
ω2

0+(p21+p22)

p1p2
and m2(ω0)=

ω3
0

p1p2
√
ω2

0+(p21+p22)
.

We first prove the existence of k̄d such that τ̂
′
(k̄d) = 0.

Consider s(ω0) = ω2
0n
′
(ω0). We have s(ω0) → −π2 < 0



when ω0 →∞. On the other hand, in light of the fact [14] that
τ(kp, 0, p1 + p2) = 0 and τ(kp, 0, kd) > 0, ∀kd > p1 + p2,
we have τ̂

′
(p1 + p2) > 0. Hence, when ω0 →

√
2p1p2, we

have

s(ω0) =
ω2

0

g′(p1 + p2)
τ̂
′
(p1 + p2) > 0.

By the continuity of s(ω0), there must exist at least one ω̄0 ≥√
2p1p2, such that s(ω̄0) = 0. Correspondingly, there exists

some k̄d > p1 + p2 such that τ̂
′
(k̄d) = 0.

We next verify the uniqueness of k̄d by proving s(ω0) is a
monotonically decreasing function. Taking the derivative of
s(ω0) yields

s
′
(ω0) = −

2∑
i=1

2

pi

(ω0

pi
)2

(1 + (ω0

pi
)2)2

− Φ(ω0)

(1 + (m1(ω0))2)
2 ,

where

Φ(ω0) =
2

p1p2
m1(ω0)2

(
p1p2m1(ω0)

ω0
+

ω3
0

p1p2m1(ω0)

)
−m

′

2(ω0)
(
1 +m1(ω0)2

)
+ 2m2(ω0)m1(ω0)m

′

1(ω0)

=
ω2

0γ(ω0)

p3
1p

3
2(ω2

0 + (p2
1 + p2

2))3/2
,

and
γ(ω0) = 6ω6

0 + 11(p2
1 + p2

2)ω4
0 + (7p4

1 + 7p4
2 + 12p2

1p
2
2)ω2

0

+ (2p4
1 + 2p4

2 + p2
1p

2
2)(p2

1 + p2
2).

Obviously, γ(ω0) > 0, and so Φ(ω0) > 0. As such, s
′
(ω0) <

0 and s(ω0) is monotonically decreasing with ω0. Moreover,
since g

′
(kd) > 0 and τ̂

′
(kd) = s(ω0)g

′
(kd)/ω

2
0 , the unique-

ness of k̄d is confirmed, which also insures that τ̂
′
(kd) > 0

for p1 + p2 < kd < k̄d and τ̂
′
(kd) < 0 for kd > k̄d. This

establishes that fact that τ̂(kd) is pseudo-concave.
Upper bound of τ̄PD. In (32), since tan−1 kdω0

p1p2
≤ π/2 and

tan−1 ω0

pi
≤ π/2, i = 1, 2 for any ω0 > 0, it follows that

τ̂(kd) ≤ min

{
tan−1 ω0

p1

ω0
,

tan−1 ω0

p2

ω0

}
.

Since
tan−1 ω0

pi

ω0
is monotonically decreasing with ω0 and ω0 is

monotonically increasing with kd, the maximum of this upper
bound is achieved at kd = p1 + p2, which leads to

τ̄PD ≤ min

{(
tan−1

√
2p2
p1√

2p2
p1

)
1

p1
,

(
tan−1

√
2p1
p2√

2p1
p2

)
1

p2

}
.

The proof is now completed. �
It is thus clear from Theorem 1 (i) that for a second-order

unstable plant, the delay margin achieved by PID control co-
incides with that by PD controllers. Theorem 1 (ii) indicates
that the proportional control coefficient lies on the boundary
of its allowable range in Ω, pointing to the fact that integral
control contributes no effect to enlarge the delay margin. The
pseudo-concavity of τ̂(kd), established in Theorem 1 (iii), re-
veals that the delay margin can be effectively computed by
solving a unimodal problem. Inadvertently, it also implies,
since the maximum of τ̂(kd) is achieved in the interior of the
range of kd, that it is generally not possible to obtain an ex-
plicit expression of the delay margin, unlike in the case of
first-order plants. At last, the a priori bound stated in The-
orem 1 (iv) provides an intrinsic bound independent of PID
controller design, and in turn an estimate that can be used to
guide the numerical optimization.

5 Second-Order Systems with Complex Conjugate
Unstable Poles

We now develop in parallel the delay margin for plants that
contain a pair of complex conjugate unstable poles, which can
be described by

Pτ (s) =
1

(s− p)(s− p∗)
e−τs, (33)

where p = α+ jβ, Re(p) = α > 0, and p∗ denotes the com-
plex conjugate of p. Second-order plants with complex con-
jugate poles are numerous in, e.g., mechanical and electronic
systems, with such unstable behaviors exhibited by, e.g., os-
cillators. It should be noted that this case and that of the real
unstable poles are mutually exclusive, except in limiting sit-
uations. For this reason, the plant (33) must be dealt with
separately.

Likewise, we characterize the exact delay margin in the fol-
lowing theorem. Due to space constraint, from this point on-
ward, we shall omit the proofs.

Theorem 2 Let Pτ (s) be given by (33). Define the set

Λ = {(kp, ki, kd) : ki > 0, kd > 2α,

(kp − |p|2)(kd − 2α)− ki > 0
}
.

(34)

Then the following statements hold:
(i)

τ̄PID = τ̄PD. (35)

(ii)
τ̄PD = sup

kd>2α
τ̂(kd), (36)

where
τ̂(kd) = τ(|p|2, 0, kd), (37)

τ(kp, ki, kd) = min
l
τl(kp, ki, kd), (38)

with τl(kp, ki, kd) defined on Λ as

τl(kp, ki, kd) =
tan−1 ωl−β

α

ωl
+

tan−1 ωl+β
α

ωl

+
tan−1

kdωl−
ki
ωl

kp

ωl
− π

ωl
,

(39)

and ωl > 0 being the solutions of the polynomial equation

ω6 − (k2
d − 2(α2 − β2))ω4 − (k2

p − |p|4 − 2kdki)ω
2

− k2
i = 0.

(40)

(iii) τ̂(kd) is pseudo-concave for kd > 2α.
(iv)

τ̄PD ≤
tan−1

√
2|p|+β
α√

2|p|
. (41)

6 Effect of Nonminimum Phase Zero

In this section, we extend the preceding results to systems
containing nonminimum phase zeros. Consider the plant

Pτ (s) =
s− z

(s+ z)(s− p)
e−τs, (42)

where z > 0 is a nonminimum phase zero, and p > 0 denotes
an unstable pole. The following result shows that the presence
of a nonminimum phase zero will invariably reduce the delay
margin.



Theorem 3 Let Pτ (s) be given by (42). Let z > p. Then,

τ̄PID = τ̄PD = 2

(
1

p
− 1

z

)
. (43)

The exact margin (43) coincides with that of [18], which
was shown to be achievable by a general LTI controller for
plants with a single nonminimum phase zero and a single un-
stable pole. That a PD controller can result in the same delay
margin was shown in [14]. Our present result reinforces this
fact and shows that still, the delay margins achieved by PID
and PD controllers coincide.

It can be readily verified that the feasible set of (kp, ki, kd)
defined by the inequalities resulted from the first column of
the Routh array and Assumption 1: 0 < kd < 1, ki > 0,
(1 + kd)z > kp + p, and [(1 + kd)z − (kp + p)](z(kp −
p) − ki) > (1 − kd)zki, is empty whenever z ≤ p. In other
words, the delay-free plant P0(s) cannot be stabilized by any
PID controller under this circumstance, lest the delay plant.

7 An Illustrative Example

We now use a numerical example to illustrate our results.
Example 1 In this example we consider the second-order sys-
tem in the form of (16) and (33), with two real poles and a
pair of complex conjugate poles, respectively. We analyze the
example in these two cases.
Real unstable poles: In this case we take p1 = 0.2, and let p2

vary in the interval [0, 3]. Fig. 2 shows the exact delay margins
achieved by PID and PD controllers, respectively, together
with bounds obtained in this paper and elsewhere. Here the
PID delay margin is computed by a brute-force search in the
allowable range Ω of the triple (kp, ki, kd), while the delay
margin achieved by a PD controller is computed by solving
the unimodal optimization problem in (19). The two curves
overlap, for all p2 ∈ [0, 3]. It is worth noting that an ap-
preciable gap exists between the bounds and the exact delay
margin.
Complex conjugate unstable poles: In a similar vein, we fix
β = 1, and allow α to vary in [0, 3]. Fig. 3 plots the ex-
act delay margins of the system in (33), achieved by PID
and PD controllers. Likewise, the two curves overlap, for all
α ∈ [0, 3]. Existing upper bounds are also plotted in Fig. 3
for purpose of comparison.

Finally, it is instructive to examine the 3-D surface manifold
of τ(kp, ki, kd) with ki = 0, to see how the delay margin
may vary with the parameters kp and kd. Fig. 4 shows the 3-
D surfaces of τ(kp, 0, kd) in the two cases. In both cases, the
surfaces exhibit features consistent with the analytical results,
indicating that τ(kp, 0, kd) has a unique maximum, which
lies at the terminal value of kp, but generally in the interior of
the allowable range of kd. Fig. 5 exhibits the concave property
of the function τ̂(kd), which further affirms the observation.
From these plots, the maximum in the two cases is found to be
0.6009 and 0.2311, which are consistent with the exact delay
margin for the plants corresponding to p1 = 0.2, p2 = 0.8 in
Fig. 2, and p = 1 + j in Fig. 3, respectively.

8 Conclusion

In this paper, we have investigated the delay margin of
second-order systems under PID control, subject to unknown
constant delays. An analytical characterization of the delay
margin is obtained by optimizing PID controller parameters.
We proved that the delay margin achieved by PID control co-
incides with that by PD controllers, which, while consistent
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Fig. 2. Exact delay margins τ̄PID, τ̄PD of system (16), and
comparison to existing upper bounds.
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Fig. 4. Relationships between τ(kp, 0, kd) and (kp, kd) for
systems (16) and (33).

with one’s intuition, appears to be both surprising and appeal-
ing a result. We also showed that the exact delay margin can
be determined by solving a unimodal problem, which is a uni-
variate optimization problem admitting a unique maximum
and constitutes one of convex optimization in one variable.
The results thus insure that the PID delay margin problem
can be solved readily and efficiently. The conceptual insights
gained in solving this problem are appealing, which shed fur-
ther light into the fundamental understanding of PID control,
and to the tuning and analytical design of PID controllers.

Future extension of this work may be pursued in several
directions. In this vein we come to recognize the following
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points.
• We note that it is generally difficult to stabilize high-

order unstable delay systems using PID control due to
insufficient degrees of design freedom. Notwithstanding
this limitation of PID control, it remains plausible to con-
sider certain augmented, PID-based controllers (see, e.g.,
[14]). It is also useful to delineate classes of high-order
delay systems that can be robustly stabilized by PID con-
trol.

• In practice, it is mandatory to implement the derivative
control in conjunction with a low-pass filter, so that the
PID controller possesses the form [1] of

K
Tf

PID(s) = kp +
ki
s

+
kds

1 + Tfs
,

where Tf > 0. It is possible to determine the delay
margin achievable by K

Tf

PID(s) as well. In doing so,
it will be useful to characterize analytically the tradeoff
between the achievable delay margin and the filter band-
width.

• The delay margin is closely related to the classical con-
cepts of gain and phase margin, two fundamental mea-
sures of robustness that can be optimized analytically us-
ing the H∞ control theory [5]. It will be of interest to
seek their counterparts in the context of PID control.
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