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Abstract: This paper studies uniform stabilization and social optimality for mean field linear quadratic control systems, where
subsystems are coupled via dynamics and individual costs. For the finite horizon case, we first obtain a set of forward-backward
stochastic differential equations (FBSDE) from the analysis of the social cost variation, and then design a feedback-type control
by decoupling the FBSDE. The set of decentralized control laws is shown to have asymptotic social optimality. For the infinite
horizon case, we design an asymptotically social optimal decentralized control using solutions of two Riccati equations. Two
equivalent conditions are further given for uniform stabilization of the systems in different cases. Finally, we show that such
decentralized control is a representation of the feedback control in previous works.
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1 Introduction

Mean field games have drawn increasing attention in
many fields including system control, applied mathematics
and economics [6, 8, 13]. The mean field game involves a
very large population of small interacting players with the
feature that while the influence of each one is negligible, the
impact of the overall population is significant. By combining
mean field approximations and individual’s best response,
the dimensionality difficulty is overcome. Mean field games
and control have found wide applications, including smart
grids [10, 27], finance, economics [9, 14, 31], and social sci-
ences [5], etc.

By now, mean field games have been intensively studied in
the LQ (linear-quadratic) framework [7, 19, 20, 25, 29, 32].
Huang et al. developed the Nash certainty equivalence
(NCE) based on the fixed-point method and designed an 𝜖-
Nash equilibrium for LQ mean field games with discount
costs based on the NCE approach [19, 20]. The NCE ap-
proach was then applied to the cases with long run aver-
age costs [25] and with Markov jump parameters [32], re-
spectively. Bensoussan et al. applied the adjoint equation
approach and the fixed-point theorem to obtain a sufficient
condition for the unique existence of the equilibrium strat-
egy over a finite-time horizon [7]. For other aspects of mean
field games, readers are referred to [11, 22, 24, 37] for non-
linear mean field games, [36] for oblivious equilibrium in
dynamic games, [18, 33, 34] for mean field games with ma-
jor players, [17, 29] for robust mean field games.

Besides noncooperative games, social optima in mean
field models have also drawn much attention. The social op-
timum control refers to that all the players cooperate to op-
timize the common social cost—the sum of individual cost,
which is usually regarded as a type of team decision prob-
lem [15, 30]. Huang et al. considered social optima in mean
field LQ control, and provided an asymptotic team-optimal
solution [21]. Wang and Zhang [35] investigated a mean
field social optimal problem where a Markov jump parame-
ter appears as a common source of randomness. For further
literature, see [23] for social optima in mixed games, [3] for
team-optimal control with finite population and partial infor-
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mation,
Most previous results on mean field games and control are

given by using the fixed-point method [20, 21, 25, 33, 35].
However, the widely used tool in fixed-point analysis is con-
traction mapping, which is very conservative for the general
systems. In this paper, we break away from the fixed-point
method and solve the mean field control problem by tack-
ling forward-backward stochastic differential equations (FB-
SDE). In recently years, some substantial progress for the
optimal LQ control has been made by solving the FBSDE.
See [38, 40] for details.

This paper investigates uniform stabilization and social
optimality for mean field LQ control systems, where sub-
systems are coupled via dynamics and individual costs. For
the finite horizon case, we first obtain a set of forward-
backward stochastic differential equations (FBSDE) by ex-
amining the variation of the social cost, and then give a cen-
tralized feedback-type control laws by decoupling the FB-
SDE. With mean field approximations, we design a set of
decentralized control laws, which is further shown to have
asymptotic social optimality. For the infinite horizon case,
we design a set of decentralized control laws using solutions
of two Riccati equations, which is shown to be asymptoti-
cally social optimal. Two equivalent conditions are further
given for uniform stabilization of the systems when the state
weight 𝑄 is semi-positive definite or only symmetric. Fi-
nally, we show such set of decentralized control laws is a
representation of the feedback control in previous works.

The main contributions of the paper are summarized as
follows.

∙ From the analysis of the social cost variation we ob-
tain a set of open-loop control laws, and then design
a feedback-type decentralized control by tackling FB-
SDE with mean field approximations.

∙ In the case 𝑄 ≥ 0, the necessary and sufficient condi-
tions are given for uniform stabilization of the systems
with the help of the Riccati equations’ solutions and the
system’s observability.

∙ In the case that 𝑄 is only symmetric, the necessary and
sufficient conditions are given for uniform stabilization
of the systems using the Hamiltonian matrices.

∙ It is under nonconservative assumptions that we obtain
an asymptotically social optimal decentralized control,



and such control is shown to be equivalent to the feed-
back control given by the fixed-point method in previ-
ous works [21, 35].

The organization of the paper is as follows. Section 2 for-
mulates the socially optimal control problem. In Section 3,
we design a decentralized control by tackling BSDE for the
finite horizon case, which is shown to be asymptotically so-
cial optimal. In Section 4, we design asymptotically social
optimal control laws for the infinite horizon case and further
give some equivalent conditions for uniform stabilization of
the systems. Such set of decentralized control laws is com-
pared with the feedback control of previous works in Sec-
tion 5. In Section 6, two numerical examples are provided
to show the effectiveness of the proposed control. Section 7
concludes the paper.

The following notation will be used throughout this pa-
per. ∥ ⋅ ∥ denotes the Euclidean vector norm or ma-
trix spectral norm. For a vector 𝑧 and a matrix 𝑄,
∥𝑧∥2𝑄 = 𝑧𝑇𝑄𝑧, and 𝑄 > 0 (𝑄 ≥ 0) means that 𝑄
is positive definite (semi-positive definite). For two vec-
tors 𝑥, 𝑦, ⟨𝑥, 𝑦⟩ = 𝑥𝑇 𝑦. 𝐶([0,∞),ℝ𝑛) is the space of
all the 𝑛-dimensional continuous functions on [0,∞), and
𝐶𝜌/2([0,∞),ℝ𝑛) is a subspace of 𝐶([0,∞),ℝ𝑛) which is
given by {𝑓 ∣ ∫∞

0
𝑒−𝜌𝑡∥𝑓(𝑡)∥2𝑑𝑡 < ∞}. For convenience of

presentation, we use 𝐶,𝐶1, 𝐶2, ⋅ ⋅ ⋅ to denote generic posi-
tive constants, which may vary from place to place.

2 Problem Formulation

Consider a large population systems with 𝑁 agents. Agent
𝑖 evolves by the following stochastic differential equation:

𝑑𝑥𝑖(𝑡) = [𝐴𝑥𝑖(𝑡) +𝐵𝑢𝑖(𝑡) +𝐺𝑥(𝑁)(𝑡) + 𝑓(𝑡)]𝑑𝑡

+ 𝜎(𝑡)𝑑𝑊𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑁,
(1)

where 𝑥𝑖 ∈ ℝ𝑛 and 𝑢𝑖 ∈ ℝ𝑟 are the state and input of the 𝑖th
agent. 𝑥(𝑁)(𝑡) = 1

𝑁

∑𝑁
𝑗=1 𝑥𝑗(𝑡), 𝑓, 𝜎 ∈ 𝐶𝜌/2([0,∞),ℝ𝑛).

{𝑊𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑁} are a sequence of independent 1-
dimensional Brownian motions. The cost function of agent 𝑖
is given by

𝐽𝑖(𝑢) =
1

2
𝔼
∫ ∞

0

𝑒−𝜌𝑡
{∥∥𝑥𝑖(𝑡)− Γ𝑥(𝑁)(𝑡)− 𝜂

∥∥2
𝑄

+ ∥𝑢𝑖(𝑡)∥2𝑅
}
𝑑𝑡,

(2)

where 𝑄 is symmetric and 𝑅 > 0. 𝑢 = {𝑢1, . . . , 𝑢𝑁}. The
admissible control set is given by

𝒰𝑑,𝑖 =
{
𝑢𝑖 ∣ 𝑢𝑖(𝑡) ∈ 𝜎(𝑥𝑖(𝑠), 0 ≤ 𝑠 ≤ 𝑡)

}
.

For comparison, define the centralized control set as

𝒰𝑐,𝑖 =
{
𝑢𝑖 ∣ 𝑢𝑖(𝑡) ∈ 𝜎{

𝑁∪
𝑖=1

ℱ 𝑖
𝑡}
}
,

where ℱ 𝑖
𝑡 = 𝜎(𝑥𝑖(0),𝑊𝑖(𝑠), 0 ≤ 𝑠 ≤ 𝑡), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 .

In this paper, we mainly study the following problem.
(P0). Seek a set of decentralized control strategies to op-

timize social cost for the system (1)-(2), i.e., inf𝑢𝑖∈𝒰𝑖 𝐽𝑠𝑜𝑐,
where

𝐽𝑠𝑜𝑐 =

𝑁∑
𝑖=1

𝐽𝑖(𝑢).

Assume
A1) 𝑥𝑖(0), 𝑖 = 1, ..., 𝑁 , are mutually independent and

have the same mathematical expectation. 𝔼𝑥𝑖(0) ≡ 𝑥̄0,
and there exists a constant 𝐶0 (independent of 𝑁 ) such that
max1≤𝑖≤𝑁 𝔼∥𝑥𝑖(0)∥2 < 𝐶0.

3 Finite Horizon Problem

For the convenience of design, we first consider the finite
horizon problem (P1).

inf
𝑢𝑖∈𝒰𝑑,𝑖

𝐽𝐹
soc(𝑢),

where 𝐽𝐹
soc(𝑢) = inf𝑢𝑖∈𝒰𝑑,𝑖

∑𝑁
𝑖=1 𝐽

𝐹
𝑖 (𝑢) and

𝐽𝐹
𝑖 (𝑢) =

1

2
𝔼
∫ 𝑇

0

𝑒−𝜌𝑡
{∥∥𝑥𝑖(𝑡)− Γ𝑥(𝑁)(𝑡)− 𝜂

∥∥2
𝑄

+ ∥𝑢𝑖(𝑡)∥2𝑅
}
𝑑𝑡.

(3)

We first give an equivalent condition for the convexity of
Problem (P1).

Proposition 1 Problem (P1) is convex in 𝑢 if and only if for
any 𝑢𝑖 ∈ 𝒰𝑐, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 ,

𝑁∑
𝑖=1

∫ 𝑇

0

{∥∥𝑦𝑖 − Γ𝑦(𝑁)
∥∥2
𝑄
+ ∥𝑢𝑖∥2𝑅

}
𝑑𝑡 ≥ 0,

where 𝑦𝑖 satisfies

𝑑𝑦𝑖 = [𝐴𝑦𝑖 +𝐺𝑦(𝑁) +𝐵𝑢𝑖]𝑑𝑡,

𝑦𝑖(0) = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁. (4)

By examining the variation of 𝐽𝐹
𝑠𝑜𝑐, we obtain the exis-

tence conditions of the centralized optimal control.

Theorem 1 Suppose that (P1) is convex and 𝑅 > 0. Then
(P1) has a (unique) optimal control if and only if the fol-
lowing equation system admits a (unique) set of solutions
(𝑥𝑖, 𝑝𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁):

⎧⎨⎩

𝑑𝑥𝑖 =
(
𝐴𝑥𝑖 −𝐵𝑅−1𝐵𝑇 𝑝𝑖 +𝐺𝑥(𝑁) + 𝑓

)
𝑑𝑡+ 𝜎𝑑𝑊𝑖,

𝑑𝑝𝑖 = − (
(𝐴− 𝜌𝐼)𝑇 𝑝𝑖 +𝐺𝑇 𝑝(𝑁)

)
𝑑𝑡

− (
𝑄𝑥𝑖 − Σ1𝑥

(𝑁) − 𝜂
)
𝑑𝑡+

𝑁∑
𝑗=1

𝛽𝑗
𝑖 𝑑𝑊𝑗 ,

𝑥𝑖(0) = 𝑥𝑖0, 𝑝𝑖(𝑇 ) = 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁,
(5)

where Σ1
Δ
= Γ𝑇𝑄+𝑄Γ−Γ𝑇𝑄Γ, 𝜂 Δ

= 𝑄𝜂−Γ𝑇𝑄𝜂, 𝑝(𝑁) =
1
𝑁

∑𝑁
𝑖=1 𝑝𝑖, and furthermore the optimal control is given by

𝑢̌𝑖 = −𝑅−1𝐵𝑇 𝑝𝑖.

Proof. See Appendix A. □



It follows from (5) that⎧⎨⎩

𝑑𝑥(𝑁) =
(
(𝐴+𝐺)𝑥(𝑁) −𝐵𝑅−1𝐵𝑇 𝑝(𝑁) + 𝑓

)
𝑑𝑡

+
1

𝑁

𝑁∑
𝑖=1

𝜎𝑑𝑊𝑖,

𝑑𝑝(𝑁) =−
[
(𝐴+𝐺− 𝜌𝐼)𝑇 𝑝(𝑁)

− (𝐼 − Γ)𝑇𝑄(𝐼 − Γ)𝑥(𝑁) + 𝜂
]
𝑑𝑡

+
1

𝑁

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝛽𝑗
𝑖 𝑑𝑊𝑗 ,

𝑥(𝑁)(0) =
1

𝑁

𝑁∑
𝑖=1

𝑥𝑖0, 𝑝(𝑁)(𝑇 ) = 0.

(6)

Let 𝑝𝑖 = 𝑃𝑥𝑖 +𝐾𝑥(𝑁) + 𝑠. Then by (5) and Itô’s formula,

𝑑𝑝𝑖 = 𝑃̇ 𝑥𝑖 + 𝑃
[(
𝐴𝑥𝑖 −𝐵𝑅−1𝐵𝑇 (𝑃𝑥𝑖 +𝐾𝑥(𝑁) + 𝑠)

+𝐺𝑥(𝑁) + 𝑓
)
𝑑𝑡+ 𝜎𝑑𝑊𝑖

]
+ 𝑠̇+ 𝐾̇𝑥(𝑁)

+𝐾
{[

(𝐴+𝐺)𝑥(𝑁) −𝐵𝑅−1𝐵𝑇 [(𝑃 +𝐾)𝑥(𝑁)

+ 𝑠] + 𝑓
]
𝑑𝑡+

1

𝑁

𝑁∑
𝑖=1

𝜎𝑑𝑊𝑖

}
= − [

(𝐴− 𝜌𝐼)𝑇 (𝑃𝑥𝑖 +𝐾𝑥(𝑁) + 𝑠)

+𝐺𝑇 ((𝑃 +𝐾)𝑥(𝑁) + 𝑠)

+𝑄𝑥𝑖 − Σ1𝑥
(𝑁) − 𝜂

]
𝑑𝑡+

𝑁∑
𝑗=1

𝛽𝑗
𝑖 𝑑𝑊𝑗 .

This implies that 𝛽𝑖
𝑖 =

1
𝑁𝐾𝜎 + 𝑃𝜎, 𝛽𝑗

𝑖 = 1
𝑁𝐾𝜎, 𝑗 ∕= 𝑖,

𝜌𝑃 =𝑃̇ +𝐴𝑇𝑃 + 𝑃𝐴− 𝑃𝐵𝑅−1𝐵𝑇𝑃 +𝑄, 𝑃 (𝑇 ) = 0,
(7)

𝜌𝐾 = 𝐾̇ + (𝐴+𝐺)𝑇𝐾 +𝐾(𝐴+𝐺)

− 𝑃𝐵𝑅−1𝐵𝑇𝐾 −𝐾𝐵𝑅−1𝐵𝑇𝑃 +𝐺𝑇𝑃

+ 𝑃𝐺−𝐾𝐵𝑅−1𝐵𝑇𝐾 − Σ1, 𝐾(𝑇 ) = 0, (8)

𝜌𝑠 = 𝑠̇+ [𝐴+𝐺−𝐵𝑅−1𝐵𝑇 (𝑃 +𝐾)]𝑇 𝑠

+ (𝑃 +𝐾)𝑓 − 𝜂, 𝑠(𝑇 ) = 0. (9)

Then 𝑢̌𝑖 = −𝑅−1𝐵𝑇 (𝑃𝑥𝑖 +𝐾𝑥(𝑁) + 𝑠).

Theorem 2 Let A1) hold and 𝑄 ≥ 0. Then Problem (P1)
has an optimal control

𝑢̌𝑖 = −𝑅−1𝐵𝑇 (𝑃𝑥𝑖 +𝐾𝑥(𝑁) + 𝑠),

where 𝑃,𝐾 and 𝑠 are determined by (7)-(9).

Proof. Denote Π = 𝑃 + 𝐾. Then from (8) and (9), Π
satisfies

Π̇ + (𝐴+𝐺)𝑇Π+Π(𝐴+𝐺)−Π𝐵𝑅−1𝐵𝑇Π

+ (𝐼 − Γ)𝑇𝑄(𝐼 − Γ) = 0, Π(𝑇 ) = 0.
(10)

Note that 𝑄 ≥ 0 and 𝑅 > 0. By [2, 39], (7) and (10) ad-
mit unique solutions 𝑃 ≥ 0 and Π ≥ 0, respectively, which

implies that (8) and (9) have unique solutions 𝐾 and 𝑠, re-
spectively. Then by [26, 40], FBSDE (5) admits a solution
(𝑥𝑖, 𝑝𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁). By Theorem 1, Problem (P1) has an
optimal control given by 𝑢̌𝑖 = −𝑅−1𝐵𝑇 (𝑃𝑥𝑖+𝐾𝑥(𝑁)+𝑠),
where 𝑃,𝐾 and 𝑠 are determined by (7)-(9). □

As an approximation to 𝑥(𝑁) in (6), we have

𝑑𝑥̄

𝑑𝑡
= (𝐴+𝐺)𝑥̄−𝐵𝑅−1𝐵𝑇 (Π𝑥̄+𝑠)+𝑓, 𝑥̄(0) = 𝑥̄0. (11)

Then we may design a set of decentralized control laws as
follows:

𝑢̂𝑖(𝑡) =−𝑅−1𝐵𝑇 (𝑃𝑥̂𝑖(𝑡) +𝐾𝑥̄(𝑡) + 𝑠(𝑡)),

0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁,
(12)

where 𝑃,𝐾 and 𝑠 are determined by (7)-(9), and 𝑥̄ and 𝑥̂𝑖

satisfies (11) and

𝑑𝑥̂𝑖 =
[
(𝐴−𝐵𝑅−1𝐵𝑇𝑃 )𝑥̂𝑖 −𝐵𝑅−1𝐵𝑇 (𝐾𝑥̄+ 𝑠)

+𝐺𝑥̂(𝑁) + 𝑓
]
𝑑𝑡+ 𝜎𝑑𝑊𝑖. (13)

We now give the result of asymptotic social optimality.
Due to page limitations, the proof is omitted. Denote

𝒰𝑐 =
{
(𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑁 )

∣∣ 𝑢𝑖(𝑡) ∈ 𝜎{
𝑁∪
𝑖=1

ℱ 𝑖
𝑡}
}
.

Theorem 3 Let A1) hold and 𝑄 ≥ 0. For (P1), the set of
decentralized control laws {𝑢̂1, ⋅ ⋅ ⋅ , 𝑢̂𝑁} given by (12) has
asymptotic social optimality, i.e.,∣∣∣ 1

𝑁
𝐽𝐹
𝑠𝑜𝑐(𝑢̂)−

1

𝑁
inf
𝑢∈𝒰𝑐

𝐽𝐹
𝑠𝑜𝑐(𝑢)

∣∣∣ = 𝑂(
1√
𝑁

).

4 Infinite Horizon Problem

Based the analysis in Section 3, we may design the fol-
lowing decentralized control for (P0):

𝑢̂𝑖(𝑡) = −𝑅−1𝐵𝑇 (𝑃𝑥̂𝑖(𝑡) + (Π− 𝑃 )𝑥̄(𝑡) + 𝑠(𝑡)),

𝑡 ≥ 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁,
(14)

where 𝑃,Π are determined by

𝜌𝑃 =𝐴𝑇𝑃 + 𝑃𝐴− 𝑃𝐵𝑅−1𝐵𝑇𝑃 +𝑄, (15)

𝜌Π =(𝐴+𝐺)𝑇Π+Π(𝐴+𝐺)−Π𝐵𝑅−1𝐵𝑇Π

+ (𝐼 − Γ)𝑇𝑄(𝐼 − Γ), (16)

and 𝑠, 𝑥̄ ∈ 𝐶𝜌/2([0,∞),ℝ𝑛) are determined by

𝜌𝑠 = 𝑠̇+ [𝐴+𝐺−𝐵𝑅−1𝐵𝑇Π]𝑇 𝑠+Π𝑓 − 𝜂, (17)
𝑑𝑥̄

𝑑𝑡
= (𝐴+𝐺)𝑥̄−𝐵𝑅−1𝐵𝑇 (Π𝑥̄+ 𝑠) + 𝑓, 𝑥̄(0) = 𝑥̄0.

(18)

Here the existence conditions of 𝑃,Π, 𝑠 and 𝑥̄ need to be
investigated further.

We provide the following assumptions:
A2) (𝐴− 𝜌

2𝐼,𝐵) is stabilizable, and (𝐴+𝐺− 𝜌
2𝐼,𝐵) is

stabilizable.
A3) 𝑄 ≥ 0, (𝐴 − 𝜌

2𝐼,
√
𝑄) is observable, and (𝐴 + 𝐺 −

𝜌
2𝐼,

√
𝑄(𝐼 − Γ)) is observable.



Lemma 1 Under A1)-A3), (15) and (16) admit unique solu-
tions 𝑃 > 0,Π > 0, respectively, and (17)-(18) admits a set
of unique solutions 𝑠, 𝑥̄ ∈ 𝐶𝜌/2([0,∞),ℝ𝑛).

Proof. From A2)-A3) and [2], (15) and (16) admit unique
solutions 𝑃 > 0,Π > 0 such that 𝐴 − 𝜌

2𝐼 and 𝐴 + 𝐺 −
𝐵𝑅−1𝐵𝑇Π − 𝜌

2𝐼 are Hurwitz. It is straightforward that
𝑠, 𝑥̄ ∈ 𝐶𝜌/2([0,∞),ℝ𝑛). □

We further introduce the following assumption.
A4) 𝐴+𝐺− 𝜌

2𝐼 is Hurwitz.

Lemma 2 Let A1)-A4) hold. Then for (P0)

𝔼
∫ ∞

0

𝑒−𝜌𝑡∥𝑥̂(𝑁)(𝑡)− 𝑥̄(𝑡)∥2𝑑𝑡 = 𝑂(
1

𝑁
). (19)

Proof. We have

𝑥̂(𝑁)(𝑡)− 𝑥̄(𝑡) = 𝑒(𝐴+𝐺)𝑡[𝑥̂(𝑁)(0)− 𝑥̄(0)]

+
1

𝑁

𝑁∑
𝑖=1

∫ 𝑡

0

𝑒(𝐴+𝐺)(𝑡−𝑠)𝜎𝑑𝑊𝑖(𝑠).

(20)
Thus,

𝔼
∫ ∞

0

𝑒−𝜌𝑡
(
∥𝑥̂(𝑁)(𝑡)− 𝑥̄(𝑡)∥2

)
𝑑𝑡

≤ 2𝔼
∫ ∞

0

∥∥∥𝑒(𝐴+𝐺− 𝜌
2 𝐼)𝑡

∥∥∥2 ∥𝑥̂(𝑁)(0)− 𝑥̄(0)∥2𝑑𝑡

+ 2𝔼
∫ ∞

0

𝑒−𝜌𝑡 1

𝑁

∥∥∥∥∫ 𝑡

0

𝑒(𝐴+𝐺)(𝑡−𝑠)𝜎𝑑𝑊𝑖(𝑠)

∥∥∥∥2 𝑑𝑡
≤ 2

∫ ∞

0

∥∥∥𝑒(𝐴+𝐺− 𝜌
2 𝐼)𝑡

∥∥∥2 𝔼∥𝑥̂(𝑁)(0)− 𝑥̄(0)∥2𝑑𝑡

+
2

𝑁
𝔼
∫ ∞

0

𝑒−𝜌𝑡

∫ 𝑡

0

𝑡𝑟
[
𝜎𝑇𝜎𝑒(𝐴+𝐺+𝐴𝑇+𝐺𝑇 )(𝑡−𝑠)

]
𝑑𝑠𝑑𝑡

≤ 2

𝑁

∫ ∞

0

∥∥∥𝑒(𝐴+𝐺− 𝜌
2 𝐼)𝑡

∥∥∥2 𝔼∥ max
1≤𝑖≤𝑁

𝑥̂𝑖(0)∥2𝑑𝑡

+
2

𝑁
𝔼
∫ ∞

0

𝑒−𝜌𝑡𝐶
∣∣∣1− 𝑒2𝛿𝑡

𝛿

∣∣∣𝑑𝑡 ≤ 𝑂(
1

𝑁
),

where 𝛿 < 𝜌/2. □
The systems are shown to be uniformly stabilized.

Theorem 4 Let A1)-A4) hold. Then for any 𝑁 ,

𝑁∑
𝑖=1

𝔼
∫ ∞

0

𝑒−𝜌𝑡
(∥𝑥̂𝑖(𝑡)∥2 + ∥𝑢̂𝑖(𝑡)∥2

)
𝑑𝑡 < ∞. (21)

Proof. See Appendix B. □
We now give two equivalent conditions for uniform stabi-

lization of the systems.

Theorem 5 Let A3) hold. Then for (P0) the following state-
ments are equivalent:

(i) For any initial condition (𝑥1(0), ⋅ ⋅ ⋅ , 𝑥𝑁 (0)) satisfying
A1),

𝑁∑
𝑖=1

𝔼
∫ ∞

0

𝑒−𝜌𝑡
(∥𝑥̂𝑖(𝑡)∥2 + ∥𝑢̂𝑖(𝑡)∥2

)
𝑑𝑡 < ∞. (22)

(ii) (15) and (16) admit unique solutions 𝑃 > 0,Π > 0,
respectively, and 𝐴+𝐺− 𝜌

2𝐼 is Hurwitz.
(iii) A2) and A4) hold.

Proof. See Appendix B. □
For the more general case that 𝑄 are only symmetric, we

have the following equivalent conditions for the stabilization
of the systems.

Denote

𝑀1 =

[
𝐴− 𝜌

2𝐼 𝐵𝑅−1𝐵𝑇

𝑄 −𝐴𝑇 + 𝜌
2𝐼

]
,

𝑀2 =

[
𝐴+𝐺− 𝜌

2𝐼 𝐵𝑅−1𝐵𝑇

𝑄̂ −(𝐴+𝐺)𝑇 + 𝜌
2𝐼

]
.

Theorem 6 Assume that both 𝑀1 and 𝑀2 have no eigen-
values on the imaginary axis. Then for (PS) the following
statements are equivalent:

(i) For any (𝑥1(0), ⋅ ⋅ ⋅ , 𝑥𝑁 (0)) satisfying A1),

𝑁∑
𝑖=1

𝔼
∫ ∞

0

𝑒−𝜌𝑡
(∥𝑥̂𝑖(𝑡)∥2 + ∥𝑢̂𝑖(𝑡)∥2

)
𝑑𝑡 < ∞.

(ii) (15) and (16) admit stabilizing solutions1, respectively,
and 𝐴+𝐺 is Hurwitz.

(iii) A2) and A4) hold.

Remark 1 𝑀1 and 𝑀2 are Hamilton matrices. The Hamil-
ton matrix plays a significant role in studying general alge-
braic Riccati equations. See more details of the property of
Hamilton matrices in [1, 28].

To show Theorem 6, we need two lemmas.

Lemma 3 Let A1) hold. Assume that (15) and (16) admit
stabilizing solutions, respectively, and 𝐴 + 𝐺 is Hurwitz.
Then

𝑁∑
𝑖=1

𝔼
∫ ∞

0

𝑒−𝜌𝑡
(∥𝑥̂𝑖(𝑡)∥2 + ∥𝑢̂𝑖(𝑡)∥2

)
𝑑𝑡 < ∞.

Proof. From the definition of stabilizing solutions, 𝐴 −
𝐵𝑅−1𝐵𝑇𝑃 and 𝐴 + 𝐺 − 𝐵𝑅−1𝐵𝑇Π are Hurwitz. By the
argument in the proof of Theorem 4, the lemma follows. □
Lemma 4 [28] Equations (15) and (16) admit stabilizing
solutions if and only if A2) holds and both 𝑀1 and 𝑀2 have
no eigenvalues on the imaginary axis.

The Proof of Theorem 6. By a similar argument in the
proof of Theorem 4 combined with Lemmas 3 and 4, the
Theorem follows. □
Example 1 Consider a scalar system with 𝐴 = 𝑎, 𝐵 = 𝑏,
𝐺 = 𝑔, 𝑄 = 𝑞, Γ = 𝛾, 𝑅 = 𝑟 > 0. Then

𝑀1 =

[
𝑎− 𝜌/2 𝑏2/𝑟

𝑞 −𝑎+ 𝜌/2

]
,

𝑀2 =

[
𝑎+ 𝑔 − 𝜌/2 𝑏2/𝑟
𝑞(1− 𝛾)2 −(𝑎+ 𝑔 − 𝜌/2)

]
.

By direct computations, neither 𝑀1 nor 𝑀2 has eigenvalues
in imaginary axis if and only if

(𝑎− 𝜌

2
)2 +

𝑏2

𝑟
𝑞 > 0, (23)

(𝑎+ 𝑔 − 𝜌

2
)2 +

𝑏2

𝑟
(1− 𝛾)2𝑞 > 0. (24)

1For a Riccati equation (15), 𝑃 is called a stabilizing solution if 𝑃 satis-
fies (15) and all the eigenvalues of 𝐴−𝐵𝑅−1𝐵𝑇𝑃 are in left half-plane.



Note that if 𝑞 > 0, then (23) holds, and if (1 − 𝛾)2𝑞 > 0,
then (24) holds.

For this model, the Riccati equation (15) is written as

𝑏2

𝑟
𝑝2 − (2𝑎− 𝜌)𝑝− 𝑞 = 0. (25)

Let Δ = 4[(𝑎 − 𝜌/2)2 + 𝑏2𝑞/𝑟]. If (23) holds then Δ > 0,
which implies (25) admits two solutions. If 𝑞 > 0 then (25)
has a unique positive solution such that 𝑎− 𝑏2𝑝/𝑟 − 𝜌/2 =
−√

Δ/2 < 0.
Assume that (23) and (24) hold. By Theorem 6, the system

is uniformly stable if and only if (𝑎 − 𝜌/2, 𝑏) is stabilizable
(i.e., 𝑏 ∕= 0 or 𝑎− 𝜌/2 < 0), and 𝑎− 𝑏2𝑝/𝑟 − 𝜌/2 + 𝑔 < 0.
Note that 𝑎 − 𝑏2𝑝/𝑟 − 𝜌/2 < 0. When 𝑔 ≤ 0, we have
𝑎− 𝑏2𝑝/𝑟 − 𝜌/2 + 𝑔 < 0.

We are in a position to state the asymptotic optimality of
the decentralized control. Due to page limitations, the proof
is omitted.

Theorem 7 Let A1)-A4) hold. The set of decentralized con-
trol laws {𝑢̂1, ⋅ ⋅ ⋅ , 𝑢̂𝑁} given by (14) has asymptotic social
optimality, i.e.,∣∣∣ 1

𝑁
𝐽𝑠𝑜𝑐(𝑢̂)− 1

𝑁
inf
𝑢∈𝒰𝑐

𝐽𝑠𝑜𝑐(𝑢)
∣∣∣ = 𝑂(

1√
𝑁

).

5 Comparison of Different Solutions

In this section, we compare the decentralized control laws
in (14) with the feedback decentralized control in previous
works [21].

We first introduce a definition from [4].

Definition 1 For a control problem with an admissible con-
trol set 𝒰 , a control law 𝑢 ∈ 𝒰 is said to be a representation
of another control 𝑢∗ ∈ 𝒰 if

(i) they both generate the same unique state trajectory,
and

(ii) they both have the same open-loop value on this tra-
jectory.

For Problem (P0), let 𝑓 = 0, 𝐺 = 0. In [21, Theorem
4.3], the decentralized control law is given by

𝑢̆𝑖 = −𝐵𝑅−1(𝑃𝑥𝑖 + 𝑠), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁, (26)

where 𝑃 is the semi-positive solution of (15), and 𝑠 = 𝐾̄𝑥̄+
𝜙. Here 𝐾̄, 𝑥̄ and 𝜙 ∈ 𝐶𝜌/2([0,∞),ℝ𝑛) determined by

𝜌𝐾̄ = 𝐾̄(𝐴−𝐵𝑅−1𝐵𝑇𝑃 ) + (𝐴−𝐵𝑅−1𝐵𝑇𝑃 )𝑇 𝐾̄

− 𝐾̄𝐵𝑅−1𝐵𝑇 𝐾̄𝑇 − Σ1,

𝑑𝑥̄†

𝑑𝑡
= (𝐴−𝐵𝑅−1𝐵𝑇𝑃 )𝑥̄† −𝐵𝑅−1𝐵𝑇 (𝐾̄𝑥̄† + 𝜙),

𝑑𝜙

𝑑𝑡
= − [𝐴−𝐵𝑅−1𝐵𝑇 (𝑃 + 𝐾̄)− 𝜌𝐼]𝜙+ 𝜂.

By comparing this with (16)-(18), one can obtain that 𝐾̄ =
Π−𝑃 , 𝑥̄ = 𝑥̄† and 𝜙 = 𝑠. From the analysis above, we have
the equivalence of the two decentralized control laws.

Proposition 2 The set of decentralized control laws
{𝑢̂1, ⋅ ⋅ ⋅ , 𝑢̂𝑁} in (14) is a representation of {𝑢̆1, ⋅ ⋅ ⋅ , 𝑢̆𝑁}
given in (26).

6 Numerical Examples

In this section, two numerical examples are provided to il-
lustrate the effectiveness of the proposed decentralized con-
trol laws.

We first consider a scalar system with 50 agents in Prob-
lem (P0). Take 𝐵 = 1, 𝐺 = −0.2, 𝑓(𝑡) = 1, 𝜎(𝑡) =
0.1, 𝜌 = 0.6,Γ = −0.2, 𝜂 = 5, 𝑄 = 1, 𝑅 = 1 in (1) − (2).
The initial states of 50 agents are taken independently from
a normal distribution 𝑁(5, 0.5). Then, under the control law
(14), the state trajectories of agents for the case with 𝐴 = 0.2
and 𝐴 = 1 are shown in Fig. 1 and Fig. 2, respectively. Af-
ter the transient phase, the states of agents behave similarly
and achieve agreement roughly.
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Fig. 1: State trajectories of 50 agents with 𝐴 = 0.2.
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Fig. 2: State trajectories of 50 agents with 𝐴 = 1.

For the case 𝐴 = 1, the trajectories of 𝑥̄ and 𝑥̂(𝑁) in Prob-
lems (P0) is shown in Fig. 3. It can be seen that 𝑥̄ and 𝑥̂(𝑁)

coincide well, which illustrate the consistency of mean field
approximations.
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time
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x̂
(N )

x̄

Fig. 3: State trajectories of 50 agents with 𝐴 = 1.

Next, we consider the 2-dimensional case of (P0). Take



parameters as follows: 𝐴 =

[
0.1 0
−1 0.2

]
, 𝐵 =

[
1 0
0 1

]
,

𝐺 =

[ −0.5 0
0 −0.3

]
, 𝐵 =

[
1
1

]
, 𝑄 =

[
1 0
0 1

]
, Γ =[

1 0
1 1

]
, 𝑅 =

[
1 0
0 1

]
, 𝜂 =

[
0
0.5

]
and 𝜎 = 0.5. De-

note 𝑥̂𝑖(𝑡) =

[
𝑥̂1
𝑖 (𝑡)

𝑥̂2
𝑖 (𝑡)

]
, where both of 𝑥̂1

𝑖 (0) and 𝑥̂2
𝑖 (0) are

taken independently from a normal distribution 𝑁(5, 0.5).
Under the control (14), the trajectories of 𝑥̂1

𝑖 and 𝑥̂2
𝑖 are

shown in Fig. 4 and Fig. 5, respectively.
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Fig. 4: Trajectories of 𝑥̂1
𝑖 , 𝑖 = 1, ⋅ ⋅ ⋅ , 50.
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Fig. 5: Trajectories of 𝑥̂2
𝑖 , 𝑖 = 1, ⋅ ⋅ ⋅ , 50.

7 Concluding Remarks

In this paper, we considered uniform stabilization and so-
cial control for mean field LQ control systems, where sub-
systems are coupled via dynamics and individual costs. For
the finite and infinite horizon cases, we design open-loop de-
centralized control laws by using solutions of Riccati equa-
tions, respectively, which are further shown to be asymptot-
ically social optimal. Two equivalent conditions are further
given for uniform stabilization of the systems. Finally, we
show such decentralized control is equivalent to the feed-
back control in previous works.

A Proof of Theorem 1

Necessity. Suppose that (𝑢̌1, ⋅ ⋅ ⋅ , 𝑢̌𝑁 ) is a centralized op-
timal control to Problem (P1). 𝑥̌𝑖 is the state of agent 𝑖 under
the control 𝑢̌𝑖. Let 𝛿𝑢𝑖 = 𝑢𝑖 − 𝑢̌𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 , where
𝑢𝑖, 𝑢̌𝑖 ∈ 𝒰𝑐,𝑖, 𝔼

∫ 𝑇

0
∥𝑢𝑖∥2𝑑𝑡 < ∞ and 𝔼

∫ 𝑇

0
∥𝑢̌𝑖∥2𝑑𝑡 < ∞.

Denote 𝛿𝑥𝑖 = 𝑥𝑖 − 𝑥̌𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 , and 𝛿𝑥(𝑁) =
1
𝑁

∑𝑁
𝑗=1 𝛿𝑥𝑗 . Let 𝛿𝐽𝐹

𝑠𝑜𝑐(𝑢̌𝑖) be the first variation of 𝐽𝐹
𝑠𝑜𝑐

with respect to (𝛿𝑢1, ⋅ ⋅ ⋅ , 𝛿𝑢𝑁 ). By (1),

𝑑(𝛿𝑥𝑖) = [𝐴(𝛿𝑥𝑖) +𝐵(𝛿𝑢𝑖) +𝐺(𝛿𝑥(𝑁))]𝑑𝑡,

𝛿𝑥𝑖(0) = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁.
(A.1)

Then we have

0 = 𝛿𝐽𝐹
𝑠𝑜𝑐(𝑢̌𝑖)

=

𝑁∑
𝑖=1

𝔼
∫ 𝑇

0

𝑒−𝜌𝑡
[〈
𝑄
(
𝑥̌𝑖 − (Γ𝑥̌(𝑁) + 𝜂)

)
,

𝛿𝑥𝑖 − Γ𝛿𝑥(𝑁)
〉
+ ⟨𝑅2𝑢̌𝑖, 𝛿𝑢𝑖⟩

]
𝑑𝑡.

(A.2)

Assume

𝑑𝑝𝑖 = 𝛼𝑖𝑑𝑡+ 𝛽𝑖
𝑖𝑑𝑊𝑖 +

∑
𝑗 ∕=𝑖

𝛽𝑗
𝑖 𝑑𝑊𝑗 ,

𝑝𝑖(𝑇 ) = 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁,

(A.3)

where 𝛼𝑖 and 𝛽𝑗
𝑖 are to be determined. Then by Itô’s formula,

0 = 𝔼[𝑒−𝜌𝑇 ⟨𝑝𝑖(𝑇 ), 𝛿𝑥𝑖(𝑇 )⟩ − ⟨𝑝𝑖(0), 𝛿𝑥𝑖(0)⟩]

= 𝔼
∫ 𝑇

0

[⟨𝛼𝑖, 𝛿𝑥𝑖⟩+ ⟨𝑝𝑖, (𝐴− 𝜌𝐼)𝛿𝑥𝑖 +𝐵𝛿𝑢𝑖⟩
]
𝑑𝑡.

(A.4)
Note that

𝑁∑
𝑖=1

𝔼
∫ 𝑇

0

〈
𝑄
(
𝑥̌𝑖 − (Γ𝑥̌(𝑁) + 𝜂)

)
,−Γ𝛿𝑥(𝑁)

〉
𝑑𝑡

=𝔼
∫ 𝑇

0

〈− Γ𝑇𝑄
𝑁∑
𝑖=1

(
𝑥̌𝑖 − (Γ𝑥̌(𝑁) + 𝜂)

)
,
1

𝑁

𝑁∑
𝑗=1

𝛿𝑥𝑗

〉
𝑑𝑡

=
𝑁∑
𝑗=1

𝔼
∫ 𝑇

0

〈− Γ𝑇𝑄

𝑁

𝑁∑
𝑖=1

(
𝑥̌𝑖 − (Γ𝑥̌(𝑁) + 𝜂)

)
, 𝛿𝑥𝑗

〉
𝑑𝑡

=

𝑁∑
𝑗=1

𝔼
∫ 𝑇

0

〈− Γ𝑇𝑄
(
(𝐼 − Γ)𝑥̌(𝑁) − 𝜂

)
, 𝛿𝑥𝑗

〉
𝑑𝑡.

It follows by (A.2)-(A.4) that

0 =𝔼
𝑁∑
𝑖=1

∫ 𝑇

0

𝑒−𝜌𝑡
[〈
𝑄
(
𝑥̌𝑖 − (Γ𝑥̌(𝑁) + 𝜂)

)
,

𝛿𝑥𝑖 − Γ𝛿𝑥(𝑁)
〉
+ ⟨𝑅0𝑢̌𝑖 +𝐵𝑇 𝑝𝑖, 𝛿𝑢𝑖⟩

]
𝑑𝑡

=

𝑁∑
𝑖=1

𝔼
∫ 𝑇

0

𝑒−𝜌𝑡
[⟨𝛼𝑖 + (𝐴− 𝜌𝐼)𝑇 𝑝𝑖 +𝐺𝑇 𝑝(𝑁), 𝛿𝑥𝑖⟩

=

𝑁∑
𝑖=1

𝔼
∫ 𝑇

0

𝑒−𝜌𝑡
〈
𝑅𝑢̌𝑖 +𝐵𝑇 𝑝𝑖, 𝛿𝑢𝑖

〉
𝑑𝑡

+
𝑁∑
𝑖=1

𝔼
∫ 𝑇

0

𝑒−𝜌𝑡
〈
𝑄
(
𝑥̌𝑖 − (Γ𝑥̌(𝑁) + 𝜂)

)
− Γ𝑇𝑄

(
(𝐼 − Γ)𝑥̌(𝑁) − 𝜂

)
+ 𝛼𝑖

+ (𝐴− 𝜌𝐼)𝑇 𝑝𝑖 +𝐺𝑇 𝑝(𝑁), 𝛿𝑥𝑖

〉
𝑑𝑡,

which leads to

𝛼𝑖 =− [
(𝐴− 𝜌𝐼)𝑇 𝑝𝑖 − Γ𝑇𝑄

(
(𝐼 − Γ)𝑥̌(𝑁) − 𝜂

)
+𝑄

(
𝑥̌𝑖 − (Γ𝑥̌(𝑁) + 𝜂)) +𝐺𝑇 𝑝(𝑁)

]
,

𝑢̌𝑖 =−𝑅−1𝐵𝑇 𝑝𝑖.



Thus, we have the following optimality system:⎧⎨⎩

𝑑𝑥̌𝑖 = (𝐴𝑥̌𝑖 −𝐵𝑅−1𝐵𝑇 𝑝𝑖 +𝐺𝑥̌(𝑁) + 𝑓)𝑑𝑡+ 𝜎𝑑𝑊𝑖,

𝑑𝑝𝑖 = − ((𝐴− 𝜌𝐼)𝑇 𝑝𝑖 +𝐺𝑇 𝑝(𝑁) +𝑄𝑥̌𝑖 − Σ1𝑥̌
(𝑁)

+ 𝜂)𝑑𝑡+
𝑁∑
𝑗=1

𝛽𝑗
𝑖 𝑑𝑊𝑗 ,

𝑥̌𝑖(0) = 𝑥𝑖0, 𝑝𝑖(𝑇 ) = 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁,
(A.5)

such that 𝑢̌𝑖 = −𝑅−1𝐵𝑇 𝑝𝑖. This implies that the equation
systems (5) admits a solution (𝑥̌𝑖, 𝑝𝑖).

Sufficiency. Suppose (5) admits a (unique) solution
(𝑥̌𝑖, 𝑝𝑖). Let 𝑢̌𝑖 = −𝑅−1𝐵𝑇 𝑝𝑖. By (A.2)-(A.4), 𝛿𝐽𝐹

soc(𝑢̌) =
0. Since Problem (P1) is convex in 𝑢, then for any 𝑢 =
(𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑁 ), 𝑢𝑖 ∈ 𝒰𝑐,

𝐽𝐹
𝑠𝑜𝑐(𝑢) ≥ 𝐽𝐹

𝑠𝑜𝑐(𝑢̌).

□
B Proofs of Theorems 4 and 5

Proof of Theorem 4. By A1)-A4), Lemmas 1 and 2, we
obtain that 𝑥̄ ∈ 𝐶𝜌/2([0,∞),ℝ𝑛) and

𝔼
∫ ∞

0

𝑒−𝜌𝑡
(
∥𝑥̂(𝑁)(𝑡)− 𝑥̄(𝑡)∥2

)
𝑑𝑡 = 𝑂(

1

𝑁
),

which further gives that 𝑥(𝑁) ∈ 𝐶𝜌/2([0,∞),ℝ𝑛). Denote

𝑔
Δ
= −𝐵𝑅−1𝐵𝑇 ((Π − 𝑃 )𝑥̄ + 𝑠) + 𝐺𝑥(𝑁) + 𝑓 . Then 𝑔 ∈

𝐶𝜌/2([0,∞),ℝ𝑛) and

𝑥̂𝑖(𝑡) = 𝑒𝐴𝑡𝑥̂𝑖0+

∫ 𝑡

0

𝑒𝐴(𝑡−𝑠)𝑔(𝑠)𝑑𝑠+

∫ 𝑡

0

𝑒𝐴(𝑡−𝑠)𝜎𝑑𝑊𝑖(𝑠).

(B.1)
Note that 𝐴− 𝜌

2𝐼 is Hurwitz. By Schwarz’s inequality,

𝔼
∫ ∞

0

𝑒−𝜌𝑡∥𝑥̂𝑖(𝑡)∥2𝑑𝑡

≤ 𝐶 + 3𝔼
∫ ∞

0

𝑒−𝜌𝑠∥𝑔(𝑠)∥2
∫ ∞

𝑠

𝑡
∥∥𝑒(𝐴− 𝜌

2 𝐼)(𝑡−𝑠)
∥∥2𝑑𝑡𝑑𝑠

+ 3𝐶𝔼
∫ ∞

0

𝑒−𝜌𝑠∥𝜎(𝑠)∥2
∫ ∞

𝑠

∥∥𝑒(𝐴− 𝜌
2 𝐼)(𝑡−𝑠)

∥∥2𝑑𝑡𝑑𝑠
≤ 𝐶 + 3𝐶𝔼

∫ ∞

0

𝑒−𝜌𝑠∥𝑔(𝑠)∥2𝑑𝑠

+ 3𝐶𝔼
∫ ∞

0

𝑒−𝜌𝑠∥𝜎(𝑠)∥2𝑑𝑠 ≤ 𝐶1.

□
Proof of Theorem 4. i)⇒ ii). By (13),

𝑑𝔼[𝑥̂𝑖]

𝑑𝑡
= 𝐴𝔼[𝑥̂𝑖]−𝐵𝑅−1𝐵𝑇 ((Π− 𝑃 )𝑥̄+ 𝑠)

+𝐺𝔼[𝑥̂(𝑁)] + 𝑓, 𝔼[𝑥̂𝑖(0)] = 𝑥̄0.

(B.2)

It follows from A1) that

𝔼[𝑥̂𝑖] = 𝔼[𝑥̂𝑗 ] = 𝔼[𝑥̂(𝑁)], 𝑗 ∕= 𝑖.

By comparing (18) and (B.2), we obtain 𝔼[𝑥̂𝑖] = 𝑥̄. Note
that ∥𝑥̄∥2 =

∥∥𝔼𝑥̂𝑖

∥∥2 ≤ 𝔼∥𝑥̂𝑖∥2. (22) leads to∫ ∞

0

𝑒−𝜌𝑡∥𝑥̄(𝑡)∥2𝑑𝑡 < ∞. (B.3)

By (18), we have

𝑥̄(𝑡) =𝑒(𝐴+𝐺−𝐵𝑅−1𝐵𝑇Π)𝑡
[
𝑥̄0

+

∫ 𝑡

0

𝑒−(𝐴+𝐺−𝐵𝑅−1𝐵𝑇Π)𝜏ℎ(𝜏)𝑑𝜏
]
,

where ℎ = −𝐵𝑅−1𝐵𝑇 𝑠+𝑓 . By the arbitrariness of 𝑥̄0 with
(B.3) we obtain that 𝐴+𝐺−𝐵𝑅−1𝐵𝑇Π− 𝜌

2𝐼 is Hurwitz.
That is, (𝐴 + 𝐺,𝐵) is stabilizable. By [2], (16) admits a
unique solution such that Π > 0. Note that 𝔼[𝑥(𝑁)]2 ≤
1
𝑁

∑𝑁
𝑖=1 𝔼[𝑥̂2

𝑖 ]. Then from (22) we have

𝔼
∫ ∞

0

𝑒−𝜌𝑡
∥∥𝑥̂(𝑁)(𝑡)

∥∥2𝑑𝑡 < ∞, (B.4)

which leads to 𝔼
∫∞
0

𝑒−𝜌𝑡∥𝑔(𝑡)∥2𝑑𝑡 < ∞. Here 𝑔= −
𝐵𝑅−1𝐵𝑇 ((Π−𝑃 )𝑥̄+𝑠)+𝐺𝑥̂(𝑁)+𝑓 . By (B.1), we obtain

𝔼∥𝑥̂𝑖(𝑡)∥2 = 𝔼
∥∥∥∥𝑒𝐴𝑡

(
𝑥𝑖0 +

∫ 𝑡

0

𝑒−𝐴𝑠𝑔(𝑠)𝑑𝑠

)∥∥∥∥2
+ 𝔼

∫ 𝑡

0

𝑡𝑟
[
𝜎𝑇 (𝑠)𝑒(𝐴

𝑇+𝐴)(𝑡−𝑠)𝜎(𝑠)
]
𝑑𝑠.

By (22) and the arbitrariness of 𝑥𝑖0 we obtain that 𝐴 − 𝜌
2𝐼

is Hurwitz, i.e., (𝐴,𝐵) is stabilizable. By [2], (15) admits a
unique solution such that 𝑃 > 0.

From (B.3) and (B.4),

𝔼
∫ ∞

0

𝑒−𝜌𝑡
∥∥𝑥̂(𝑁)(𝑡)− 𝑥̄(𝑡)

∥∥2𝑑𝑡 < ∞. (B.5)

On the other hand, (20) gives

𝔼
∥∥𝑥̂(𝑁)(𝑡)− 𝑥̄(𝑡)

∥∥2
=𝔼

∥∥∥𝑒(𝐴+𝐺)𝑡[𝑥̂(𝑁)(0)− 𝑥̄0]
∥∥∥2

+
1

𝑁

∫ 𝑡

0

𝑡𝑟
[
𝜎𝑇 (𝑠)𝑒(𝐴

𝑇+𝐺𝑇+𝐴+𝐺)(𝑡−𝑠)𝜎(𝑠)
]
𝑑𝑠.

By (B.5) and the arbitrariness of 𝑥𝑖0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 , we ob-
tain that 𝐴+𝐺− 𝜌

2𝐼 is Hurwitz.
(ii)⇒(iii). Define 𝑉 (𝑡) = 𝑒−𝜌𝑡𝔼[𝑦𝑇 (𝑡)Π𝑦(𝑡)], where 𝑦

satisfies

𝑑𝑦

𝑑𝑡
= (𝐴+𝐺−𝐵𝑅−1𝐵𝑇Π)𝑦, 𝑦(0) = 𝑦0.

𝑉̇ (𝑡) = 𝔼
{
𝑦𝑇 (𝑡)

[− 𝜌Π+ (𝐴+𝐺−𝐵𝑅−1𝐵𝑇Π)𝑇Π

+Π(𝐴+𝐺−𝐵𝑅−1𝐵𝑇Π)
]
𝑦(𝑡)

}
= 𝔼

{
𝑦𝑇 (𝑡)

[−Π𝐵𝑅−1𝐵𝑇Π

− (𝐼 − Γ)𝑇𝑄(𝐼 − Γ)
]
𝑦(𝑡)

}
≤ 0.

By A3), we can prove that 𝑉 (𝑡) → 0, which with Π > 0
further leads to 𝑦 → 0. This implies (𝐴 + 𝐺 − 𝜌

2𝐼,𝐵) is
stabilizable. Similarly, we can show (𝐴− 𝜌

2𝐼,𝐵) is stabiliz-
able.

(iii)⇒(i). This part has been proved in Theorem 4. □
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