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Multi-agent systems

A number of different entities ("agents") equipped with homogeneous or 

heterogeneous dynamics

ሶ𝑥𝑖 = 𝑓𝑖(𝑥𝑖 , 𝑢𝑖), xi ∈ 𝑅𝑛𝑖 , 𝑖 = 1,⋯ ,𝑁
𝑦𝑖 = ℎ𝑖(𝑥𝑖 , 𝑥𝑗|𝑗 ∈ 𝑁𝑖)

Information exchange is limited to specific neighboring agents 

according to a "neighboring" graph

and usually only relative information

Is available

Some global emergence is the goal



Rigid body systems



Rigid motion

Attitude: 𝑅 = [𝑟1 𝑟2 𝑟3] ∈ 𝑆𝑂(3)

3D rotation group: 𝑆𝑂 3 = {𝑅 ∈ ℝ3×3: 𝑅𝑇𝑅 = 𝐼, det 𝑅 = 1 }

2-Sphere: 𝑆2 = {𝑥 ∈ ℝ3: 𝑥𝑇𝑥 = 1}

State Space
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Attitude control vs position control

𝑆𝑂 3 , 𝑆2, 𝑆1: compact (closed) manifold         not contractible 

Topological obstruction 

continuous time-invariant attitude feedback

multiple closed-loop equilibria

It is impossible to stabilize the attitude globally using 

continuous time-invariant feedback.



The one-dimensional case: 
Synchronization of orientation
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Leader-follower model

Role of “leaders”:

• have information about the 

desired state (destination)

• Improve accuracy of group motion

• For a given accuracy, the 

proportion of leaders needed is a 

nonlinear function of the total 

population

Proportion of informed 

individuals



Leader-follower model

The question is:

How many leaders are needed for the expected behavior?

To answer the above question, 

We focus on the intervention of the flocking model, and 

provide lower bounds for the ratio of leaders to followers.

Consider the problem of 

orientation synchronization for 

rigid body agents moving in 2D 



The dynamics of both leaders and followers obey the following 

unicycle model

ሶxi t = vi t cos θi(t)

ሶyi t = vi t sin θi(t)
ሶθi t = ωi(t)

ሶvi t = ui(t)

𝑖 = 1,… , 𝑛

where 𝜔𝑖(𝑡) and 𝑢𝑖(𝑡) are control inputs.

Compared with followers, the leaders have the information of the 

desired orientation and desired velocity 

The continuous time case



Sampled-data control design for leaders for 𝑡 ∈ [𝑡𝑘 ,𝑡𝑘+1)

𝜔𝑖 𝑡 =
1

𝜏𝑛
𝜇 𝜃𝑛 − 𝜃𝑖 𝑡𝑘 +

1 − 𝜇

𝑑𝑖(𝑡𝑘)
෍

𝑗∈𝑁𝑖(𝑡𝑘)
(𝜃𝑗 𝑡𝑘 − 𝜃𝑖(𝑡𝑘))

𝑢𝑖 𝑡 =
1

𝜏𝑛
𝜇 vn − 𝑣𝑖 𝑡𝑘 +

1 − 𝜇

𝑑𝑖(𝑡𝑘)
෍

𝑗∈𝑁𝑖(𝑡𝑘)
(𝑣𝑗 𝑡𝑘 − 𝑣𝑖(𝑡𝑘))

Sampled-data control law design for followers for 𝑡 ∈ [𝑡𝑘,𝑡𝑘+1)

ωi t =
1

τndi(tk)
෍

j∈Ni(tk)
(θj tk − θi(tk))

ui t =
1

τndi(tk)
෍

j∈Ni(tk)
(vj tk − vi(tk))

Ni t = j: Xi t − Xj t ≤ rn , Xi t =(𝑥i t , 𝑦i t )
T

Leader-follower synchronization of 

orientation



Leader-follower synchronization of 

orientation

Theorem: If the ratio of the number of leaders to the number of followers 

satisfies 

1) αn ≥
8vnτn(1+ഥθ0)(1+o(1))

𝜇ηrn
, provided that vnτn ≫

log n

nrn
;

2) αn≥
log n

nrn
2 provided that vnτn ≪

log n

nrn
or vnτn = Θ

log n

nrn
,

then all agents move with the desired speed vn and orientation 𝜃𝑛
asymptotically.

(𝟏 + 𝜼)𝒓𝒏

(𝟏 − 𝜼)𝒓𝒏
𝒓𝒏



Full attitude synchronization
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Rotational motion

Full Attitude Reduced Attitude

Notation 𝑅 ∈ 𝑆𝑂(3) Γ = 𝑅𝑏 ∈ 𝑆2

Kinematics ሶ𝑅 = ෝ𝜔𝑅 ሶΓ = ෝ𝜔Γ

ෝ𝜔 =

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0



Local representations of rotation

We consider a broad class of local representations for the rotations. 

These are on the forms

𝑦𝑖= 𝑓 𝑅𝑖
∨
= 𝑔 𝜃𝑖 𝑢𝑖 𝑎𝑛𝑑

𝑦𝑖𝑗= 𝑓 𝑅𝑖𝑗
∨
= 𝑔 𝜃𝑖𝑗 𝑢𝑖𝑗 𝑤ℎ𝑒𝑟𝑒

𝑓 ⋅ skew symmetric



Some examples

• Axis-Angle Representation, where ,

• Rodrigues Parameters, where

• Modified Rodrigues Parameters, where

• sin-representation, where 

• Unit quaternions (or rather parts of it).



Axis-Angle Representation

Rodrigues’ formula:

Then,

From this we can define

Axis-Angle representation



Kinematics in Axis-angle

where

Let us denote                  , then



Synchronizing Control

Now given N rigid-body agents and we want to synchronize their attitude:

or equivalently in axis-angle representation or any other representation

as 



Graph connectivity

The type of connectivity between the agents (or rather connectivity of 

the graph) plays an important role for convergence. We need two 

types of connectivity.

Strongly connected Quasi-strongly connected



Result 1

Feedback control law

Uniformly strongly connected

Up to almost globally attractive to the consensus manifold                                                



Result 2

Feedback control law

Uniformly quasi-strongly connected

Locally uniformly asymptotically stable to the consensus 

manifold



Intrinsic formation control for reduced attitude
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Rotational motion

Full Attitude Reduced Attitude

Notation 𝑅 ∈ 𝑆𝑂(3) Γ = 𝑅𝑏 ∈ 𝑆2

Kinematics ሶ𝑅 = ෝ𝜔𝑅 ሶΓ = ෝ𝜔Γ

ෝ𝜔 =

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

Motivation of studying reduced attitude

• Easy to visualize

• Pointing applications

b



Cooperative reduced attitude control

Consider the system

ሶΓ𝑖 = ෝ𝜔𝑖Γ𝑖 , 𝑖 = 1,2, … , 𝑛

Γ𝑖 ∈ 𝑆2 is the reduced attitude of agent 𝑖

• control at kinematic level

• information exchange 𝒢 = (𝒱, ℰ)

• available information: {෠Γ𝑖Γ𝑗: 𝑗 ∈ 𝒩𝑖}

Objective: make Γ1, Γ2, … , Γ𝑛 reach

consensus or

a desired formation on the sphere

Γ𝑖
Γ𝑗

θ𝑖𝑗

| ෠Γ𝑖Γ𝑗|=|sin θ𝑖𝑗|



Cooperative reduced attitude control

Consensus

A sufficient condition to reach consensus

• 𝒢 is strongly connected

• Γ1(0), Γ2(0), … , Γ𝑛(0) lie on the surface of an open hemisphere

Formation

𝜔𝑖 = ෍

𝑗∈𝒩𝑖

෠Γ𝑖Γ𝑗 , 𝑖 = 1,2, … , 𝑛

If the desired reference formation is not available to the 

agents, is it possible to achieve it with only relative 

attitude information?



Intrinsic reduced attitude formation

The geometry of 𝑆2
𝑛

makes the closed-loop system

have multiple disjoint equilibrium sets

• The consensus manifold is an intrinsic equilibrium set

• Other equilibrium sets vary according to the inter-agent 
graph 𝒢

Is it possible to achieve a desired formation by imposing 
some proper inter-agent graph to the system and then 
making that (intrinsic) formation asymptotically stable?

ሶΓ𝑖 = −෠Γ𝑖 ෍

𝑗∈𝒩𝑖

෠Γ𝑖 Γ𝑗 , 𝑖 = 1,2, … , 𝑛



Intrinsic reduced attitude formation

Reverse the sign of the consensus protocol

• Let Γ1
∗, Γ2

∗, … , Γ𝑛
∗ be an equilibrium

• Suppose 𝒢 is an undirected ring (cycle)

Γ1
∗, Γ2

∗, … , Γ𝑛
∗ must lie on a great circle

ሶΓ𝑖 = ෠Γ𝑖 ෍

𝑗∈𝒩𝑖

෠Γ𝑖 Γ𝑗 , 𝑖 = 1,2, … , 𝑛

undirected ring graph

Different formations are achieved depending 

on if 𝑛 is even or odd



Antipodal formation

𝑛 is even

• Asymptotically stable equilibria: 

the region of attraction is almost all 𝑆2
𝑛
.

• Same formation can also be achieved when 𝒢 is a directed ring

directed ring graphΓ1
∗ = −Γ2

∗ = ⋯ = Γ𝑛−1
∗ = −Γ𝑛

∗

Trajectories under undirected/directed ring inter-agent graph



Cyclic formation

𝑛 is odd

• Asymptotically stable equilibria:

the region of attraction is almost all 𝑆2
𝑛
.

• Rotating cyclic formation can be achieved when 𝒢 is a directed ring

t=0 (sec) t=40 (sec) t=45 (sec) t=50 (sec)

Γ𝑖
∗ = exp 𝜋 −

𝜋

𝑛
ො𝑢 𝑣 , 𝑢, 𝑣 ∈ 𝑆2, 𝑢𝑇𝑣 = 1



Regular tetrahedron formation

Expected formation: Regular tetrahedron

Let 𝒢 be complete. 

Equilibria by applying the former antipodal/cyclic control:

• It is a connected submanifold of (𝑆2)4 , so Ω𝑇 is not asymptotically 

stable.

Γ ∈ (𝑆2)4 ∶ ෍

𝑖=1

4

Γ𝑖 = 0

Ω𝑇 = {Γ ∈ (𝑆2)4 ∶ Γ𝑖
𝑇Γ𝑗 = −

1

3
, ∀𝑖 ≠ 𝑗}



Redesign the control as:

where 𝑓: [0, 𝜋] → ℝ and 𝜃𝑖𝑗 = arccos(Γ𝑖
𝑇Γ𝑗).

Theorem：

Under the control (*) , the regular tetrahedron formation 

manifold Ω𝑇 is almost globally asymptotically stable if 𝑓 ∙
satisfying

Regular tetrahedron formation

𝜔𝑖 = − ෍

𝑗∈𝒩𝑖

𝑓(𝜃𝑖𝑗)෠Γ𝑖Γ𝑗 , 𝑖 ∈ {1,2,3,4}

𝑓(∙)>0 ,  ሶ𝑓(∙) <0  on [0, 𝜋] .

(*)



Idea of proof:

(a) With the proposed control, the equilibria set of the closed-loop 

system is

where  Ω𝑇 = {Γ ∈ (𝑆2)4 ∶ Γ𝑖
𝑇Γ𝑗 = −

1

3
, ∀𝑖 ≠ 𝑗}

Ω𝐿 = {Γ ∈ (𝑆2)4 ∶ ෠Γ𝑖Γ𝑗 = 0, ∀𝑖 ≠ 𝑗}

(b) When 𝑡 → ∞, the trajectory converges to an equilibrium. 

Meanwhile any x ∈ Ω𝐿 is anti-stable.

(c) Ω𝑇 is locally asymptotically stable.  

Regular tetrahedron formation

Ω = Ω𝑇 ∪ Ω𝐿,

Regular tetrahedron 

Mutually parallel



Regular tetrahedron formation

To prove Ω𝑇 is locally asymptotically stable

•We first do some coordinate change and then we can show that, ∀𝑥0 ∈ Ω𝑇, 

the spectrum of linearization 𝐴𝜂
𝑥0 satisfies 

• With a further coordinate change, we can show that the center 

manifold of the original system is exactly  Ω𝑇.

𝜆𝑖 ∈ 𝐶− 𝑖 = 1,2,⋯ , 5

𝜆𝑖 ∈ 𝐶0 𝑖 = 6,7,8
Exist a 3-D center 

manifold

Thus: Ω𝑇 is locally asymptotically stable.

Regular tetrahedron is almost globally  a. s. !



Regular tetrahedron formation-simulation

Only relative information is available:

𝑓 𝜃 satisfies

Figure: Trajectories under complete inter-agent graph

𝑓 𝜃 >0   and ሶ𝑓 𝜃 <0  for ∀𝜃 ∈ [0, 𝜋] .

𝜔𝑖 = − ෍

𝑗∈𝒩𝑖

𝑓(𝜃𝑖,𝑗)෠Γ𝑖Γ𝑗, 𝑖 ∈ {1,2,3,4}

when 𝑓 𝜃 = e−𝜃 when 𝑓 𝜃 = cos 𝜃 + 1



Rotating tetrahedron formation

Inter-agent graph is set to be a weighed directed one:

3 coplanar edges are changed into directed edges.

Double the weight of these 3 edges.

Apply the control law:

where 𝑤 𝑖, 𝑗 is the weight of edge 𝑖, 𝑗 ∈ 𝐸, 𝑓 𝜃 >0 ,  

ሶ𝑓 𝜃 <0  for ∀𝜃 ∈ [0, 𝜋] .

• A rotating tetrahedron formation can be obtained: center 

manifold is the same, but the dynamics on the center 

manifold has changed!

1

2 3

4

0.5

1 1

10.5

0.5

graph

𝜔𝑖 = − ෍

𝑗∈𝒩𝑖

𝑓(𝜃𝑖,𝑗) ∙ 𝑤(𝑖, 𝑗) ∙ ෠Γ𝑖 Γ𝑗 , 𝑖 ∈ {1,2,3,4}



Rotating tetrahedron formation-simulation

𝑓 𝜃 still satisfies

We take 𝑓 𝜃 = e−𝜃.

Figure: Trajectories of rotating regular tetrahedron formation

𝑓 𝜃 >0   and ሶ𝑓 𝜃 <0  for ∀𝜃 ∈ [0, 𝜋] .

t=0 (sec) t=20 (sec) t=40 (sec)



Platonic solids formation

The Platonic solids are convex polyhedra with equivalent faces 

composed of congruent convex regular polygons

Schläfli symbol gives a combinatorial description of the polyhedron

Five regular polyhedra

{3,3}

Tetrahedron

{3,4}

Octahedron

{3,5}

Icosahedron

{4,3}

Cube

{5,3}

Dodecahedron



Platonic solids formation

The Platonic solids are everywhere: crystals, gems, microscopic 

organisms

Geodesic grids in climatology, geometry of space frames, platonic 

hydrocarbons, satellites, dice

Five regular polyhedra

{3,3}

Tetrahedron

{3,4}

Octahedron

{3,5}

Icosahedron

{4,3}

Cube

{5,3}

Dodecahedron



Platonic solids formation

Three solids with triangular faces can be formed directly by the 

previous control protocol, when the inter-agent graph is complete.

Under a particular graph, the other two can also be formed.

Five regular polyhedra

{3,3}

Tetrahedron

{3,4}

Octahedron

{3,5}

Icosahedron

{4,3}

Cube

{5,3}

Dodecahedron

𝜔𝑖 = − ෍

𝑗∈𝒩𝑖

𝑓(𝜃𝑖𝑗)෠Γ𝑖Γ𝑗 , 𝑖 ∈ 𝒱



Formation description of five regular 
polyhedra

Polyhedral groups define the rotational 

symmetries of regular polyhedra.

Due to rotational symmetries, vertex sets of five 

platonic solids satisfy

Ω 𝑝,𝑞 = 𝜞 ∈ ℝ3×𝑁0: 𝐼𝑁0 ⊗ 𝑅𝑖 − 𝑃𝑖 ⊗ 𝐼3 𝜞 = 0, 𝑖 = 1,2,⋯ , 𝒪 𝑝,𝑞 ,

where 𝜞 = 𝛤1
𝑇 , 𝛤2

𝑇 , ⋯ , 𝛤𝑁0
𝑇 𝑇

, 𝑁0 =
4p

4−(p −2)(q −2) is the number 

of vertices, 𝑃𝑖and 𝑅𝑖 are permutation and rotation matrices 

corresponding to rotational symmetry 𝑖 of solid 𝑝, 𝑞 .



Graph design

• Definition (graph automorphism): For a graph 𝒢 = (𝒱, ℰ), we say a 

permutation specified by mapping σ : V → V is a graph automorphism, 

when 𝜎 𝑖 , 𝜎 𝑗 ∈ ℰ if and only if 𝑖, 𝑗 ∈ ℰ .

Assumption (graph symmetry)：

The inter-agent graph 𝒢{𝑝,𝑞} is connected and each 

permutation corresponding to rotational symmetry of solid 

{𝑝, 𝑞} is an automorphism of this graph.

Since five Platonic solids possess the most symmetries in all polyhedra, 

intuitively, some symmetries should be also inherited by the designed 

graph.



Velocity control 

where the gain function 𝑓 𝜃𝑖𝑗 = 𝑒2𝑐𝑜𝑠 𝜃𝑖𝑗 .

• With the above control, we can verify that the closed-loop system ሶΓ = F(Γ) is 

Symmetric under the transformation 𝐼𝑁0 ⊗ 𝑅𝑖 and 𝑃𝑖 ⊗ 𝐼3 , i.e.

𝑭 𝐼𝑁0 ⊗ 𝑅𝑖𝚪 = 𝐼𝑁0 ⊗ 𝑅𝑖𝑭 𝚪 ,

𝑭 𝑃𝑖 ⊗ 𝐼3𝚪 = 𝑃𝑖 ⊗ 𝐼3𝑭 𝚪 .

Graph design

𝜔𝑖 = − ෍

𝑗∈𝒩𝑖

𝑓(𝜃𝑖𝑗)෠Γ𝑖Γ𝑗 , 𝑖 ∈ 𝒱

Theorem: Under the graph symmetry assumption, the regular polyhedra

formation Ω 𝑝,𝑞 is positively invariant in closed-loop system.

Ω 𝑝,𝑞

= ൛𝜞 ∈ ℝ3×𝑁0 : ∃𝑚 ≠ 𝑛 ∈ 𝑉, 𝑠. 𝑡. ෠Γ𝑚Γ𝑛



Graph design

• It is obvious that the complete graph and Platonic graph with 𝑁0

vertices satisfy graph symmetry Assumption. 

• We can also compute all other possible graphs fulfilling such graph 

symmetries by the following remark.

Remark: Let 𝐴 be the adjacency matrix of 𝒢, then a permutation σ 

with permutation matrix 𝑃𝜎 is an automorphism of G, if and only if 

𝐴𝑃𝜎 = 𝑃𝜎𝐴.



Formation

{𝒑, 𝒒}
Number of 

Vertices 𝐍𝟎

Number of 

Possible Graphs
Possible Graphs

{𝟑, 𝟑} 4 1 𝒢4
𝐶

{𝟑, 𝟒} 6 2 𝒢6
𝐶, 𝒢6

𝑃

{𝟒, 𝟑} 8 5 𝒢8
𝐶, 𝒢8

𝑃,                   ,                ,                  

{𝟑, 𝟓} 12 4 𝒢12
𝐶 , 𝒢12

𝑃 ,                 ,                   

{𝟓, 𝟑} 20 33 𝒢20
𝐶 , 𝒢20

𝑃 ,                 ,                   , ……

Graph design

• All possible graphs fulfilling graph symmetry Assumption:

Where 𝒢𝑖
𝐶 is the complete graph with 𝑖 vertices, and 𝒢𝑖

𝑃 is the Platonic graph with 𝑖 vertices.



Stability of 3,3 , 3,4 , 3,5

Theorem: Suppose the inter-agent graph 𝒢 is complete, the 

invariant set Ω{3,3}, 𝛺{3,4}, 𝛺{3,5} are asymptotically stable in the 

respective closed-loop system.

Figure: Trajectories of regular polyhedra formation.

3,3 3,4 3,5



Stability of 4,3 , 5,3

• Polyhedron compound is the composition of several identical 

polyhedra sharing a same center.

• We use the fact that 

 cube is the compound of 2 tetrahedra.

 dodecahedron is the compound of 5 tetrahedra.

4,3 5,3

Figure: inter-agent graph for formation {4,3} and {5,3}

0



Theorem: Under the specific inter-agent graphs 𝒢, the 

invariant set Ω{4,3} and 𝛺{5,3} are asymptotically stable in 

the respective closed-loop system.




