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Abstract: This paper studies the global leader-following consensus problem for a multi-agent system with intermittent directed
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Key Words: Multi-agent systems, intermittent directed communication, actuator saturation, consensus

1 Introduction
As a fundamental problem in the study of cooperative

control of multi-agent systems, consensus of multi-agent
systems has drawn much attention over the past decades.
Numerous results have been obtained pertaining to various
agent dynamics and communication topologies [1–7].

More specifically, consensus for single-integrator systems
was achieved under a jointly connected switching undirected
communication topology [1]. Reference [2] relaxed the as-
sumption on the communication topology in [1] to a weaker
assumption that the union of the switching directed graphs
contains a spanning tree frequently enough. Reference [3]
further extended the single-integrator results of [2] to agents
represented by higher-order systems under the same network
connectivity assumption in [2]. For agents with general
linear dynamics, the leader-following consensus problem
was achieved under a fixed connected undirected topology
in [4]. Reference [4] also achieved consensus of marginally
stable linear systems under a jointly connected switching
undirected graph. Reference [5] studied the discrete-time
counterpart of [4]. Reference [6] relaxed the assumption on
the communication topology in [5] to a jointly connected
directed communication topology. Reference [7] designed
fully distributed consensus protocols for general linear sys-
tems under the assumption that the communication topology
contains a directed spanning tree.

Actuator saturation is ubiquitous in real world control
systems and degrades the performance of the closed-loop
system. In a severe case, it may even destabilize the
system. Over the past decades, much research effort has
been devoted to solving the consensus problem for multi-
agent systems in the presence of actuator saturation [8]. It
was established that global stabilization of linear system
subject to actuator saturation can be achieved only when
the linear system is asymptotically null controllable with
bounded controls (ANCBC), that is, when it is stabilizable
and all its poles are in the closed left-half plane [9]. In
view of this fundamental result, the study of the consensus
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problem, in the presence of actuator saturation and under
various communication topologies, has mainly focused on
multi-agent systems where the agent dynamics are ANCBC
[10–14].

For a group of single-integrator systems, global consensus
was achieved when the communication topology contains a
directed spanning tree [10]. For a group of double-integrator
systems or a group of neutrally stable linear systems, global
consensus was achieved by linear feedback under a directed
topology that is strongly connected and detailed balanced
[11]. Reference [11] also established results for these two
classes of systems under a switching undirected topology.
Reference [12] considered the discrete-time counterpart of
[11] under a connected undirected communication topology.
For general ANCBC agent dynamics, linear feedback was
designed using the low gain feedback design technique [15]
to achieve semi-global consensus under either a connected
undirected or a jointly connected undirected topology [13].
Later, global consensus for general ANCBC agent dynamics
was achieved by nonlinear control laws when the communi-
cation topology is strongly connected and detailed balanced
[14].

A common constraint that exists in the communication
network is that the information cannot be transmitted con-
tinuously under some circumstances such as sensor failures.
Some works have been carried out on solving the con-
sensus problem for multi-agent systems under intermittent
communication [16–21]. Most of these works focused on
first-order systems [16] or second-order systems [17–19]
under either a connected undirected or strongly connected
directed communication topology. Reference [20] studied
the consensus problem for a group of general linear systems
with periodic intermittent communication through a directed
topology containing a spanning tree. In [21], actuator
saturation was taken into consideration when solving the
semi-global consensus problem for a group of ANCBC
systems with periodic intermittent communication through a
connected undirected communication topology by using the
low gain feedback design technique [15].

Differently from the aforementioned papers, where the



agents are either in simple dynamics or the assumption on
the communication topology is strong, we aim to solve the
problem of global leader-follower consensus of a group of
multiple-integrator systems in the presence of actuator sat-
uration via aperiodically intermittent communication. The
communication topology, when active, contains a directed
spanning tree rooted at the leader agent. The consensus
algorithm for each agent utilizes the information of other
agents obtained through multi-hop paths in the communi-
cation network intermittently. Global consensus is achieved
by these consensus algorithms.

The contributions of this paper are summarized as fol-
lows. Compared with the existing results on the consensus
problem for multi-agent systems in the presence of actuator
saturation, where either a connected undirected graph [12,
13, 21] or a strongly connected detailed balanced directed
graph [11, 14] is assumed, our assumption on the commu-
nication topology is relaxed to a directed graph containing a
spanning tree. Such a relaxation is nontrivial and is made
possible by a judicious choice of nonquadratic Lyapunov
functions quite different from those in the aforementioned
papers. The second contribution is the consideration of
actuator saturation while the communication is intermittent.
Unlike in the situation when actuator saturation is absent
[16–20], actuator saturation limits our ability to intensify
the control effort while the communication is active. The
third contribution lies in the relaxation on the intermittent
property of the communication. A common limitation of
the existing works is the restriction on the communication
ratio, the infimum of the ratio between the time period of
a connection and the time period of a disconnection that
follows. In [17, 18, 20, 21], consensus can be achieved if the
communication ratio is greater than a threshold value, which
is determined by the agent dynamics and the communication
topology. In our work, the ratio can be any positive number,
independent of the agent dynamics and the communica-
tion topology. Finally, compared with [21], where semi-
global consensus is achieved over an undirected topology,
we achieve global consensus over a directed communication
topology.

Organization. In Section 2, we recall some preliminaries
in graph theory. We then state the problem of global
leader-following consensus with intermittent directed com-
munication in the presence of actuator saturation in Section
3. In Section 4, a consensus algorithm is constructed
for each follower agent. These consensus algorithms use
the information of other agents obtained through multi-hop
paths in the communication network intermittently. The
number of hops is no greater than the length of the chain
of integrators. Global leader-following consensus is then
established. Simulation results are presented in Section 5.
A brief conclusion is drawn in Section 6.

Notation. 1N = [1 1 · · · 1]T ∈ RN . For a symmetric
matrix A ∈ Rn×n, λ(A) and λ(A) represent its maximum
and minimum eigenvalues, respectively. For two matrices A
and B, A ⊗ B denotes their Kronecker product. A positive
matrix A ∈ Rn×m, where all its entries are positive, is
denoted as A � 0. For two integers k1 and k2, I[k1, k2] =
{k1, k1 + 1, · · · , k2}, if k2 ≥ k1, and I[k1, k2] = {k1, k1 −
1, · · · , k2}, if k1 > k2.

2 Preliminaries
Let the communication topology among a network of N

follower agents be represented by a graph G = (V, E), where
V = {v1, v2, · · · , vN} is a finite nonempty set of N nodes,
each representing a follower agent, and E ⊂ V × V is the
set of edges of the graph. An edge (vi, vj) indicates that
agent j has access to the information of agent i. Agent i is a
neighbor of agent j if (vi, vj) ∈ E . Let A = [aij ] ∈ RN×N
be the adjacency matrix associated with G, where aij > 0
if (vj , vi) ∈ E and aij = 0 otherwise. Here we assume
that aii = 0 for all i ∈ I[1, N ]. Let L = [lij ] ∈ RN×N
be the Laplacian matrix associated with A, where lii =∑N
j=1,j 6=i aij and lij = −aij when i 6= j.
Besides the N follower agents, there exists a leader agent,

labeled as agent v0. The communication between follower
agent i and the leader agent is denoted as ai0, where ai0 > 0
if follower agent i has access to the information of the leader
agent and ai0 = 0 otherwise. Let Ḡ be a graph which con-
sists of graph G, node v0 and the edges between the leader
agent and its neighbors. Let the Laplacian matrix associated
with Ḡ be denoted as L̄. Then, L̄ can be partitioned as

L̄ =

[
0 0T

N

−a0 M

]
,

where a0 = [a10 a20 · · · , aN0]T andM = L + diag{a10,
a20, · · · , aN0}.

Lemma 2.1 [2] 0 is an eigenvalue of L̄ and all of the
nonzero eigenvalues of L̄ are in the open left half plane.
Furthermore, 0 is a simple eigenvalue of L̄ if and only if
Ḡ contains a directed spanning tree.

Lemma 2.2 [7] If Ḡ contains a directed spanning tree root-
ed at the leader, Λ = ΨM+MTΨ> 0, whereΨ =diag{ψ1,
ψ2, · · · , ψN} with [ψ1, ψ2, · · · , ψN ]T =(MT)−11N �0.

3 Problem Statement
Consider a group of N follower agents, each being de-

scribed by a chain of integrators of length n,
ẋi = Axi +Bui, i ∈ I[1, N ], (1)

where xi = [xi1 xi2 · · · xin]T ∈ Rn and ui ∈ R, with
|ui| ≤ umax, for some positive scalar umax, are respectively
the state and the control input of agent i, and

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


n×n

, B =


0
0
...
0
1


n×1

.

The leader agent is described by,
ẋ0 = Ax0, (2)

where x0 = [x01 x02 · · · x0n]T ∈ Rn is the state.
In this paper, we consider a multi-agent system consisting

of the group of follower agents (1) and the leader agent
(2) and operating on an underlying communication net-
work. The communication network is active intermittently
as shown in Fig. 1, where [tk, tk+1), k = 0, 1, 2 · · · ,
are nonempty, non-overlapping time intervals with t0 = 0.
For k = 0, 1, 2, · · · , tk is the beginning of a connection,
τk ≥ ε0, for any positive scalar ε0, is the time period when
communication network is active and τ̄k = tk+1− tk−τk ≤
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Fig. 1: The intermittent communication illustrated by aij(t),
i ∈ I[1, N ], j ∈ I[0, N ].

θ, for any positive scalar θ, is the following time period
when communication network is inactive. The intermittent
communication is illustrated by aij(t), i ∈ I[1, N ], j ∈
I[0, N ], where aij(t) = aij if the communication network
is active and aij(t) = 0 if the communication network
is inactive. The communication topology, when active,
satisfies the following assumption.

Assumption 3.1 The directed graph Ḡ contains a spanning
tree rooted at the leader agent v0.

The problem we are to solve is to design a bounded
consensus algorithm ui for each follower agent i, which
uses only the information obtained from the communication
network intermittently, such that, for all initial conditions
xi(0)∈Rn, i ∈I[0, N ], lim

t→∞
(xi(t)−x0(t))=0, i ∈ I[1, N ].

4 Main Results
Denote the difference between a state of a follower agent

and the corresponding state of the leader as x̂il = xil − x0l,
l ∈ I[1, n], i ∈ I[1, N ], and let x̂i = [x̂i1 x̂i2 · · · x̂in]T,
i ∈ I[1, N ]. It then follows from (1) and (2) that

˙̂xi = Ax̂i +Bui, i ∈ I[1, N ]. (3)
Let x̃ = [x̃T

1 x̃
T
2 · · · x̃T

n]T with x̃l = [x̂1l x̂2l · · · x̂Nl]T, l ∈
I[1, n], and u=[u1u2 · · ·uN ]T. It then follows from (3) that

˙̃x = (A⊗ IN )x̃+ (B ⊗ IN )u. (4)
To construct the consensus algorithm for each follower

agent, we carry out a state transformation on system (4).
Let κ be a positive scalar whose value is to be determined
later and T = [Tij ], where, for i ∈ I[1, N ], Tij = 0N×N ,
j ∈ I[1, i], and Tij = Cn−jn−i (κM)n−j , j ∈ I[i + 1, n] with
Cqp = p!

q!(p−q)! . The non-singularity of T follows from the
non-singularity ofM, which is implied by Lemma 2.1. On
the new state x̄ = T x̃, system (4) takes the following form

˙̄x =
(
Ā⊗M

)
x̄+

(
B̄ ⊗ IN

)
u, (5)

where x̄ = [x̄T
1 x̄

T
2 · · · x̄T

n]T with x̄l = [x̄1l x̄2l · · · x̄Nl]T,
l ∈ I[1, n], and

Ā =


0 κ κ · · · κ
0 0 κ · · · κ
...

...
...

. . .
...

0 0 0 · · · κ
0 0 0 · · · 0


n×n

, B̄ =


1
1
...
1
1


n×1

.

With the consideration of intermittent communication, we
construct a bounded consensus algorithm for each agent i,
i ∈ I[1, N ], as follows,

ui(t)=−
n∑
l=1

σl

(
κ

(N∑
j=1

aij(t)(̄xil(t)−x̄jl(t))+ai0(t)x̄il(t)

))
,(6)

where aij(t), i ∈ I[1, N ], j ∈ I[0, N ], are as defined in
Section 3 and σl : R → R is a saturation function defined
as σl(s) = sign(s) min {|s|,∆l}. It is noted that the control

input of agent i, i ∈ I[1, N ], is bounded by |ui| ≤
∑n
l=1 ∆l,

where ∆l, l ∈ I[1, n], satisfy the following conditions,
√

λ(Ψ)

2λ(Ψ)
∆l ≥ 2λ(Ψ)

λ(Λ) ‖M‖
l−1∑
j=0

∆j , l ∈ I[1, n],

n∑
l=1

∆l ≤ umax,

(7)

for some positive scalar ∆0.

Remark 4.1 There exist ∆l, l ∈ I[0, n], that satisfy (7).
Let ∆ be a positive scalar satisfying ∆ ∈ (0, umax) and
ρ∗ ∈ (0, 1) be a positive scalar satisfying ρ∗ ≤ min (1−

∆
umax

,

√
λ(Ψ)λ(Λ)√

λ(Ψ)λ(Λ)+2
√

2λ
3
(Ψ)‖M‖

)
. Choose ∆l = ρn−l∆,

l ∈ I[0, n]. Then (7) will be satisfied for any ρ ∈ (0, ρ∗).

Let P1 > 0 be such that(
(Ā− κB̄B̄T)⊗M

)T
P1+P1

(
(Ā− κB̄B̄T)⊗M

)
=−I, (8)

and P2 > 0 be such that(
Ā⊗M

)T
P2 + P2

(
Ā⊗M

)
− γ2P2 = −γ2I, (9)

where γ2 = µκ with µ> 0, whose values is independent of
κ and to be determined. In (8), (9), and later in the paper,
I is an identity matrix of compatible dimensions. We first
present the following lemmas.

Lemma 4.1 There exist positive matrices P1 > 0 satisfying
(8) and P2 > 0 satisfying (9). Also, P1 = 1

κ P̄1 and P2 = P̄2,
where P̄1 > 0, independent of κ, is the solution to(

(Â−B̄B̄T)⊗M
)T

P̄1+P̄1

(
(Â−B̄B̄T)⊗M

)
=−I, (10)

and P̄2 > 0, independent of κ, is the solution to(
Â⊗M

)
P̄2 + P̄2

(
Â⊗M

)
− µP̄2 = −µI, (11)

with Â = 1
κ Ā.

Proof: Since

(Ā− κB̄B̄T)⊗M =


−κM 0 · · · 0
−κM −κM · · · 0

...
...

. . .
...

−κM −κM · · · −κM


and all the eigenvalues of M have positive real part, the
matrix ((Ā − κB̄B̄T) ⊗ M) is Hurwitz and therefore P1

exists.
Equation (9) can be written as(
Ā⊗M− γ2

2
I
)T

P2 + P2

(
Ā⊗M− γ2

2
I
)

= −γ2I.

Since

Ā⊗M− γ2

2
I =


−γ22 I κM · · · κM

0 −γ22 I · · · κM
...

...
. . .

...
0 0 · · · −γ22 I

 ,
the matrix (Ā⊗M− γ2

2 I) is Hurwitz and therefore P2 exists.
Since Â = 1

κ Ā, Â − B̄B̄T = 1
κ (Ā − κB̄B̄T). Equation

(10) can be written as(
(Ā− κB̄B̄T)⊗M

)T 1

κ
P̄1+

1

κ
P̄1

(
(Ā−κB̄B̄T)⊗M

)
=−I,

By (8), we get P1 = 1
κ P̄1. Equation (11) can be written as(

Ā⊗M
)T
P̄2 + P̄2

(
Ā⊗M

)
− γ2P̄2 = −γ2I.



By (9), we get P2 = P̄2. �

Lemma 4.2 There exists a sufficiently large κ∗ such that, for
any κ ≥ κ∗, αl − 2 ln ρ > δ, l = 0, 1, 2, · · · , where δ is a
sufficiently small positive scalar, ρ = max

{
λ(P2)
λ(P1) ,

λ(P1)
λ(P2)

}
,

and αl = τlγ1 − τ̄lγ2, l = 0, 1, 2, · · · , with γ1 = 1
λ(P1)

.

Proof: Let µ ∈ (0, ε0
2λ(P̄1)θ

]. By Lemma 4.1, we have

γ1 = κ
λ(P̄1)

and ρ = max
{
κλ(P̄2)
λ(P̄1)

, λ(P̄1)
κλ(P̄2)

}
. Let κ∗ ≥

κ∗1 =

√
λ(P̄1)λ(P̄1)

λ(P̄2)λ(P̄2)
. Then ρ = κλ(P̄2)

λ(P̄1)
. Since τ̄l ≤ θ and

τl≥ε0, l=0, 1, 2 · · · , for any positive scalars ε0 and θ,
αl − 2 ln ρ = τlγ1 − τ̄lγ2 − 2 ln ρ

≥
(

ε0
λ(P̄1)

−θµ
)
κ−2 lnκ−2 ln λ(P̄2)

λ(P̄1)
,

≥ 2
(

ε0κ

4λ(P̄1)
−lnκ−ln λ(P̄2)

λ(P̄1)

)
.

Since

lim
κ→∞

ε0κ

4λ(P̄1)

lnκ+ln λ(P̄2)
λ(P̄1)

= lim
κ→∞

ε0κ

4λ(P̄1)
= +∞,

there exists a sufficiently large κ∗ ≥ κ∗1 such that, for κ≥κ∗,
ε0κ

4λ(P̄1)
−lnκ−lnλ(P̄2)

λ(P̄1)
> δ

2 , i.e., αl−2 lnρ>δ, l=0, 1, 2,· · · . �
The following theorem establishes that global leader-

following consensus of the multi-agent system is achieved
under the consensus algorithms (6).

Theorem 4.1 Consider the group of follower agents (1) and
the leader agent (2). Let the communication topology, when
active, satisfies Assumption 3.1. There exists a sufficiently
large κ∗ such that, for any κ ≥ κ∗, global leader-following
consensus can be achieved by the consensus algorithms (6).

Proof: Let zil =
∑N
j=1 aij(x̄il − x̄jl) + ai0x̄il, l ∈

I[1, n], i ∈ I[1, N ], zl = [z1l z2l · · · zNl]T, l ∈ I[1, n],
and z = [zT

1 z
T
2 · · · zT

n]T. Then zl = Mx̄l, l ∈ I[1, n], and
z = (I ⊗M)x̄. From (5) and (6), we have

ż =
(
Ā⊗M

)
z +

(
B̄ ⊗M

)
u, (12)

or 
ż1 = M(κz2 + κz3 + · · ·+ κzn + u),

...
żn−1 = M(κzn + u),
żn = Mu,

with

u(t)=

 −
n∑
l=1

σl(κzl(t)), t ∈ [tk, tk + τk),

0, t ∈ [tk + τk, tk+1), k = 0, 1, 2, · · · .
(13)

Here, we abuse the notation by using σl, l ∈ I[1, n], to
denote both a scalar valued and a vector valued saturation
function.

We first consider the evolution ofzn,which is governed by

żn(t)=

{
−Mσn(κzn(t)) + wn(t), t ∈ [tk, tk + τk),
0, t ∈ [tk + τk, tk+1), k = 0, 1, 2, · · · , (14)

with wn(t) = −M
∑n−1
l=1 σl(κzl(t)). Choose a Lyapunov

function candidate
Vn(zn) = 2κzT

nΨσn(κzn)− σT
n(κzn)Ψσn(κzn),

where Ψ is as defined in Lemma 2.2. It is noted that
Vn(zn) ≥ κzT

nΨσn(κzn) > 0, zn 6= 0. Then Vn is

positive definite and radially unbounded with respect to zn.
Note that Vn(zn) is not differentiable everywhere. For each
i ∈ I[1, N ], let z0in ∈ {∆n

κ ,−
∆n

κ }. The directional
derivative of σn(κzin) at z0in along ż0in is given by

lim
t→0+

σ(κz0in + tκżin)− σn(κz0in)

t

=: ζin =

{
0, |κz0in + tκżin| > ∆n,
κżin, |κz0in + tκżin| ≤ ∆n.

Let dσ(κzin)
dt be the directional derivative of σ(κzin) at zin

along żin. Then, we have

dσ(κzin)

dt
=

 0, |κzin| > ∆n,
ζin, |κzin| = ∆n,
κżin, |κzin| < ∆n.

The derivative of Vn along the trajectory of zn can be
evaluated as follows,

V̇n(t) = 2κżT
n(t)Ψσ(κzn(t)) + 2κzT

n(t)Ψ
dσn(κzn(t))

dt

−2σT
n(κzn(t))Ψ

dσn(κzn(t))

dt
, (15)

where dσn(κzn(t))
dt =

[
dσ(κz1n)

dt
dσ(κz2n)

dt · · · dσ(κzNn)
dt

]T

.
For t ∈ [tk, tk+τk), k=0, 1, 2, · · · , (15) can be continued as
V̇n(t)=2κ(−Mσn(κzn(t)) + wn(t))TΨσ(κzn(t))

+2(κzn(t)− σn(κzn(t)))TΨ
dσn(κzn(t))

dt
=−κσT

n(κzn(t)) (MTΨ + ΨM)σn(κzn(t))

+2κσT
n(κzn(t))Ψwn(t)

+2

N∑
i=1

ψi(κzin(t)− σn(κzin(t)))
dσn(κzin)

dt

=−κσT
n(κzn(t))Λσn(κzn(t)) + 2κσT

n(zn(t))Ψwn(t)

+2
∑

|κzin(t)|≤∆n

ψi × 0× dσn(κzin)

dt

+2
∑

|κzin(t)|>∆n

ψi(κzin(t)− σn(κzin(t)))× 0

≤−κλ(Λ)‖σn(κzn(t))‖2+2κλ(Ψ)‖σn(κzn(t))‖‖wn(t)‖

=−κλ(Λ)‖σn(κzn(t))‖
(
‖σn(κzn(t))‖− 2λ(Ψ)

λ(Λ)
‖wn(t)‖

)
≤−κλ(Λ)‖σn(κzn(t))‖

×
(
‖σn(κzn(t))‖− 2λ(Ψ)‖M‖

λ(Λ)

n−1∑
j=1

∆j

)
. (16)

For t ∈ [tk + τk, tk+1), k = 0, 1, 2, · · · , (15) can be
continued as V̇n(t) = 0.

We next show that there exists an integer kn > 0 such that
‖κzn(t)‖∞ ≤ ∆n for t ∈ [tk, tk+1), k ≥ kn. Let cn =
λ(Ψ)∆2

n and LVn
(cn) = {Vn(zn) : Vn ≤ cn}. For any

zn /∈ LVn(cn), we have Vn > cn and hence 2κ2zT
nΨzn ≥

Vn > cn. Then, we have ‖κzn‖ >
√

cn
2λ(Ψ)

=
√

λ(Ψ)

2λ(Ψ)
∆n

and ‖σ(κzn)‖ >
√

λ(Ψ)

2λ(Ψ)
∆n. We claim that there exists a

finite integer kn > 0 and a time instant tn ∈ [tkn−1, tkn),
such that zn(tn) ∈ LVn

(cn). We will show this claim by
contradiction. Suppose that zn(t) /∈ LVn(cn) for all t ≥ tn.
For t ∈ [tk, tk + τk), k ≥ kn, (16) can be continued as



follows,

V̇ ≤−κλ(Λ)

√
λ(Ψ)

2λ(Ψ)
∆n

(√
λ(Ψ)

2λ(Ψ)
∆n−

2λ(Ψ)

λ(Λ)
‖M‖

n−1∑
j=1

∆j

)
,

which, by (7), can be continued as

V̇n ≤ −κ
√

2λ(Ψ)λ(Ψ)‖M‖∆n∆0 := −εn.
Then, we obtain that{
Vn(t) ≤−εn(t− tkn) + Vn(tkn), t ∈ [tkn , tkn + τkn),
Vn(t) =Vn(tkn + τkn), t ∈ [tkn + τkn , tkn+1).

By recursion, we have

Vn(tk) ≤ −εn
k−1∑
l=kn

τl + Vn(tkn), k > kn.

Since limk→+∞
∑k−1
l=kn

τl ≥ limk→+∞(k − kn)ε0 = +∞,
we have limk→+∞ Vn(tk) = −∞, which contradicts the
fact that Vn(t) ≥ 0 for any t ≥ 0. Thus, there exists a
finite integer kn > 0 and a time instant tn ∈ [tkn−1, tkn),
such that zn(tn) ∈ LVn(cn).

For t ≥ tn, V̇n(zn) ≤ 0 for any zn(t) on the boundary
of LVn

(cn). Thus, zn(t) will remain in LVn
(cn) for t ≥

tn. For any zn ∈ LVn
(cn), we have Vn ≤ cn and hence

κzT
nΨσn(κzn) ≤ Vn ≤ cn. That is,

∑N
i=1 κzinσn(κzin) ≤

cn
λ(Ψ) = ∆2

n, which indicates that |κzin| ≤ ∆n, i ∈ I[1, N ].
Thus, we have proven that there exists an integer kn such
that ‖κzn(t)‖∞ ≤ ∆n for t ∈ [tk, tk+1), k ≥ kn.

For k ≥ kn, the consensus algorithm (13) simplifies to

u(t)=

 −κzn(t)−
n−1∑
l=1

σl(κzl(t)), t ∈ [tk, tk + τk),

0, t ∈ [tk + τk, tk+1),

and zn−1 is governed by

żn−1(t)=

{
−Mσn−1(κzn−1(t))+wn−1(t), t∈ [tk, tk+τk),
0, t ∈ [tk + τk, tk+1),

withwn−1(t) = −M
∑n−2
l=1 σl(κzl(t)). Following a similar

analysis as that of the evolution of zn, we can recursively
show that, for l ∈ I[n − 1, 1], there exists an integer kl ≥
kl+1 such that ‖κzl(t)‖∞ ≤ ∆l for t ∈ [tk, tk+1), k ≥ kl.

Finally, for k ≥ k1, the consensus algorithm (13) simpli-
fies to

u(t)=

{
−(κB̄T ⊗ I)z(t), t ∈ [tk, tk + τk),
0, t ∈ [tk + τk, tk+1).

Consequently, system (12) can be written as

ż(t)=

{(
(Ā− κB̄B̄T)⊗M

)
z(t), t ∈ [tk, tk + τk),

(Ā⊗M)z(t), t ∈ [tk + τk, tk+1).
(17)

We next establish asymptotic stability of the closed-loop
system (17). Consider the following multiple Lyapunov
function candidate

V (t) =

{
zTP1z, t ∈ [tk, tk + τk),
zTP2z, t ∈ [tk + τk, tk+1),

where P1 > 0 is the solution of (8) and P2 > 0 is the
solution of (9). For t ∈ [tk, tk + τk), k ≥ k1, the derivative
of V along the trajectory of (17) can be evaluated as follows,

V̇ =z
((

(Ā− κB̄B̄)T⊗M
)T
P1+P1

(
(Ā− κB̄B̄T)⊗M

))
z

=−zTz ≤ −γ1V (t).

For t ∈ [tk + τk, tk+1), k ≥ k1, the derivative of V along
the trajectory of (17) can be evaluated as follows,

V̇ = zT
(
(Ā⊗M)TP2 + P2(Ā⊗M)

)
z ≤ γ2V (t).

Then, we obtain that, for k ≥ k1,

V (t) ≤
{

e−(t−tk)γ1V (tk), t ∈ [tk, tk + τk),
e(t−tk−τk)γ2V (tk + τk), t ∈ [tk + τk, tk+1).

Thus,
V (tk1+1) = zT(tk1+1)P1z(tk1+1)

≤ λ(P1)
λ(P2)z

T(tk1+1)P2z(tk1+1)

≤ λ(P1)
λ(P2)eτ̄k1

γ2V(tk1 + τk1)

≤ λ(P1)λ(P2)
λ(P2) eτ̄k1

γ2‖z(tk1 + τk1)‖2

≤ λ(P1)λ(P2)
λ(P1)λ(P2)eτ̄k1

γ2−τk1
γ1V (tk1)

≤ ρ2e−αk1V (tk1).

By recursion, for k ≥ k1, we obtain that

V (tk)≤ρ2(k−k1)e
−
k−1∑
l=k1

αl

V (tk1)=e
−
k−1∑
l=k1

(αl−2 ln ρ)

V (tk1).(18)
For t ∈ [tk, tk + τk), by (18),

V (t) ≤ e−(t−tk)γ1V (tk) ≤ e
−
k−1∑
l=k1

(αl−2 ln ρ)

V (tk1). (19)
For t ∈ [tk + τk, tk+1), by (18),

V (t)≤ e(t−tk−τk)γ2V (tk+τk)

≤ eτ̄kγ2λ(P2)‖z(tk+τk)‖2

≤ ρeτ̄kγ2zT(tk+τk)P1z(tk+τk)

≤ ρeτ̄kγ2−τkγ1V (tk)

≤ ρe
−αk−

k−1∑
l=k1

(αl−2 ln ρ)

V (tk1)

≤ e−(αk−ln ρ)e
−

k−1∑
l=k1

(αl−2 ln ρ)

V (tk1). (20)
Let κ∗ be defined as in Lemma 4.2. Then, αl − 2 ln ρ > δ.
Combining (19) and (20), we have,

V (t) ≤ e
−

k−1∑
l=k1

(αl−2 ln ρ)

V (tk1), t ∈ [tk, tk+1), k ≥ k1.

Thus,

0 ≤ lim
t→∞

V (t) ≤ lim
k→∞

e
− lim

k→∞

k−1∑
l=k1

(αl−2 ln ρ)

V (tk1) = 0.

Hence, limt→∞ z(t) = 0 and lim
t→∞

x̃(t) = limt→∞ T−1(I⊗
M−1)z(t) = 0, which indicates that global leader-following
consensus is achieved. �

5 Simulation Results
Consider a group of three follower agents, each of which

is described by (1) with n = 3 and umax = 50. The leader is
described by (2) with n = 3. The communication topology
among agents is shown in Fig. 2, where a10 = a21 = a32 =
1. The intermittent communication follows the pattern of
tk+1 = tk + 50s with τk = 40s, k = 0, 1, 2, · · · .

3v1v 2v0v

Fig. 2: The communication topology.

Let κ = 2.7 and µ = 0.3. We get γ2 = 0.81. Solving
equations (8) and (9), we obtain that λ(P1) = 1.189,
λ(P1) = 0.06, λ(P2) = 8818.5 and λ(P2) = 0.3. Then, we
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Fig. 3: Evolutions of x̂il, l, i ∈ I[1, 3], the difference
between xi and x0, for i ∈ I[1, 3].
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Fig. 4: Evolutions of the control inputs ui, i ∈ I[1, 3].

have γ1 = 0.841, ln(ρ) = 11.9 and αl − 2 ln ρ > 1. Choose
∆0 = 0.005,∆1 = 0.1,∆2 = 2 and ∆3 = 40, which satisfy
(7). Under the consensus algorithms (6), we simulate the
closed-loop system with x0 = [−1 2 0]T, x1 = [0 2 − 4]T,
x2 = [−1 0 3]T and x3 = [1 − 2 − 3]T. Shown in Fig. 3
are the evolutions of the differences between the state of the
follower agents and the state of the leader. It is clear that
these differences converge to 0 as time goes by, indicating
that global leader-following consensus is achieved. Shown
in Fig. 4 are the bounded control inputs of the follower
agents. The control inputs are 0 during the time periods of
40s to 50s, 90s to 100s, 140s to 150s, and 190s to 200s.

6 Conclusions
In this paper, we studied the global leader-following con-

sensus problem for a group of a chain of integrators with in-
termittent directed communication in the presence of actua-
tor saturation. A bounded control algorithm was constructed
for each follower agent that achieved global leader-following
consensus under a certain communication topology. This
consensus algorithm for each agent utilized information of
other agents obtained through the communication network
intermittently.
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