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Abstract: In this paper, we investigate the capabilities of feedback mechanism in dealing with uncertainties for network systems.
The study of maximum capability of feedback control was pioneered in Xie and Guo (2000) for scalar systems with nonparametric
nonlinear uncertainty. In a network setting, nodes with unknown and nonlinear dynamics are interconnected through a directed
interaction graph. Nodes can design feedback controls based on all available information, where the objective is to stabilize
the network state. Using information structure and decision pattern as criteria, we specify three categories of network feedback
laws, namely the global-knowledge/global-decision, network-flow/local-decision, and local-flow/local-decision feedback. We
establish a series of network capacity characterizations for these three fundamental types of network control laws.
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1 Introduction

With original ideas traced back to the 1980s [2], network
systems have been widely studied in the past decade. The
central aim lies in resilient and scalable solutions for systems
with a large number of interconnected agents to achieve col-
lective goals ranging from consensus and formation to opti-
mization and filtering [3–7]. Multi-agent control has evolved
to a discipline in its own right with its boundaries being gen-
eralized even to the domain of quantum mechanics [8] and
intrinsic equation solvers [9]. New tools such as graph theo-
ry and computational complexity have led to insightful new
perspectives to the structural effects within the classical con-
trol problems [10, 11]. Besides these tremendous successes,
however, it is also important to understand the limitations
of feedback mechanism over network dynamics facing un-
certainty. More specifically, a clear characterization to the
capacity of feedback mechanism over a network in dealing
with uncertainty, for centralized and distributed controllers,
respectively, will help us understand the boundaries of con-
trolling complex networks from a theoretical perspective.

In the seminal work [12], Xie and Guo established fun-
damental results on the capability of feedback mechanism
with nonparametric nonlinear uncertainty for the following
discrete-time model

y(t+ 1) = f(y(t)) + u(t) + w(t), t = 0, 1, . . .

where the y(t), u(t), and w(t) are real numbers represent-
ing output, control, and disturbance, respectively. It was
shown in [12] that with completely unknown plant model
f(·) : R → R and bounded but unknown disturbance signal
w(t), a necessary and sufficient condition for the existence
of stabilizing feedback control of the above system is that a
type of Lipschitz norm of f(·) must be strictly smaller than
3/2+

√
2. This number, now referred to as the Xie-Guo con-

stant in the literature, points to fundamental limitations of all
feedback laws.

In this paper, we consider a network setting of the non-
parametric uncertainty model in [12], where nodes with un-
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known nonlinear self-dynamics are interconnected through a
directed interaction graph. For the ease of presentation the
dynamics of the nodes are assumed to be identical, corre-
sponding to homogenous networks. The interaction graph
defines neighbor relations among the nodes, where measure-
ment and control take place. Nodes can design any feedback
controller using the information they have, and the objective
is to stabilize the entire network, i.e., every node state in the
network.

Three basic categories of feedback laws over such net-
works are carefully specified. In global-knowledge/global-
decision feedback, every node knows network structure
(interaction graph) and network information flow, and n-
odes can coordinate to make control decisions; in network-
flow/local-decision feedback, each node only knows the net-
work information flow and carries out decision individually;
in local-flow/local-decision feedback, nodes only know in-
formation flow of neighbors and then make their own control
decisions. Note that various existing distributed controllers
and algorithms can be naturally put into one of the three cat-
egories. A series of network feedback capacity results has
been established:

(i) For global-knowledge/global-decision and network-
flow/local-decision control, the generic network feed-
back capacity is fully captured by a critical value(

3/2 +
√

2
)
/‖AG‖∞

where AG is the network adjacency matrix.
(ii) For local-flow/local-decision control, there exists a

structure-determined value being an lower bound of the
network feedback capacity.

(iii) Network flow can be replaced by max-consensus en-
hanced local flows, where nodes only observe infor-
mation flows from their neighbors as well as network
extreme (max and min) states via max-consensus, and
then the same feedback capacity can be reached.

Additionally, for strongly connected graphs, we manage to
establish a universal impossibility theorem on the existence
of stabilizing feedback laws.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the network model and defines the prob-



lem of interest. Section 3 presents the main results, followed
by Section 4 presenting the network stabilizing controller-
s. Finally Section 5 concludes the paper by a few remarks
pointing out a few interesting future directions. Due to s-
pace limitations we refer the readers to [1] for the detailed
proofs of all claimed results.

Notation: The set of real numbers is denoted by R, and
the set of integers is denoted by Z. A sequence a0, a1, . . .
is abbreviated as 〈at〉t≥0. For any real number a, (a)+ is
defined as (a)+ = max{a, 0}. For convenience we use
dist(X,Y ) to denote the distance between two sets X and
Y in R by dist(X,Y ) = infx∈X,y∈Y |x − y|, and simply
dist(a, Y ) := infy∈Y |a − y|, dist(a, b) = |a − b| for real
numbers a and b.

2 The Model

2.1 Network Dynamics with Uncertainty
Consider a network with n nodes indexed in the set V =

{1, ..., n}. The network interconnection structure is repre-
sented by a directed graph G = (V,E), where E is the
arc set. Each arc (i, j) in the set E is an ordered pair of
two nodes i, j ∈ V, and link (i, i) is allowed at each n-
ode i defining a self-arc. The neighbors of node i, that n-
ode i can be influenced by, is defined as nodes in the set
Ni := {j : (j, i) ∈ E}. Let aij ∈ R be a real number
representing the weight of the directed arc (j, i) for i, j ∈ V.
The arc weights aij comply with the network structure in the
sense that aij 6= 0 if and only if (j, i) ∈ E. Let AG be the
adjacency matrix of the graph G with [AG]ij = aij .

Time is slotted at t = 0, 1, 2, . . . . Each node i holds a
state si(t) =

(
xi(t), zi(t)

)> ∈ R2 at time t. The network
dynamics are described by

zi(t+ 1) = f(xi(t)) + ei(t)

xi(t+ 1) =
∑
j∈Ni

aijzj(t+ 1) + ui(t) + wi(t),
(1)

for i ∈ V and t = 0, 1, 2, . . . , where f is a function map-
ping from R to R, ui(t) ∈ R is the control input, and
ei(t),wi(t) ∈ R are disturbances and noises. The system
(1) describes the following node interactions: xi(t) is the in-
ternal state of node i at time t, based on which an external
state zi(t + 1) is generated at that node; at time t + 1, the
external states zi(t + 1) are exchanged over the interaction
graph G, defining the update of the internal states xi(t+ 1).
In this way,

(
xi(t), zi(t+ 1)

)
is an input-output pair at node

i for time t. We impose the following standing assumptions.

Assumption 1. (Dynamics Uncertainty) The function f is
unknown, and the arc weight aij is known to the node i.

Assumption 2. (Disturbance Boundedness) The process
disturbances ei(t) and wi(t) are unknown but bounded, i.e.,
there exist e∗, w∗ > 0 such that∣∣ei(t)∣∣ ≤ e∗, ∣∣wi(t)

∣∣ ≤ w∗
for all t and for all i ∈ V. Furthermore, the bounds e∗ and
w∗ are unknown.

The Assumptions 1–2 are quite natural and general, which
are adopted throughout the remainder of the paper without

specific further mention. An illustration of this dynamical
network model can be seen in Fig. 1. The dynamics of the
internal node states xi(t) can be written in a compact form
as

xi(t+ 1) =
∑
j∈Ni

aijf(xj(t)) + ui(t) + di(t), (2)

where di(t) =
∑
j∈Ni aijej(t) +wi(t). It is clear that vari-

ous work on network control, optimization, and computation
would fall to this form of network dynamics [8, 9].

2.2 Feedback Laws over Networks
We now classify all possible network feedback control

laws into categories determined by information patterns and
decision structures. Such a classification is not straightfor-
ward at all bearing the following questions in mind:

(i) (Knowledge) How much would nodes know about the
network itself, e.g., number of nodes n, network con-
nectivity, or even the network topology G?

(ii) (Flows) How much would nodes know about the net-
work information flows, e.g., availability of xi(t),
zi(t), and ui(t) for a neighbor, or a neighbors’ neigh-
bor of the node i?

(iii) (Decisions) To what level nodes could cooperate in de-
termining the control actions, e.g., can a node i tell a
neighbor j to stand by with uj(t) = 0 at time t to im-
plement its own control input ui(t)?

Different answers to these questions will lead to drastical-
ly different scopes of network control rules. In this paper,
we focus on a few fundamental forms of network feedback
laws that from a theoretical perspective represent a variety
of network control and computation results in the literature.

Denote S(t) = (s1(t)> . . . sn(t)>)> and U(t) =
(u1(t) . . . un(t))> for t = 0, 1, . . . . Here without loss
of generality we assume zi(0) = 0 for all i. The following
definition specifies network and local flows.

Definition 1 The network flow vector up to time t is defined
as

Θ(t) :=
(
S(0), . . . ,S(t);U(0), . . . ,U(t− 1)

)>
.

The local network flow vector for node i up to time t is de-
fined as

Θi(t) :=
(
sj(0)>, . . . , sj(t)

>;

uj(0), . . . ,uj(t− 1) : j ∈ Ni

⋃
{i}
)>
.

Note that, here we have assumed that the si(t) and ui(t)
are known to a node i even if it does not hold a self arc
(i, i) ∈ E (therefore i /∈ Ni). This is indeed quite natural
and general which simplifies the presentation considerably.

2.2.1 Global-Knowledge/Global-Decision Feedback

Recall that AG is the adjacency matrix of the graph G.
Network controllers that have omniscient narration and om-
nipotent actuators at all nodes are certainly of primary inter-
est.



Fig. 1: A graphical diagram of the considered network model: (i) Interaction structure forms a directed graph where nodes
are influenced by their in-neighbors and influence their out-neighbors; (ii) Node interaction rules are governed by completely
unknown nonlinear dynamics and link width indicates the weight (strength) of interactions; (iii) Control inputs are applied to
individual nodes subject to unknown disturbances.

Definition 2 A network control rule in the form of

U(t) = ht
(

Θ(t);AG

)
, t = 0, 1, . . . (3)

where ht is an arbitrary function mapping from Rn(3t+1) to
Rn withAG being a common knowledge, is termed a Global-
Knowledge/Global-Decision Feedback Law for the network
system (1).

To implement a global-knowledge/global-decision net-
work control, one requires a network operator who knows
the structure of the network (topology and arc weights), col-
lects states and signals across the entire network, and then
enforces control decisions on each individual node.

2.2.2 Network-Flow/Local-Decision Feedback

Knowing the network flow, nodes can still carry out in-
dividual control decisions even without knowledge of the
entire network structure G. This will incur restrictions on
feasible control rules, leading to the following definition.

Definition 3 A network control rule in the form of

ui(t) = h it
(

Θ(t); [AG]ij , j ∈ Ni

)
(4)

where independent with other nodes, h it is an arbitrary func-
tion mapping from Rn(3t+1) to R for any t = 0, 1, . . . , is
termed a Network-Flow/Local-Decision Feedback Law for
the network system (1).

The h it being independent means that a node m can deter-
mine its control rule hmt without knowing or influencing the
exact control decision values at any other node and for any
given time. The following example helps clarify the ambi-
guity in the notion of independent decisions.

Example 1. Consider two nodes 1 and 2. The following
control rule with qt being a function with proper dimension
for its argument

u1(t) = qt(Θ(t))

u2(t) = 1− qt(Θ(t))
(5)

implicitly holds the identity

u1(t) + u2(t) = 1

and therefore can only be implemented if the two nodes co-
ordinate their respective inputs. In this sense (5) is a global-
knowledge/global-decision feedback rather than a network-
flow/local-decision feedback law. �

2.2.3 Local-Flow/Local-Decision Feedback

The notion of distributed control consists of three basis
elements [7]: nodes only have a local knowledge of the net-
work structure; nodes only receive and send information to
a few neighbors; control and decision are computed by each
node independently. Inspired by these criteria we impose the
following definition.

Definition 4 Any feedback control rule in the form of

ui(t) = h it
(

Θi(t); [AG]ij , j ∈ Ni

)
(6)

with h it : R|Ni
⋃
{i}|(3t+1) → R being an arbitrary func-

tion independent with other nodes, is termed a Local-
Flow/Local-Decision Feedback Law for the network system
(1).

The three classes of network feedback laws are certain-
ly not disjoint. In fact the set of global-knowledge/global-
decision feedback contains the set of network-flow/local-
decision feedback, which in turn contains the set of local-
flow/local-decision feedback.

2.3 Network Stabilizability
We are interested in the existence of feedback control laws

that stabilize the network dynamics (1) for the closed loop,
as indicated in the following definition.

Definition 5 A feedback law stabilizes the network dynam-
ics (1) if there holds

sup
t≥0

(∣∣xi(t)∣∣+
∣∣zi(t)∣∣+

∣∣ui(t)∣∣) <∞, i ∈ V (7)

for the closed loop system.



2.4 Function Space
We need a metric quantifying the uncertainty in the node

dynamical mode f . Let F denote the space that contains all
R → R functions, where the f ∈ F are equipped with a
quasi-norm defined by

‖f‖q := lim
α→∞

sup
x,y∈R

|f(x)− f(y)|
|x− y|+ α

.

We refer to [12] for a thorough explanation of this quasi-
norm and the resulting function space F . Define

FL := {f ∈ F : ‖f‖q ≤ L}

as a subspace in F consisting of functions bounded by L >
0 under quasi-norm ‖ · ‖q. Functions in FL can certainly
be discontinuous, but they are closely related to Lipschitz
continuous functions. The following lemma holds, whose
proof can be found in [12].

Lemma 1 Let ‖f‖q ≤ L. Then for any η > 0, there exists
c ≥ 0 such that

|f(x)− f(y)| ≤ (L+ η)|x− y|+ c, ∀x, y ∈ R. (8)

As a result of Lemma 1, as long as ‖f‖q admits a finite
number, the stabilizability condition (7) is equivalent to

sup
t≥0

(|xi(t)|+ |ui(t)|) <∞, i ∈ V,

which is in turn equivalent to

sup
t≥0
|xi(t)| <∞, i ∈ V.

Moreover, from Lemma 1, the set ΓL(f) :=
{

(η, c) :

Eq. (8) holds
}

is nonempty for any f ∈ FL. We further
define a constant Wf (r) associated with any f ∈ FL and
r > L

Wf (r) := inf
{
c : L+ η < r, (η, c) ∈ ΓL(f)

}
. (9)

3 Network Stabilizability Theorems

In this section, we present a series of possibility and/or
impossibility results for the stabilizability of the network dy-
namics (1) for the three categories of feedback laws.

3.1 Global-Knowledge/Global-Decision Feedback
With global-knowledge/global-decision feedback, it turns

out that, the infinity norm ‖AG‖∞ of the the adjacency ma-
trix AG, i.e.,

‖AG‖∞ = max
i∈V

∑
j∈Ni

∣∣[AG]ij
∣∣

plays a critical role.
Recall that Wf (·) is the function defined in (9). The fol-

lowing theorem characterizes a generic fundamental limit for
the capacity of global-knowledge/global-decision feedback
laws.

Theorem 1 (Generic Fundamental Limit) Consider FL
in the function space F . Then there exists a generic Global-
Knowledge/Global-Decision feedback law that stabilizes
the network dynamics (1) if and only if

L < (3/2 +
√

2)/‖AG‖∞.

To be precise, the following statements hold.

(i) If L < (3/2 +
√

2)/‖AG‖∞, then there exists a global-
knowledge/global-decision feedback control law that
stabilizes the system (1) for all f ∈ FL and for all inter-
action graphs G. In fact, withL < (3/2+

√
2)/‖AG‖∞

we can find a global-knowledge/global-decision feed-
back control law that ensures

lim sup
t→∞

|xi(t)| ≤
(
Wf

(
3/2 +

√
2)/‖AG‖∞

)
+ 2e∗

)
· ‖AG‖∞ + w∗, ∀i ∈ V.

(ii) If L ≥ (3/2 +
√

2)/‖AG‖∞, then for any global-
knowledge/global-decision feedback law (3) and any
initial value X(0), there exist an interaction graph G
and a function f ∈ FL under which there holds

lim sup
t→∞

max
i∈V
|xi(t)| =∞.

Note that the error bound of the internal state xi(t) in s-
tatement (i) can be extended to the external state zi(t) by

lim sup
t→∞

|zi(t)|

≤ (5/2 +
√

2)
(
Wf

(
3/2 +

√
2)/‖AG‖∞

)
+ 2e∗

)
+ w∗(3/2 +

√
2)/‖AG‖∞ + |f(0)|.

utilizing the fact that L < (3/2 +
√

2)/‖AG‖∞. Moreover,
we should emphasize that the critical value L < (3/2 +√

2)/‖AG‖∞ established in Theorem 1 is for general inter-
action graphs. In fact, as will be shown in its proof, the graph
constructed for the necessity proof is a very special one con-
taining exactly one self arc. For a given graph G, e.g., a com-
plete graph or a directed cycle, it is certainly possible that the
corresponding network dynamics are stabilizable even with
L ≥ (3/2 +

√
2)/‖AG‖∞. Finding such feedback capaci-

ty values for any given interaction graph seems to be rather
challenging, as illustrated in the following example.

Example 2. Consider two nodes, indexed by 1 and 2, re-
spectively, which both possess a self link with unit weight
and have no link between them (see Fig. 2). From our stand-
ing network model their internal dynamics read as

x1(t+ 1) = f(x1(t)) + d1(t) + u1(t)

x2(t+ 1) = f(x2(t)) + d2(t) + u2(t).
(10)

A first sight indicates that (10) appears to be merely two
copies of the scaler model considered in [12]. Indeed, direct-
ly from results established in [12], we know that if f ∈ FL
with L < (3/2 +

√
2), we can stabilize each xi(t) with

control input ui(t) being a feedback from its own dynamics.
However, note that with global information, one cannot rule
out the case where

(i) Node 1 stabilizes itself;
(ii) Node 2 uses the information flow vector1 at the node 1:

Θ∗1(t) :=
(
s1(0)>, . . . , s1(t)>;u1(0), . . . ,u1(t− 1)

)>
to design its controller.

1Node that z1(t) can simply be chosen as x1(t+ 1)− u1(t).



Fig. 2: A simple two-node network with two self links only.

In fact, Θ∗1(t) can be rather informative even for node 2 be-
cause it can be utilized putting an effective estimate to the
unknown function f(·), which is essential for u2(t). Further-
more, one cannot rule out an even more interesting scenario
where nodes 1 and 2 design their controllers cooperatively
since now they share a common information set. Therefore,
it is not clear whether the critical feedback capacity value
3/2 +

√
2, which applies to the two nodes respectively when

they are separate [12], will continue to apply when they for-
m a network with shared information. An intuitive way of
understanding this is that while the two nodes in system (10)
share no dynamical interaction, a global view of the network
information flow will create hidden intellectual interaction
through their control inputs. �

Furthermore, we introduce

‖AG‖] = min
i,j∈V

{∣∣[AG]ij
∣∣ : [AG]ij 6= 0

}
where of course ‖AG‖] = 0 if AG = 0. It is easy to verify
that ‖·‖] is not even a proper matrix semi-norm. The follow-
ing result however provides a further impossibility character-
ization of global-knowledge/global-decision feedback laws
for networks with strong connectivity based on the metric
‖AG‖].

Theorem 2 (Impossibility Theorem with Connectivity)
Suppose the underlying graph G is strongly connect-
ed. Assume that either [AG]ij ≥ 0 for all i, j ∈ V or
[AG]ij ≤ 0 for all i, j ∈ V. If L ≥ 4/‖AG‖], then for any
Global-Knowledge/Global-Decision Feedback Law (3) and
any initial value X(0), there exists a function f ∈ FL under
which there always holds

lim sup
t→∞

|xi(t)| =∞.

3.2 Network-Flow/Local-Decision Feedback
It is obvious from its definition that any network-

flow/local-decision feedback law is by itself a global-
knowledge/global-decision control as well. In other word-
s, any possibility result for network stabilization achieved
by network-flow/local-decision feedback laws can also be
viewed as a possibility result for global-knowledge/global-
decision controls. Remarkably enough, the contrary also
holds true for generic graphs, as indicated in the following
result.

Theorem 3 (Generic Fundamental Limit) Consider
FL in the function space F . Then there exists a
generic Network-Flow/Local-Decision Feedback Law

that stabilizes the network dynamics (1) if and only if
L < (3/2 +

√
2)/‖AG‖∞.

In fact, the error bound in Theorem 1.(i) continues to hold
for network-flow/local-decision feedback laws. Putting The-
orem 1 and Theorem 3 together we learn that, for generic in-
teraction graphs, information flow plays a more critical role
for feedback capacity compared to decision structures.

3.3 Local-Flow/Local-Decision Feedback
Recall that aij = [AG]ij is the weight of arc (j, i) ∈ E.

Let 〈pit〉∞t=1 and 〈qit〉∞t=1 be non-negative sequences for i ∈ V
that satisfy the following recursive relations:

pit+1 ≤
(
M
∑
j∈Ni

|aij | max
1≤s≤t

{pjs, qjs}+ ω −
t∑

s=1

pis

)+
,

qit+1 ≤
(
M
∑
j∈Ni

|aij | max
1≤s≤t

{pjs, qjs}+ ω −
t∑

s=1

qis

)+
.

(11)

Induced by recursion (11), we present the following metric
for the matrix AG

‖AG‖† := sup
{
M : For any ω > 0 Eq.(11)

implies
∞∑
t=1

(pit + qit) <∞ for all i ∈ V
}
. (12)

Note that the positivity of ‖AG‖† can be shown for nontrivial
graphs G by establishing ‖AG‖† ≥ 1/‖AG‖∞.

The following theorem establishes a sufficiency condition
for feedback stabilizability of the network dynamics, effec-
tively providing a lower bound of the feedback capacity for
local-flow/local-decision feedback laws.

Theorem 4 (Generic Possibility Theorem) Consider FL
in the function space F . There exists a generic Local-
Flow/Local-Decision Feedback Law that stabilizes the
network dynamics (1) if

L/‖AG‖† < 1.

More precisely, if L < ‖AG‖†, then there exists a Local-
Information/Local-Decision feedback law that stabilizes the
network dynamics (1) for all f ∈ FL and all graphs G.

3.4 Max-Consensus Enhanced Feedback Capacity
It is evident from the above discussions that knowledge

of information flows heavily influences the capacity of feed-
back laws. Network flow enables universal feedback laws
that apply to generic graphs as shown in Theorem 1 and
Theorem 3, while local flows can be rather insufficient in
stabilizing a network with uncertainty.

However, various distributed algorithms have been devel-
oped in the literature serving the aim of achieving collective
goals using local node interactions only, which often leads
to propagation of certain global information to local levels.
One particular type of such algorithms is the so-called max-
consensus, where a network of nodes holding real values can
agree on the network maximal value in finite time steps by
distributed interactions [4, 15]. In this subsection, we show



simple max-consensus algorithms can fundamentally change
the nature of network feedback capacity.

[Max-Consensus Enhancement] At time t, each node i has
the knowledge of the vector (xi(t − 1), zi(t))

>. From time
t to (t + 1)−, nodes run a max-consensus algorithm on the
first entry by

si[k + 1] = (xargmaxj∈Ni xj [k]
, zargmaxj∈Ni xj [k]

)>

where with slight abuse of notation we neglect the time index
t− 1 in xi, and t in zi, and use [k] to represent time steps in
the max-consensus algorithm. It is clear [15] that in a finite
number of steps in k (therefore it is safe to assume before
time t+ 1), all nodes will hold

s(t) =
(
x(t− 1), z(t))>

with x(t − 1) = maxi xi(t − 1) and z(t) =
zargmaxj∈V xj(t−1)(t).

Similarly, s(t) =
(
x(t − 1), z(t)

)>
with x(t) =

mini xi(t) and z(t) = zargminj∈V xj(t−1)(t) can also be
possessed by all nodes i before time t+1 with another paral-
lel min-consensus algorithm. We are now ready to introduce
the following definition.

Definition 6 The max-consensus enhanced local flow vector
for node i up to time t is defined as

Θe
i (t) :=

(
Θi(t)

>, s(1)>, . . . , s(t)>, s(1)>, . . . , s(t)>
)>
.

Moreover, any feedback control rule in the form of

ui(t) = h it
(

Θe
i (t); [AG]ij , j ∈ Ni

)
(13)

with h it being an arbitrary function independent with oth-
er nodes, is termed a Max-Enhanced-Local-Flow/Local-
Decision Feedback Law for the network system (1).

It turns out that, max-consensus-enhanced-local-
flow/local-decision feedback laws have the same capacity
in stabilizing the generic network dynamics (1) as the
global-knowledge/global-decision feedback.

Theorem 5 (Generic Fundamental Limit) Consider FL
in the function space F . Then there exists a generic
Max-Consensus-Enhanced-Local-Flow/Local-Decision
Feedback Law that stabilizes the network dynamics (1) if
and only if L < (3/2 +

√
2)/‖AG‖∞.

Although Theorem 5 exhibits the same fundamental lim-
it as Theorem 1, the error bound of lim sup

t→∞
|xi(t)| becomes

inevitably more conservative. This suggests potential dif-
ference at performance levels for the two different types of
controllers.

4 The Feedback Laws

In this section, we present the control rules that are used
in the possibility claims of the above network stabilization
theorems.

4.1 Local Feedback with Network Flow
We now present a local feedback controller in the form of

Definition 3 with entire network flow information. Denote

y(t) := max{xi(s) : s = 0, . . . , t; i = 1, . . . , n}, (14)
y(t) := min{xi(s) : s = 0, . . . , t; i = 1, . . . , n}. (15)

as the maximal and minimal states at all nodes and among
all time steps up to t, respectively. The controller contains
two parts, an estimator and a distributed feedback rule.

[Estimator] For each i ∈ V, t ≥ 1, there exists [vi]t ∈ V
and 0 ≤ [si]t ≤ t− 1 that satisfies

x[vi]t([si]t) ∈ arg minxj(τ)

{
|xi(t)− xj(τ)| :

j ∈ V, τ ∈ [0, t− 1]
}
. (16)

Then at time t, an estimator for f(xi(t)) made by nodes that
are i’s neighbors is given by

f̂(xi(t)) := z[vi]t([si]t + 1). (17)

[Feedback] Fix any positive ε. Let ui(0) = 0 for all i ∈ V.
For all t ≥ 1 and all i ∈ V, we define

ui(t) =



−
∑
j∈Ni

aij f̂(xj(t)),

if |xk(t)− x[vk]t([sk]t)| ≤ ε for all k ∈ V;

−
( ∑
j∈Ni

aij f̂(xj(t))
)

+ 1
2 (y(t) + y(t)),

otherwise.
(18)

It is clear that Eq. (17)–(18) lead to a well defined
Network-Flow/Local-Decision feedback control law that is
consistent with Definition 3. In the following, we will prove
that it suffices to use the control law (17)–(18) to establish
the stabilizability statements in Theorem 1 and Theorem 3.

4.2 Global Feedback with Global Information
The feedback controller given in (17)–(18) already man-

ages to support the stabilization statement in Theorem 1
as well since by definition a local-decision controller is a
special form of global-decision controllers. It is however
of independent interest seeing how stabilizing network con-
trollers with essentially centralized structure might work. A
clear answer to this question for general graphs seems rather
difficult. Nevertheless, we have been able to construct two
insightful examples, with the interaction graphs being a di-
rected path and a directed cycle (see Fig. 3), respectively,
which partially illustrates some spirit of the problem.

4.2.1 Path Graph

Consider the path graph with exactly one self link at the
root node2 shown in Fig. 3 with a11 = 1. Let us consider
the following network controller.
[Control at root node]: For each t ≥ 1, there exists 0 ≤
st ≤ t− 1 that satisfies

x1(st) ∈ arg minx1(τ)

{
|x1(t)− x1(τ)| : τ ∈ [0, t− 1]

}
.

2This self link is added for the sake of providing a nontrivial example
yet as simple as possible.



Fig. 3: A directed path graph with one self link at the root node (left), and a directed cycle graph (right). For these two graphs
we can construct essential global-decision controllers that will stabilize the network states.

At time t, an estimator for f(x1(t)) is given by

f̂(x1(t)) := z1(st + 1).

We define

u1(t) = −f̂(x1(t)) +
1

2
(x1(t) + x1(t)),

[Control at other nodes]: ui(t) = 0 for all i = 2, . . . , n
and all t.

The above network controller will stabilize the node states
for any f ∈ FL with L < 3/2 +

√
2 citing the result of

[12] directly. To implement such a controller, nodes need to
know the network structure: node 1 must know it is a root.
All nodes must know G is a directed path. Nodes 2, . . . , n
must also know that the controller at node 1 will stabilize
x1(t). Therefore, the controller falls into the category of
global-knowledge/global-decision network control, but not
into other categories in our definition.

4.2.2 Cycle Graph

Consider the directed cycle graph shown in Fig. 3 and
assume all arc weights are equal to one. Define κ(b) for
any (positive, negative, or zero) integer b ∈ Z by κ(b) being
the unique integer satisfying 1 ≤ κ(b) ≤ n and κ(b) = b
mod n.

[Controller] For each node i ∈ V, there exists 0 ≤ [si]t ≤
t− 1 that satisfies

xκ([si]t−t+i−1)
(
[si]t

)
∈ arg minxκ(τ−t+i−1)(τ){

|xκ(i−1)(t)− xκ(τ−t+i−1)(τ)| : 0 ≤ τ ≤ t− 1
}
. (19)

An estimator for f(xκ(i−1)(t)) is given by

f̂(xκ(i−1)(t)) := zκ([si]t−t+i−1)
(
[si]t + 1

)
.

Let ui(0) = 0. For t ≥ 1, let

ui(t) = −f̂(xκ(i−1)(t))

+
(

max
0≤τ≤t

xκ(τ−t+i−1)(τ) + min
0≤τ≤t

xκ(τ−t+i−1)(τ)
)
/2.

(20)

Clearly (20) relies essentially on global decisions be-
cause the node number and the cycle structure are neces-
sary knowledge and more importantly, the inherent symme-
try in (20) requires coordination among the nodes. Suppose
f ∈ FL with L < 3/2 +

√
2. Now we show the controller

(20) indeed stabilizes the network dynamics.
According to (1) and the cyclic network structure, for any

i ∈ Z, there holds

xκ(i+t+1)(t+ 1) = f(xκ(i+t)(t)) + uκ(i+t+1)(t)

+ dκ(i+t+1)(t). (21)

We further write [xi]t = xκ(i+t)(t), [di]t = dκ(i+t+1)(t),
and also [xi]t = max

0≤s≤t
[xi]s, [xi]

t
= min

0≤s≤t
[xi]s. With these

new variables (21) becomes

[xi]t+1 = f([xi]t) +
(
− f̂([xi]t) +

1

2
([xi]t + [xi]t)

)
+ [di]t,

(22)

which coincides with the closed loop dynamics for scalar
system presented in [12]. Therefore, quoting the results in
[12] we immediately know if L < 3/2 +

√
2 then

lim sup
t→∞

∣∣[xi]t∣∣ <∞, i ∈ V,

or equivalently, lim sup
t→∞

|xi(t)| < ∞ and the network dy-

namics have been stabilized.

4.3 Local Feedback with Local Flow
We now present a local-flow/local-decision feedback law

that will enable us to prove Theorem 4.

[Estimator] Fix i ∈ V. For j ∈ Ni and t ≥ 1, there exist
[vij ]t ∈ V and 0 ≤ [sij ]t ≤ t− 1 that satisfy

x[vij ]t([sij ]t) ∈ arg minxk(s)

{
|xj(t)− xk(s)| :

k ∈ Ni

⋃
{i}, s ∈ [0, t− 1]

}
. (23)

We define an estimator at node i for f(xj(t)), j ∈ Ni at time
t by

f̂i(xj(t)) = z[vij ]t([sij ]t + 1). (24)



[Feedback] Let ui(0) = 0 for all i ∈ V. Then for all t ≥ 1
and all i ∈ V, we let

ui(t) = −
∑
j∈Ni

aij f̂i(xj(t)) + xi(0). (25)

It is also clear that Eq. (24)–(25) form a distributed con-
troller with local information under Definition 4.

4.4 Local Feedback with Max-Consensus-Enhanced
Local Flow

Let i ∈ V and t ≥ 1. We denote

Xi(t) =
{
x(s) : 0 ≤ s ≤ t− 1

}⋃ {
x(s) : 0 ≤ s ≤ t− 1

}
⋃ {

xj(s) : j ∈ Ni

⋃
{i}, 0 ≤ s ≤ t− 1

}
as the set of states whose estimated data under function f
can be accessible to node i at time t. We define a function
Kti(·) over Xi(t) by

Kti(x) =


zj(s+ 1),

if x = xj(s), j ∈ Ni

⋃
{i}, 0 ≤ s ≤ t− 1;

z(s+ 1), if x = x(s), 0 ≤ s ≤ t− 1;
z(s+ 1), if x = x(s), 0 ≤ s ≤ t− 1.

(26)

[Estimator] Let node i estimate f(xj(t)) for j ∈ Ni

⋃
{i}

at time t by

f̂i(xj(t)) = Kti
(

arg minx∈Xi(t)
{
|xj(t)− x|

})
. (27)

[Feedback] Let ui(0) = 0 for all i ∈ V. Then for all t ≥ 1
and all i ∈ V, we let

ui(t) = −
∑
j∈Ni

aij f̂i(xj(t)) +
1

2
(y(t) + y(t)). (28)

Eq. (27)-(28) form a Max-Consensus-Enhanced-Local-
Flow/Local-Decision controller satisfying Definition 6.

5 Conclusions

This paper proposes a framework for studying the fun-
damental limitations of feedback mechanism in dealing
with uncertainties over network systems. Using informa-
tion structure and decision pattern as criteria, three class-
es of feedback laws over such networks were defined, un-
der which critical or sufficient feedback capacities were es-
tablished, respectively. These preliminary results reveal a
promising path towards clear descriptions of feedback ca-
pabilities over complex network systems, many important
problems yet remain open. It is very interesting to ask the
same feedback capacity questions when only a subset of n-
odes can be monitors of the information flow and another
subset of nodes can be controlled as anchors [10, 11]. Para-
metric network model as generalizations to the work of [13]
and [14] would be intriguing because such a model will cer-
tainly yield a strong connection between distributed estima-
tion and distributed control.
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