
Efficient safe corridor navigation with jerk limited trajectory
for quadrotors

Shupeng Lai1, Menglu Lan2, Ben M. Chen1

1. Department of Electrical Computer Engineering, National University of Singapore (NUS).
E-mail: elelais@nus.edu.sg

2. Graduate School for Integrative Science and Engineering, NUS.

Abstract: Quadrotors commonly operate in low attitude and obstacle-strewn environment. To guarantee its safety, it has to
be operated inside the certain safe area. This paper presents an efficient technique to generated jerk limited trajectory that
leads a quadrotor to travel inside such safe area. By limiting the trajectory’s velocity, acceleration, and jerk, it is made feasible
regarding the vehicle’s physical limits. The underlying trajectory generation algorithm is extremely efficient and takes only
several microseconds to produce the results. Finally, the algorithm is tested with real flight experiments.

Key Words: Quadrotor, Trajectory generation

1 Introduction

Safe trajectory generation for quadrotors has been inten-
sively researched in recent years. Because the quadrotors are
fragile vehicles that are easily damaged in the collision but
often forced to operate in the obstacle-strewn environment
due to the nature of its missions. Reaction based methods,
such as the potential field [1] and velocity obstacles [2] has
been successfully implemented on quadrotors. These meth-
ods directly control the inputs of the vehicle but cannot han-
dle input and state constraints. It results in a mismatch be-
tween the actual and the predicted behavior of the vehicle
and could cause troubles when the flying speed is high, or
the obstacles are dense. To address the issue, [3] proposed
a trajectory generation and tracking approach. It is further
extended in [4] for online obstacle avoidance. In these ap-
proaches, a nominal plan is first generated by a global ge-
ometrical planner. Then a safe corridor consists of cubes,
or other polyhedrons is grown based on the nominal plan.
Finally, a smooth trajectory is generated within the corri-
dor which considers all necessary dynamics and state con-
straints of the vehicle. Accurate tracking of such trajectory
can be expected with a cascaded controller [5]. To gener-
ate such a smooth trajectory, a common approach is to for-
mulate a quadratic programming problem using polynomial
splines [3, 6]. However, the safe corridor, the dynamic and
state constraints could introduce a large number of inequal-
ity constraints which prolong the solving of the QP. The is
undesired in an unknown and dynamic environment where
the current trajectory can be rendered as invalid during exe-
cution, and fast replan is needed.

On the other hand, the jerk limited trajectory [7], initially
designed for robotic arms have been proven well suited for
quadrotors [8] as it could satisfy the maximum thrust and
body rate limits. In [9] and [10], realtime algorithms have
been designed for online obstacle avoidance. However, they
adopt an ad-hoc method for choosing the collision-free tra-
jectory through repeatedly test sampled trajectory until the
collision-free one is found.

In this paper, we present a method that combines the
safe fly corridor with the jerk limited trajectory to allow the
quadrotor to fly in obstacle dense environment. The underly-

ing jerk limited trajectory generation algorithm is exception-
ally efficient that solves a trajectory in several microseconds.
And the trajectory examination algorithm checks for the col-
lision with corridor walls over continuous time-intervals in-
stead of sampled time-points.

The rest of the paper is organized as follows. Section 2
introduces the quadrotor model while Section 3 discusses
the generation of jerk limited trajectory on a single axis. In
Section 4, we introduce the safe corridor navigation method
which utilizes the jerk limited trajectory. Real flight exper-
iment has been done in Section 5. Finally, in Section 6, a
conclusion is made on the presented approach.

2 Quadrotor Dynamic Model

A quadrotor model is usually expressed in a body frame
for its rotational movement B and a global frame G for its
translational movement as shown in Figure 1. Here, the

Fig. 1: The coordinate systems

[xB,yB, zB] and [xG,yG, zG] are the axes of the corre-
sponding frame. The quadrotor model can now be expressed
as: ẍÿ

z̈

 = RG
B

0
0
a

 +

 0
0
−g

 (1)

ṘG
B = RG

B

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2)

where x, y, z denotes the vehicle’s position, g is the grav-
ity and RG

B is the rotational matrix between body and global

frame. The inputs include a, ωx, ωy, ωz where a is the col-
lective acceleration and ωx, ωy, ωz are the rotational rates
about the body axes.

3 Jerk Limited Trajectory

In this section, we present a jerk limited trajectory gener-
ation algorithm along a single axis.

3.1 Velocity setpoint
First, we consider the velocity setpoint problem which re-

quires to bring a third order integrator system with an arbi-
trary initial state to an arbitrary end velocity with the limited
jerk and acceleration. It can be expressed as

min tend

s.t. v(0) = v0, v(tend) = vref

a(0) = a0, a(tend) = 0

v̇(t) = a(t)

ȧ(t) = j(t)

− amax 6 a(t) 6 amax, ∀t ∈ [0, tend]

− jmax 6 j(t) 6 jmax, ∀t ∈ [0, tend]

(3)

where v, a, j denotes the velocity, acceleration and jerk on
any specific axis and the subscription max denotes the max-
imum value, subscription 0 and ref denotes the initial and
end conditions, and tend is the total time of the trajectory.
A closed-form solution to the problem has been given in
[11]. And it is expressed in Algorithm 1. The underlying

Algorithm 1 Velocity target solver
1: Input: v0, a0 ,amax ,jmax, vref
2: Output: P

3: vend = v0 +
a0 |a0|
2jmax

4: da = sign(vref − vend)
5: acruise = da · amax

6: ∆t1 ← abs(acruise − a0)/jmax

7: jacc ← jmax · sign(acruise − a0)
8: v1 ← v0 + a0 ·∆t1 + 0.5 · jacc ·∆t21
9: ∆t3 ← abs(−acruise)/jmax

10: jdec ← jmax · sign(−acruise)
11: v̄3 ← acruise ·∆t3 + 0.5 · jdec ·∆t23
12: v̄2 ← vref − v1 − v̄3
13: if da = 0 then
14: ∆t2 ← 0
15: else
16: ∆t2 ← v̄2/acruise

17: if ∆t2 < 0 then
18: acruise ← da ·

√
da · jmax · (vref − v0) + 0.5 · a20

19: ∆t1 ← abs(acruise − v0)/jmax

20: ∆t2 ← 0
21: ∆t3 ← abs(−acruise)/jmax

22: P.t1 ← ∆t1
23: P.t2 ← ∆t1 + ∆t2
24: P.t3 ← ∆t1 + ∆t2 + ∆t3
25: P.j1 = j1
26: P.j2 = 0
27: P.j3 = j3

idea is that to solve the problem in Equation 3, the jerk can
only be ±jmax or zero. First, we try instantly bring the ac-
celeration to zero, check whether the resulted vend is larger
or smaller than the desired velocity vref and determine the
cruise direction of the acceleration profile (line 3 – 4). Then

we try to bring the acceleration to its maximum magnitude
da · amax and immediately down to zero and check whether
the resulted velocity overshoots or undershoots the vref (line
5 – 12). If it overshoots, then the resulted acceleration pro-
file will be wedge-shaped; otherwise, it will be trapezoidal-
shaped. For each shape, a set of equations can be solved for a
closed-form solution. For convenience, we use the function

P = velT(v0, a0, amax, jmax, vref)

to denote the Algorithm 1. The acquired P now contains in-
formation on the jerk inputs P.j1,P.j2,P.j3 and their cor-
responding time duration P.t1,P.t2 − P.t1,P.t3 − P.t2.
Let p denotes the position, combining the initial conditions
p0, v0, a0, it is straight forward to design a function

(ps, vs, as) = StateExam(v0, a0, p0,P, ts)

to calculate the state of the trajectory (ps, vs, as) at a specific
time-point ts.

3.2 Position setpoint
Now, we extend the solution in Section 3.1 to a position

setpoint problem. The problem has been studied in [11]
and [12]. However, the method in [11] has numerical is-
sues while the software in [12] is not open-source available.
In this paper, we present an implementation that achieves
similar performance on a single axis problem to [12] with
detailed pseudo code. Our method runs a binary search for
a switching time that separate two different phases. And it
is shown efficient and stable for the case of quadrotors. The
detail has been given in Algorithm 2. To solve the problem,

Algorithm 2 Position target solver
1: Input: p0, v0, a0, vmax, amax, jmax, pref
2: Output: Pa,Pb, tpb, vcruise, tcruise
3: P = velT(v0, a0, amax, jmax, 0)
4: (psp, vsp, asp) = StateExam(v0, a0, p0,P,P.t3)
5: dp = sign(pref − psp)
6: vcruise = dp · vmax

7: Pa = velT(v0, a0, amax, jmax, vcruise)
8: (pf , v, a) = StateExam(v0, a0, p0,Pa,Pa.t3)
9: Pb = velT(vcruise, 0, amax, jmax, 0)

10: (pfb, v, a) = StateExam(vcruise, 0, pf ,Pb,Pb.t3)
11: tcruise = 0
12: if sign(pfb − pref) · dp ≤ 0 then

13: tcruise =
|pref − pfb|
vcruise

14: tpb = Pa.t3
15: else
16: tcruise = 0
17: tH = Pa.t3
18: tL = 0
19: for counter = 1 : N do
20: tpb = (tH + tL)/2
21: (ppb, vpb, apb) = StateExam(v0, a0, p0,Pa, tpb)
22: Pb = velT(vpb, apb, amax, jmax, 0)
23: (pfb, v, a) = StateExam(vpb, apb, ppb,Pb,Pb.t3)
24: if sign(pfb − pref) · dp < 0 then
25: tL = tpb
26: else
27: tH = tpb

28: if |pfb − pref | < ε then
29: break

we first simulate an immediate brake from the current state
to determine the cruise velocity direction. The braking tra-
jectory can be solved using Algorithm 1 with vref = 0. The

resulted stopping point pstop is used to determine the cruise
velocity by comparing with the desired target pref (line 3–6).
Then we try to steer the system to reach the cruise velocity
vcruise and immediately slowing down to zero speed (line 7–
10). The resulting stop point might over or under shoot the
pref , if it undershoots the desired position, then the cruise
time is guaranteed to be positive and can be computed in line
13. On the other hand, if it overshoots the desired position, it
means the cruise velocity cannot be reached, the system has
to slow down to zero speed before reaching vcruise. In other
words, we first track the trajectory defined by p0, v0, a0,Pa

for tpb seconds then we start to slow the system to zero ve-
locity. To find the correct tpb, a bisection searching algo-
rithm is adopted (line 16–29). The time-interval we would
like to search is [0,Pa.t3] as we know if tpb = 0 leads to an
undershoot and tpb = Pa.t3 leads to an overshoot, then the
correct answer must lie between. The searching process is
terminated until the final stopping position is close enough
to pref . Using the outputs from Algorithm 2 the resulted tra-
jectory can be reconstructed as follows

1) When 0 ≤ t < tpb, the trajectory is described by

StateExam(v0, a0, p0,Pa, t).

2) When tpb ≤ t < tcruise + tpb, the trajectory is at a
constant velocity stage and its position is p = ppb +
vcruise(t− tpb), with

(ppb, vpb, apb) = StateExam(v0, a0, p0,Pa, tpb).

The trajectory’s velocity equals vcruise, and its acceler-
ation and jerk are all zero.

3) When tcruise + tpb ≤ t, the expression of the trajectory
has two different formulations depends on the value of
tcruise. If tcruise > 0, it is expressed as

StateExam(vcruise, 0, p1b,Pb, t− (tcruise + tpb))

p1b = ppb + vcruise · tcruise
On the other hand, if there is no cruising phase thus
tcruise = 0, it is expressed as

StateExam(vpb, apb, ppb,Pb, t− (tcruise + tpb))

A comparison between our method and the Reflexxes li-
brary from [12] is made. For a single axis problem, there
is vmax = 10, amax = 1.5 and jmax = 1. The target point
is always pref = 0 while the initial states are chosen from
p0 ∈ [−20, 20], v0 ∈ [−20, 20], a0 ∈ [−10, 10] with a 0.05
increment. 256 million trajectories are generated using both
methods using a computer with the Intel I5-4670 CPU run-
ning at 3.4 GHz. The resulting file size and the average solv-
ing time are given in Table 1. Though slightly slower than
the Reflexxes library, the proposed approach reduces the file
size and makes it easier to be used on hardware with tight
memory space such as the PixHawk [13].
4 Safe Corridor Navigation

In this section, we demonstrate how to use the trajectory
generation method in Algorithm 2 to guide the vehicle flying
inside a safe corridor. We first introduce the definition of the
safe corridor and followed by the discussion on trajectory’s
feasibility condition within the corridor. Then, we introduce
a technique to allow the vehicle to travel through the corridor
smoothly.

Table 1: Comparison between reflexxes and our method
Reflexxes Our method

Average solving time 2.2 µs 2.4 µs
Size of library file 5072 kB 931 kB
Size of exe file 281 kB 19 kB

4.1 Safe corridor
In this paper, the safe corridor is defined around a nominal

plan consists of line-segments. This type of nominal plan
are widely available for missions involving obstacle and is
usually generated by geometrical shortest path finding algo-
rithms.

P1

P2 P3

P4

P2

P3

xc2

yc2

zc2

w2
x+

w2
x-

w2
y+

w2
y-

w2
z+

w2
z-

zG

xG

yG

Fig. 2: Nominal plan and flight corridors

As shown in Fig.2, the ith line segment is defined by
two points Pi and Pi+1. A corridor frame Ci for the ith
line segment, is defined by having its origin at Pi, its x-
axis xCi aligning

−−−−→
PiPi+1 and its y-axis yCi parallel to the

xG−yG plane. For each line-segment, we define an oriented
bounding box (OBB). The OBB on the ith line-segment
is denoted as OBBi and is defined with 6 positive scalars
wi

x+, w
i
x−, w

i
y+, w

i
y−, w

i
z+, w

i
z− which denotes the width in

different directions (the green boxes in Figure 2). It is re-
quired for wi

x+ > ‖Pi+1 − Pi‖ so that the adjacent OBBs
are interconnected. We then call the collection of all OBBs
as the safe corridor. For convenience, we also assign the
frame information to each OBB as:

OBBi.frame = Ci

For the vehicle to travel along the ith line-segment. The
trajectory is generated in the frame Ci whereas the co-
ordinate of the endpoint of the ith line-segment Pi+1 is
[‖Pi+1 − Pi‖ , 0, 0]. The Algorithm 2 is then executed three
times along the axes xCi,yCi, zCi towards the correspond-
ing targets ‖Pi+1 − Pi‖ , 0, 0. During the process, we need
to choose the velocity, acceleration and jerk limits on each
individual axis vmaxn, amaxn, jmaxn, n ∈ {xCi,yCi, zCi}
so that the trajectory satisfy certain feasibility conditions.

4.2 Feasibility condition
The trajectory shall satisfy constraints such as the vehi-

cle’s physical limits, safety regulations and sensor specifica-
tions. In this paper, we adopt the method in [8] to decouple
these limits into constraints on the trajectory’s velocity, ac-
celeration and jerk independently. Particularly, we requires
these derivatives to satisfy a cylindrical constraint volume
(CV). Taking the velocity as an example, it must satisfy√

ẋ2 + ẏ2 ≤ vhmax

vvmin ≤ ż ≤ vvmax

(4)

and the corresponding CV is shown as the grey cylinder in
Figure 3. Similar constraints are also applied on the acceler-
ation and the jerk. These cylindrical CVs reflect the differ-
ent dynamics between the vertical and horizontal axes of the
quadrotor and is intuitive and adjustable to human operators.
By properly selecting the height and radius of the cylinders,
it can be made to satisfy the vehicle’s physical limits [8] and
the safety requirements [14].

_x
_y

_z

zCi

yCi

vhmax
vvmin

xCi

vvmax

velocity CVQv;i

Fig. 3: Constraints on velocity

As discussed in Section 4.1, the task now is to choose the
proper value of vmaxn, amaxn, jmaxn, n ∈ {xCi,yCi, zCi}
such that these cylindrical constraints are not violated. We
again use the velocity constraint as an example. It is noticed
the axes-decoupled limits vmaxn, n ∈ {xCi,yCi, zCi} spans
a cuboid in Ci, denoted as Qv,i (Figure 3). For convenience,
it is given the associated frame

Qv,i.frame = Ci

Since the velocity is translational invariant, we can shift the
cylindrical CV of the velocity to the origin of Ci. Then, a suf-
ficient condition for the trajectory to satisfy the velocity re-
lated feasibility conditions is that the Qv,i is fully contained
inside the cylindrical CV of the velocity. It is achieved by
tuning the width, length and height (aka. the value of vmaxn,
n ∈ {xCi,yCi, zCi}) of the cuboid. Similarly, we denote
the cuboid spanned by amaxn, jmaxn, n ∈ {xCi,yCi, zCi}
as Qa,i and Qj,i with the associated frame

Qa,i.frame = Ci
Qj,i.frame = Ci

Since the acceleration and the jerk are also translational in-
variant, the same sufficient condition can then be applied to
them as well.

4.3 Smooth navigation
Assume there are M line segments, the task of the safe

corridor navigation is then to guide the vehicle to fly from
P1 to PM+1 without leaving the safe corridor. A trivial so-
lution is to move along each line-segment and stop at ev-
ery point P1, P2, . . . , PM+1. The resulting flight path would
match the nominal plan exactly thus staying inside the corri-
dor. However, this strategy takes more time and energy due
to the frequent stops. In this paper, we then extend this trivial
solution so that the unnecessary stops can be removed.

For convenience, we name the trajectory generated in the
frame Ci with the target point Pi+1 as Ti, and use Ṫi, T̈i,

...
T i

to denotes its velocity, acceleration and jerk. Finally, the su-
perscripts xC,yC, zC represents the trajectory’s single axis
component on the corresponding axis of Ci. For example,

ṪxC
i means the single axis component of the velocity profile

of the trajectory Ti on the xCi axis.
The basic idea of smooth navigation can be summarized

as: while the vehicle is tracking trajectory Ti, it constantly
generates the trajectory Ti+1 from its current state. If the tra-
jectory Ti+1 satisfy the feasibility condition and also stays
inside the safe corridor, the vehicle then switches to track
Ti+1. In this way, the vehicle could efficiently navigate
through the corridor without stopping. On the other hand,
if the checking fails, the vehicle continues to track Ti. The
worst case of the proposed strategy would behave the same
as the trivial solution because each trajectory Ti would come
to a full stop at its endpoint Pi+1. The process is described
by the Algorithm 3. The function getCurrentReference() re-
turns the currently tracked reference state which includes the
position, velocity and acceleration in the global frame. The
function transform(s, c) transform the state s into the desired
frame c. The transform process consists of a rotation and a
translation. For the translational invariant elements, such as
the velocity, acceleration and jerk, only the rotation is con-
ducted. The function genTrajctory(s̄, c, t) generates trajec-
tory from the state s̄ towards the target t by executing Algo-
rithm 2 along the x, y and z axis of the frame c. Note the
state s̄ and target t shall already be expressed in the frame
c. Finally, the check(T) function checkes whether the tra-

Algorithm 3 Smooth navigation
1: i = 0
2: while Not reaching PM+1 do
3: if i < M then
4: s = getCurrentReference()
5: s̄ = transform(s, Ci+1)
6: Ti+1 = genTrajctory(s̄, Ci+1, [‖Pi+1 − Pi‖ , 0, 0])
7: if check(Ti+1) then
8: i = i+ 1

jectory T satisfy the feasibility conditions and stays inside
the corridor. In this paper, we assume the first trajectory T1
satisfies the feasibility condition and stays within the safe
corridor. Otherwise, we adopt the method in [9] to generate
a temporary trajectory that avoids the obstacles and requires
the higher level path planner to provide a new nominal plan.
The detail of this method can be found in [9] and is out of the
scope of this paper. While the implementation of function
getCurrentReference(), transform(s, c) and genTrajctory(s̄,
c, t) is straight forward, check(T) remains a more complex
process. It involves the checking of the feasibility condition
and the checking of corridor violation.

4.3.1 Checking for feasibility condition

For each single-axis component of the trajectory Ti+1,
namely TxC

i+1, T
yC

i+1, T
zC
i+1, it consists of at most 7 segments

of 3rd order polynomials at C2 continuity [7]. Therefore
Ṫn
i+1, T̈

n
i+1, n ∈ {xC,yC, zC} would consist of at most 7

segments of 2nd and 1st order polynomials.
Taking the velocity trajectory Ṫi+1 as an example, we can

check whether the trajectory Ṫi+1 stays inside Qv,i+1 by
calling the method boxCheck(Ṫi+1, Qv,i+1) in Algorithm 4.
It checks whether a given polynomial spline T is inside a
cuboid B. It assumes the cuboid B has been assigned with
an associated frame, such is the case for all OBBi, Qv,i,

Algorithm 4 boxCheck
1: Inputs: T , B
2: Output: isInside
3: T̄ = transform(T , B.frame)
4: [xmin, xmax] = findMinMax(T̄x)
5: [ymin, ymax] = findMinMax(T̄ y)
6: [zmin, zmax] = findMinMax(T̄ z)
7: isInside = false
8: if isInBox([xmax, ymax, zmax], B) then
9: if isInBox([xmin, ymin, zmin], B) then

10: isInside = true

Qa,i and Qj,i. It first transforms the entire spline T into the
associated frame of B (line 3). If the spline denotes the ve-
locity, acceleration or jerk, only the rotation in the transform
process is performed. For the transformed spline T̄ , we the
then find its maximum and minimum value on each axis of
the B.frame (line 4 – 6). Finally, for the possible furthest
points [xmax, ymax, zmax] and [xmin, ymin, zmin], we check
whether they are inside the box B. If both points are con-
tained by B, so does the entire trajectory. If both T̈i+1 and...
T i+1 are also contained in Qa,i and Qj,i then we conclude
the trajectory Ti+1 is feasible. The same idea can also be ex-
tended to handle the cylindrical constraints. We first define a
new trajectory that is the norm of [T̄ x, T̄ y]. Then we check
whether its maximum value is inside the cylindrical volume.
If the check is successful, we also check whether the extreme
value of T̄ z is within the cylindrical volume.

4.3.2 Checking for corridor violation

To check whether the corridor constraint is violated by
Ti+1 is more difficult as the trajectory might passes through
multiple OBBs. As a sufficient but not necessary condi-
tion, we require the trajectory Ti+1 to be within OBBi or
OBBi+1 by calling corridorCheck(Ti+1, OBBi, OBBi+1)
as in Algorithm 5. It first try to find a middle point Pmid

Algorithm 5 corridorCheck
1: Input: T , OBBa, OBBb

2: Output: isInCorridor
3: [Pmid, Ta, Tb] = splitTrajectory(T , OBB1, OBB2)
4: if Pmid = ∅ then
5: isInCorridor = false
6: return
7: if boxcheck(Ta, OBBa) && boxcheck(Tb, OBBb) then
8: isInCorridor = true
9: else

10: isInCorridor = false

which is inside both OBBa and OBBb and then split the tra-
jectory into two parts Ta and Tb (line 3). If such a point
cannot be found, then the trajectory must have leave the safe
corridor (line 4 – 6). Then, we check whether Ta and Tb
is fully contained by the bounding boxes OBBa and OBBb

(line 7). To find the point Pmid, a bisection search procedure
is adopted (Algorithm 5). Given a trajectory T , let T (τ)
denotes the corresponding point at time τ and T (τa : τb)
denotes the partial trajectory between time τa and τb. The
function getTotoalTime(T) returns the total time of the tra-
jectory T until it comes to a full stop. The bisection is per-
formed over the time length of the trajectory where a mid-
dle time τmid splits the trajectory into two parts Ta and Tb

Table 2: Per-cycle computational time consumption
Average time consumption

Total 10.20 µs
Trajectory generation 2.55 µs
Switch checking 0.98 µs

with the splitting point p (line 10 – 12). If p is in both the
first OBB (OBBa) and the second OBB (OBBb), the search
is terminated successfully. Otherwise, if p is inside OBBa

but not OBBb, the search is continued on Tb (line 16 – 17).
Similarly, if p is inside OBBb but not OBBa, the search is
continued on Ta (line 18 –19). Finally, if p is not contained
by neither OBBs, the algorithm reports failure with an empty
Pmid. If Ti+1 passes both the feasibility checking (Section

Algorithm 6 splitTrajectory
1: Input: T , OBBa, OBBb

2: Output: Pmid, Ta, Tb
3: Pmid = ∅
4: τa = 0
5: τend = getTotoalTime(T)
6: τb = τend
7: for i < Ne do
8: i = i+ 1
9: τmid = (τa + τb)/2

10: p = T (τmid)
11: Ta = T (0 : τmid)
12: Tb = T (τmid : τend)
13: if p ∈ OBBa && p ∈ OBBb then
14: Pmid = p
15: return
16: else if p ∈ OBBa && p /∈ OBBb then
17: τa = τmid

18: else if p /∈ OBBa && p ∈ OBBb then
19: τb = τmid

20: else
21: return

4.3.1) and the corridor checking (Section 4.3.2), the vehicle
could start to track this new trajectory Ti+1 safely.

4.4 Computational performance
The checking for feasibility and corridor violation has

been performed analytically. For each control cycle, the al-
gorithm provides the reference for the next cycle and checks
whether it is feasible to switch to the next OBB. Together
with the efficient trajectory generation method, the overall
algorithm achieves realtime performance with small com-
putational consumption. For the corridor shown in Figure
4, our algorithm consumes around 10 microseconds in one
control cycle on an Intel I5 CPU (see Table 2). Considering
the fact that the translational controller is usually running at
20 to 50 Hz, it is more than enough to achieve a realtime per-
formance. Compared to the method in [15] which solves the
entire trajectory in a quadratic programming problem, our
algorithm is expected to be more suitable for micro-sized
vehicles with limited computational power due to its smaller
computational footage.

5 Flight experiment

To demonstrate the effectiveness of our method, real flight
experiments and simulation has been performed. The testing
vehicle is connected to a desktop computer wirelessly which
provides measurement and reference signals. The proposed
method is running on the desktop computer at the frequency

0

1

3
-3

2

2
-2

1
-1

0 0
-1 1

-2 2

-3 3

Real flight
Reference

80
100
120

z(
m

)

200

100

0

y(m)

100-100
0

x(m)

-200
-100

-300 -200

Reference

-3

-2
0

-1
3

1

02

2

1 1
0

-1 2
-2

3-3

Real flight
Reference

A B

C

Fig. 4: Experiments

Table 3: Fly time consumption
Exp A Exp B Exp C

Our method 11.05s 13.05s 123.8s
Trivial method 23.7s 23.45s 211.5s
Improvement 53% 44% 41%

of the outer loop controller at 20 Hz. The results are shown
in Figure 4. In experiment A, the vehicle is tasked to fly
through multiple pillars. The nominal plan is generated with
a traditional A* algorithm and gives a corridor consists of 8
OBBs. In experiment B, the vehicle is tasked to fly through
corridors with 6 OBBs with rapid height variance. Finally,
in experiment C, a simulation study is performed on a task
with larger scale and faster flying speed which is commonly
seen in the real-life application such as the power line in-
spection. The state constraints on the velocity, acceleration,
and jerk for each experiment is given in Table 4. Compared
to the trivial solution which comes to a full stop at each end-
point, our method saves more than 40% of fly time in both
three experiments. The video of the real flight experiment
A and B can be found at http://uav.ece.nus.edu.
sg/videos_files/2018/jlt.mp4

6 Conclusion

In this paper, we present a method to guide the quadrotor
to fly through a safe corridor with jerk limited trajectory. It
extends a trivial solution which stops at every intermediate
point to achieve smooth flying while still guarantees to op-
erate entirely inside the corridor. This is done by repeatedly
checking the validity of the newly generated trajectory. Our
continuous checking algorithm guarantees the satisfaction of
various constraints throughout the entire trajectory. On the
other hand, the trajectory’s velocity, acceleration, and jerk
can be limited in a cylindrical constraint volume to satisfy
the vehicle’s physical limits or safety regulations. As future
works, we are testing other efficient trajectory generation
and checking algorithm using neural-networks to achieve a

Table 4: State constraints
Exp A Exp B Exp C

vhmax 4 m/s 3 m/s 15 m/s
vvmax 0.8 m/s 0.8 m/s 0.8 m/s
ahmax 2.2 m/s2 1.2 m/s2 2.2 m/s2

avmax 0.8 m/s2 0.8 m/s2 0.8 m/s2

jhmax 3 m/s3 3 m/s3 3 m/s3

jvmax 3 m/s3 3 m/s3 3 m/s3

more smooth flight experience.

References
[1] R. Allen and M. Pavone, “A real-time framework for kinody-

namic planning with application to quadrotor obstacle avoid-
ance,” in AIAA Guidance, Navigation, and Control Confer-
ence, 2016.

[2] S. Roelofsen, D. Gillet, and A. Martinoli, “Reciprocal col-
lision avoidance for quadrotors using on-board visual detec-
tion,” in 2015 IEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Sept 2015, pp. 4810–4817.

[3] D. Mellinger and V. Kumar, “Minimum snap trajectory gen-
eration and control for quadrotors,” in 2011 IEEE Interna-
tional Conference on Robotics and Automation, May 2011,
pp. 2520–2525.

[4] J. Li, H. Zhan, B. M. Chen, I. Reid, and G. H. Lee, “Deep
learning for 2d scan matching and loop closure,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sep 2017, pp. 763–768.

[5] S. K. Phang, S. Lai, F. Wang, M. Lan, and B. M. Chen, “Uav
calligraphy,” in 11th IEEE International Conference on Con-
trol Automation (ICCA), June 2014, pp. 422–428.

[6] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory plan-
ning for quadrotor flight,” in RSS Workshop on Resource-
Efficient Integratiton of Perception, Control and Navigation
for MAVs, 2013.

[7] T. Kröger and F. M. Wahl, “Online trajectory generation: Ba-
sic concepts for instantaneous reactions to unforeseen events,”
IEEE Transactions on Robotics, vol. 26, no. 1, pp. 94–111,
Feb 2010.

[8] M. Hehn and R. DAndrea, “Real-time trajectory generation
for quadrocopters,” IEEE Transactions on Robotics, vol. 31,
no. 4, pp. 877–892, Aug 2015.

[9] S. Lai, K. Wang, H. Qin, J. Q. Cui, and B. M. Chen, “A ro-
bust online path planning approach in cluttered environments
for micro rotorcraft drones,” Control Theory and Technology,
vol. 14, no. 1, pp. 83–96, Feb 2016.

[10] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoid-
ance for high-speed navigation,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017,
pp. 5759–5765.

[11] R. Haschke, E. Weitnauer, and H. Ritter, “On-line planning
of time-optimal, jerk-limited trajectories,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Sept 2008, pp. 3248–3253.

[12] T. Kröger, “Opening the door to new sensor-based robot ap-
plications – the reflexxes motion libraries,” in 2011 IEEE
International Conference on Robotics and Automation, May
2011, pp. 1–4.

[13] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys,
“Pixhawk: A system for autonomous flight using onboard
computer vision,” in 2011 IEEE International Conference on
Robotics and Automation, May 2011, pp. 2992–2997.

[14] K. Z. Y. Ang, X. Dong, W. Liu, G. Qin, S. Lai, K. Wang,
D. Wei, S. Zhang, P. S. King, X. Chen, M. Lao, Z. Yang,
D. Jia, F. Lin, L. Xie, and B. M. Chen, “High-precision multi-
uav teaming for the first outdoor night show in singapore,”
Unmanned Systems, vol. 06, no. 01, pp. 39–65, 2018.

[15] J. Chen, T. Liu, and S. Shen, “Online generation of collision-
free trajectories for quadrotor flight in unknown cluttered
environments,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), May 2016, pp. 1476–1483.

http://uav.ece.nus.edu.sg/videos_files/2018/jlt.mp4
http://uav.ece.nus.edu.sg/videos_files/2018/jlt.mp4

	Introduction
	Quadrotor Dynamic Model
	Jerk Limited Trajectory
	Velocity setpoint
	Position setpoint

	Safe Corridor Navigation
	Safe corridor
	Feasibility condition
	Smooth navigation
	Checking for feasibility condition
	Checking for corridor violation

	Computational performance

	Flight experiment
	Conclusion

