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My options in this plenary lecture:

• a few technical results

• a diversity of examples



Biology looks complex…



In simple words…

A biosystem :

• growth of micro-organisms (« biomass »)
by the consumption of nutrient (substrate)
(C, O, N, H, P,…) 

• under favourable enviromental conditions 
(temperature, pH,…)



(Early) challenges

• Complex reaction network
• Living organisms : their behaviour changes with time
• Badly known kinetics (mixture of complex biochemical

kinetics and (auto-)catalytic reactions (multi-phase)
-> Complex high-order nonlinear models

• Few available (on-line and off-line) measurements
-> Difficult to obtain reliable models
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Dynamical modelling : basic model
• Simple microbial growth reaction :

S --> X
• Mass balance equations :

• r = µX with µ : specific growth rate 

• valid for continuous (V constant), batch (q = 0) et fedbatch 
(            )

qq



µ depends on S, X, T, pH, …
µ depends on S µ depends on S

µ depends on P µ depends on T



Multiple reactions
Example : anaerobic digestion

• Wastewater treatment with CH4 production

• Complex process → simplified reaction scheme

1) acidogenesis :  S1 →   X1 + S2 + P1

organic acidogenic CO2
matter      bacteria

2) methanisation : S2   →   X2 + P1 + P2

fatty methanogenic CH4
volatile bacteria

acids



General Dynamical Model

x     : component concentration vector
K : yield coefficient matrix
r(x) : reaction rate vector
F : feeding rate vector
Q : gas outflow rate vector

conversion transport dynamics



A1 A2 A3

slow    fast
k01 << k02

Let us define e = 1/k02 (<< 1)

Model reduction (slow-fast dynamics)



Mass balance equation of CA2 (multiplied by e) :

Since f2(CA2, CA3) > 0, we have : CA2 = 0

In other words: the balance equation of C = CA2 + CA3

becomes the balance equation of CA3

• Quasi Steady State (QSS) approximation
• General rule for model reduction :
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How to better account of the 
complexity of the cell and of its 
interactions with the environment?

• Metabolic engineering  (and “system biology”)

• Microbial ecology à study of the interactions between
different species 



Metabolic engineering

• Metabolic engineering : complex reaction networks
involving cell metabolism

• Challenge : can we validate 
metabolic pathways with a 
limited number of measured 
components while preserving
the orientation of the reactions?

• Solution : convex basis



A simple example: CHO cells (animal cells)

• Metabolism : utilisation of only two main energetic nutrients

• 2 initial substrates : glucose and glutamine
• 4 terminal extracellular products : lactate, alanine, NH4, CO2
• 2 terminal intracellular metabolites : 

purine and pyrimidine nucleotides
• 12 internal metabolites

• 4 fundamental pathways : glycolysis, glutaminolysis, TCA cycle,
nucleotides synthesis
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Metabolic flux analysis
• QSS approximation : Kr = 0 (dim(r) = 18)
• Rates of (measured) extracellular species : Pr = rm

• Convex bases (in order to provide positive flux values) :
here : 7

---> 7 macroscopic reactions :
1) Glucose ---> 2 Lactate
2) Glucose ---> 6 CO2
3) Glutamine ---> Alanine + 2 CO2 + NH4
4) Glutamine ---> Lactate + 2 CO2 + NH4
5) Glutamine ---> 5 CO2 + 2 NH4
6) Glucose + 3 Glutamine ---> Purine + 2 CO2 + NH4
7) Glucose + 2 Glutamine ---> Pyrimidine + 2 CO2 + NH4
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Flux mode #1
• First vector of the convex basis : e1 = [1 1 0 1 2 2 0 …. 0]T

• In other « words » :
v1 : Glucose ---> Glucose6P
v2 : Glucose6P ---> DihydroxyacetoneP + Glyceraldehyde3P
v4 : DihydroxyacetoneP ---> Glyceraldehyde3P
v5 : Glyceraldehyde3P ---> 2 Pyruvate
v6 : 2 Pyruvate ---> 2 Lactate

• Associated macroscopic reaction : 
Glucose ---> 2 Lactate



Basic concept : competitive exclusion 
principle

Basic dynamical model
with two biomasses X1 and X2
growing on one limiting substrate S :

q
Sin

V
S, X1, X2

S, X1, X2

q

D = q/V

Microbial ecology



• At steady state :
(only valid for specific values of D)

• In general, only one species will «win the competition
and survive» : --> growth curve that crosses D the first
(«best affinity» or «smallest break-even concentration»)

• Here :

(Hardin, 1960; Butler 
& Wolkowicz, 1985)

(Extension to n species and other growth curves)



Competitive exclusion principle : 
experimental validation

XA1 : E. coli (1)
XA2 : E. coli (2)
XB : P. aeroginosa

XA1

XA2

XA1

XB

XA1



The coexistence of different species is 
often encountered

experimental 
evidence :

X1
X2
X3

X1X2

X3



Dynamical persistence



One possible « solution » to have
coexistence : density dependence

e.g. Contois model



One possible « solution » to have 
coexistence : density dependence

e.g. Contois model

which can be rewritten as :



Issues and challenges

The knowledge of the dynamical mechanisms of 
coexistence/competition of microbial species can be
helpful for improving the running of biological systems, 
e.g. :

- Invasion of a culture by a contaminant
(Can we avoid systematic re-inoculation?)(e.g. yeast)

- Mixed cultures, e.g. :
• Lactic fermentation (L. bulgaricus vs S. thermophilus 

in yoghurt)
• Anaerobic digestion (thermophilic vs mesophilic

bacteria (Tatarovsky et al))
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Example : plant growth

A plant is a particularly complex biosystem
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A plant is a particularly complex biosystem (continued)



• Context : MELISSA (Micro Ecological 
Life Support System Alternative)
project (ESA)
Objective : to have autonomous 
space stations, also in terms of 
food production

• Objective of the plant growth : 
to guarantee a sufficient constant 
production by using at best the
available  resources (nitrogen,
carbon) while minimizing the
energy consumption and the 
waste production



Modelling may not be a long quiet river...

• Constraints :
- duration of the experiments
- variability of the growth
- diversity of elements (roots, shoot, leaves, 

flowers, fruits)
- measurements (e.g., how to measure the 

biomass?)

• Choice of the model : simple or complex?



Model Development (starting point)
Plant Growth Chamber

Carbon Dioxide CO2 O2

Photosynthesis
& Respiration

Photosynthesis:
Photorespiration:
Mitochondrial respiration:

222 OBiomassOHCO Light +¾¾®¾+
OHCOOBiomass Light
222 +¾¾®¾+
OHCOOBiomass 222 +¾®¾+

2
*

22 OBiomassOHCO Light +¾¾ ®¬+ Treat as stoichiometrically
reversible

Consider photosynthesis and respiration reactions to be most 
important
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Experimental results (lettuce)



Automatic control and biological 
systems
• Dynamical Modelling

- Basic & General Dynamical Model 
(+ structural properties)

- Metabolic engineering & microbial ecology
- Model identification

• Monitoring - Software sensors
• Control

- Link between control theory and biological
regulatory mechanisms

- Adaptive extremum seeking & real-time optimization



Reaction invariants : a tool for the 
synthesis of state observers

Consider the state partition :          

such that Ka is full rank

Then there exists  z = A0xa + xb with  A0Ka + Kb = 0  
such that:

Equivalent dynamical model

does not 
depend on the 
kinetics



Application : state observer 
independent of the kinetics

Let measured variables (dim[x1] ≥ rang[K])
unmeasured variables

We can then write: z = A1x1 + A2x2

left inverse

« Asymptotic » observer :



Example  : Intracellular production of PHB

PHB = Poly-β-hydroxybutyric acid (biodegradable polymer)

Aerobic culture of Alcaligenes eutrophus in fedbatch reactor

• 2 limiting substrates :
Carbon source (fructose, glucose, ...)
Nitrogen source (NH+

4)

• Intracellular production : 2 metabolic pathways :
1) associated to the growth (low yield)
2) X catalyzed by an enzyme (fully inhibited by the nitrogen)

• Bioreactor operation : 2 steps :
1) growth “without” production →  fed with both substrates
2) production without growth →  fed only with carbon



Data

Volume

Inlet feed
(glucose,

nitrogen)

Dissolved
oxygen

O2 flow
rates (inlet,
outlet



o : off-line analyses

PHB

Biomass

Glucose

Nitrogen
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Link between control theory and 
biological regulatory mechanisms

• Homeostasis (definition) :
- Property of a system within the body of an organism in which 
a variable, such as the concentration of a substance in solution,
is actively regulated to remain very nearly constant

- Characteristics of an ecosystem that resists to changes 
(disturbances) and preserves an equilibrium state.

• Can we make the link e.g. with a PI controller?

(F. Mairet, « A biomolecular proportional integral controller 
based on feedback regulation of protein level and activity »)



Rationale

• Protein X with active state (x*) and inactive state (x) : X = x* + x
• Product y : represses the production of the protein (gene 
regulation) and its activity (e.g. phosphorylation)

• Variation around the reference equilibrium: e = yref – y
• Dynamics of X : production f(y) – degradation kd

where f(y) ≃ f(yref ) + f’(yref )e with f’(yref ) < 0 (repression by y) :

• Solution :

Ẋ = f(y)� kd = f 0(yref )e

X(t) = Xref + f 0(yref )

Z t

0
e(s)ds



• Dynamics of the active protein:

• Slow-fast assumption: kax >> ki(y)x* à quasi steady-state
(QSS) approximation:

ẋ

⇤ = kax� ki(y)x
⇤

x

⇤(t) =
ka

ka + ki(y)
X(t)

• Case #1 : no regulation of the activity (ki constant)

x

⇤(t) =
ka

ka + ki
Xref +

ka

ka + ki
f

0(yref )

Z t

0
e(s)ds

integral action



• Case #2 : regulation of the activity

Let

-->

with

x

⇤(t) ' x

⇤
ref �KP e(t)�KI(y)

Z t

0
e(s)ds

ki(y) ' ki(yref ) + k
0

i(yref )e
1

a+ ✏
' 1

a

⇣
1� ✏

a

⌘
, ✏ << 1

xref =
kaXref

ka + ki(yref )

KP =
k

0

i(yref )kaXref

(ka + ki(yref ))2
, KI(y) = �kaf

0(yref )

ka + ki(y)



Basic schemes



Example : regulation of the ammonia consumption 
by E. Coli via AmtB transporters
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Control of biological systems : 
which issues ?

• Stabilisation
A key feature of reaction systems : multiple 
steady states

• Real-time optimisation
... in the absence of the precise knowledge of the 

optimum



• Tolerance to the cardio-accelerating effect of nicotine :
--> attributed to the buildup of a drug metabolite

--> antagonist to the drug
--> reduces drug effect over time

• Dynamical model :

• Drug effect E on the patient : 

drug concentration

antagonist concentration

drug infusion rate

relative potency of the antagonist wrt drug

Real-time optimisation
• Example : biomedical
• Context : drug delivery



• Optimal Steady State (OSS) : 

• A simple objective : to keep E in a prescribed interval [E1, E2]
(desired interval for the heart rate)

--> Indicator I(E)

• What if                     ?



Bittanti et al (1973) : 
possible improvement with periodic operation 
(« P-test »)

--> periodic drug delivery that maximizes the time average 
of I(E) : 



E

u

a

J(uperiodic) = 0.35
> J(uconstant) = 
0.14



It is here that the adaptive extremum 
seeking controller comes into play

• The model parameters vary depending on the patients
--> the periodic optimum is unknown

• The adaptive extremum seeking controller will find 
the optimum while controlling the system

Remark : the optimum can also be a static point























Thank you for your attention


