Automatic control and biological systems : some results, difficulties, challenges and opportunities

Denis Dochain

ICTEAM

Université catholique de Louvain, Belgium

My options in this plenary lecture:

- a few technical results
- a diversity of examples

Biology looks complex...

In simple words...

A biosystem :

- growth of micro-organisms (« biomass »)
 by the consumption of nutrient (substrate)
 (C, O, N, H, P,...)
 - under favourable enviromental conditions (temperature, pH,...)

(Early) challenges

- Complex reaction network
- Living organisms : their behaviour changes with time
- Badly known kinetics (mixture of complex biochemical kinetics and (auto-)catalytic reactions (multi-phase)
- -> Complex high-order nonlinear models
- Few available (on-line and off-line) measurements
 Difficult to obtain reliable models

Automatic control and biological systems

- Dynamical Modelling
 - Basic & General Dynamical Model
 - (+ structural properties)
 - Metabolic engineering & microbial ecology
 - Model identification
- Monitoring Software sensors
- Control
 - Link between control theory and biological regulatory mechanisms
 - Adaptive extremum seeking & real-time optimization

Dynamical modelling : basic model

- valid for continuous (V constant), batch (q = 0) et fedbatch ($\frac{dV}{dt} = q$)
- $r = \mu X$ with μ : specific growth rate

μ depends on S, X, T, pH, ...

μ depends on S Monod

 μ depends on P

$\mu \text{ depends on S} \\ \frac{\text{Haldane}}{}$

 μ depends on T

Multiple reactions

Example : anaerobic digestion

- Wastewater treatment with CH₄ production
- Complex process \rightarrow simplified reaction scheme

1) acidogenesis : $S_1 \rightarrow X_1 + S_2 + P_1$ organic acidogenic CO_2 matter bacteria 2) methanisation : $S_2 \rightarrow X_2 + P_1 + P_2$ fatty methanogenic CH_4 volatile bacteria acids

General Dynamical Model

$$\frac{dx}{dt} = Kr(x) + F - Q - \frac{q}{V}x$$

conversion transport dynamics

- *x* : component concentration vector
- *K* : yield coefficient matrix
- r(x) : reaction rate vector
- F : feeding rate vector
- Q : gas outflow rate vector

Model reduction (slow-fast dynamics)

$$r_{1} = k_{01}C_{A1}\phi_{1}(C_{A1}, C_{A2})$$

$$r_{2} = k_{02}C_{A2}\phi_{2}(C_{A2}, C_{A3})$$

Let us define $\varepsilon = 1/k_{02}$ (<< 1)

Mass balance equation of C_{A2} (multiplied by ε):

$$\begin{split} \varepsilon \frac{dC_{A2}}{dt} &= -\varepsilon \frac{q}{V} C_{A2} + \varepsilon k_{01} C_{A1} \phi_1(C_{A1}, C_{A2}) - C_{A2} \phi_2(C_{A2}, C_{A3}) \\ \varepsilon \to 0 \implies 0 = -C_{A2} \phi_2(C_{A2}, C_{A3}) \end{split}$$

Since $\phi_2(C_{A2}, C_{A3}) > 0$, we have : $C_{A2} = 0$

In other words: the balance equation of $C = C_{A2} + C_{A3}$ $\frac{dC}{dt} = -\frac{q}{V}C + r_1$

becomes the balance equation of C_{A3}

- Quasi Steady State (QSS) approximation
- General rule for model reduction :

$$\frac{dx}{dt} = 0 \text{ et } x = 0$$

Automatic control and biological systems

- Dynamical Modelling
 - Basic & General Dynamical Model (+ structural properties)
 - Metabolic engineering & microbial ecology
 - Model identification
- Monitoring Software sensors
- Control
 - Link between control theory and biological regulatory mechanisms
 - Adaptive extremum seeking & real-time optimization

How to better account of the complexity of the cell and of its interactions with the environment?

- Metabolic engineering (and "system biology")
- Microbial ecology → study of the interactions between different species

Metabolic engineering

- Metabolic engineering : complex reaction networks involving cell metabolism
- Challenge : can we validate metabolic pathways with a limited number of measured components while preserving the orientation of the reactions?
- Solution : convex basis

A simple example: CHO cells (animal cells)

- Metabolism : utilisation of only two main energetic nutrients
- 2 initial substrates : glucose and glutamine
- 4 terminal extracellular products : lactate, alanine, NH₄, CO₂
- 2 terminal intracellular metabolites : purine and pyrimidine nucleotides
- 12 internal metabolites
- 4 fundamental pathways : glycolysis, glutaminolysis, TCA cycle, nucleotides synthesis

Metabolic flux analysis

- QSS approximation : Kr = 0 (dim(r) = 18)
- Rates of (measured) extracellular species : $Pr = r_m$
- Convex bases (in order to provide positive flux values) : here : 7
- ---> 7 macroscopic reactions :
- 1) Glucose ---> 2 Lactate
- 2) Glucose ---> 6 CO_2
- 3) Glutamine ---> Alanine + 2 CO₂ + NH₄
- 4) Glutamine ---> Lactate + 2 CO_2 + NH_4
- 5) Glutamine ---> $5 CO_2 + 2 NH_4$
- 6) Glucose + 3 Glutamine ---> Purine + 2 CO_2 + NH_4
- 7) Glucose + 2 Glutamine ---> Pyrimidine + 2 CO₂ + NH₄

Flux mode #1

- First vector of the convex basis : $e_1 = [1 \ 1 \ 0 \ 1 \ 2 \ 2 \ 0 \ \dots \ 0]^T$
- In other « words » :
- v₁ : Glucose ---> Glucose6P
- v₂ : Glucose6P ---> DihydroxyacetoneP + Glyceraldehyde3P
- v₄ : DihydroxyacetoneP ---> Glyceraldehyde3P
- v₅ : Glyceraldehyde3P ---> 2 Pyruvate
- v₆ : 2 Pyruvate ---> 2 Lactate
- Associated macroscopic reaction :

Glucose ---> 2 Lactate

Microbial ecology Basic concept : competitive exclusion principle

Basic dynamical model with two biomasses X_1 and X_2 growing on one limiting substrate *S* :

$$\frac{dX_1}{dt} = \mu_1(S)X_1 - DX_1$$

$$\frac{dX_2}{dt} = \mu_2(S)X_2 - DX_2$$

$$\frac{dS}{dt} = -\frac{1}{Y_1}\mu_1(S)X_1 - \frac{1}{Y_2}\mu_2(S)X_2 + D(S_{in} - S)$$

- At steady state : $\overline{\mu}_1(S) = \overline{\mu}_2(S) = D$ (only valid for specific values of D)
- In general, only one species will «win the competition and survive» : --> growth curve that crosses D the first («best affinity» or «smallest break-even concentration»)

(Extension to n species and other growth curves)

Competitive exclusion principle : experimental validation

 X_{AI} : E. coli (1) X_{A2} : E. coli (2) X_B : P. aeroginosa

FIG. 5.2 – Validation qualitative expérimentale du comportement du modèle. Les prédictions qualitatives du modèle sont vérifiées pour : a) 2 espèces (*Escherichia coli*, souche C-8 et *Pseudomonas aeruginosa*, souche PA0283) qui diffèrent par leur constante de demi-saturation. b) 2 souches de *Escherichia coli* qui diffèrent par leur taux de croissance maximal. d) Coexistence obtenue avec 2 souches de *Escherichia coli* qui ont le même paramètre J_i . La figure c) représente l'effet de l'acide nalidixique sur le taux de croissance maximal pour les souches considérées C-8. D'après Hansen et Hubbell (1980).

The coexistence of different species is often encountered

Schmidt, J. K., B. König et U. Reichl Characterization of a three bacteria mixed culture in a chemostat: Evaluation and application of a quant

Dynamical persistence

Figure 5. Non-equilibrium dynamics observed in an experimental multispecies community. The community developed in a long-term laboratcry experiment under constant external conditions, and consisted of more than 20 different species. Data show the observed time course of (A) the dominant phytoplankton groups (green = green flagellates, blue = prekaryotic pice-phytoplankton, red = the claitom Melestrat, and (B) the dominant zooplankton groups (green = the rotifer Brachlonus, blue = the copeped Eurytemetra, red = protozoans). Data were kindly provided by Heerkloss (unpublished), and by Heerkloss & Klinkenberg (1998), with germinizion from Schweizerbartsche Verlagsbuchhandlung. One possible « solution » to have coexistence : density dependence

e.g. Contois model

$$\mu = \frac{\mu_{\max}S}{K_{C}X + S}$$

One possible « solution » to have coexistence : density dependence

e.g. Contois model

$$\mu = \frac{\mu_{\max}S}{K_{C}X + S}$$

which can be rewritten as : μ

$$\mu = \frac{\mu_{\max} \frac{S}{X}}{K_{C} + \frac{S}{X}}$$

Issues and challenges

The knowledge of the dynamical mechanisms of coexistence/competition of microbial species can be helpful for improving the running of biological systems, e.g. :

- Invasion of a culture by a contaminant
 - (Can we avoid systematic re-inoculation?)(e.g. yeast)
- Mixed cultures, e.g. :
 - Lactic fermentation (*L. bulgaricus* vs *S. thermophilus* in yoghurt)
 - Anaerobic digestion (thermophilic vs mesophilic bacteria (Tatarovsky et al))

Automatic control and biological systems

- Dynamical Modelling
 - Basic & General Dynamical Model (+ structural properties)
 - Metabolic engineering & microbial ecology
 - Model identification
- Monitoring Software sensors
- Control
 - Link between control theory and biological regulatory mechanisms
 - Adaptive extremum seeking & real-time optimization

Example : plant growth

A plant is a particularly complex biosystem

A plant is a particularly complex biosystem (continued)

 Context : MELISSA (Micro Ecological Life Support System Alternative) project (ESA)
 Objective : to have autonomous space stations, also in terms of food production

 Objective of the plant growth : to guarantee a sufficient constant production by using at best the available resources (nitrogen, carbon) while minimizing the energy consumption and the waste production

Modelling may not be a long quiet river...

- Constraints :
 - duration of the experiments
 - variability of the growth
 - diversity of elements (roots, shoot, leaves, flowers, fruits)
 - measurements (e.g., how to measure the biomass?)
- Choice of the model : simple or complex?

Model Development (starting point)

Consider photosynthesis and respiration reactions to be most important

Photosynthesis: $CO_2 + H_2O$ Light $Biomass + O_2$ Photorespiration: $Biomass + O_2$ Light $CO_2 + H_2O$ Mitochondrial respiration: $Biomass + O_2$ $CO_2 + H_2O$ $CO_2 + H_2O \leftarrow Light^*$ $Biomass + O_2$ Treat as stoichiometrically reversible

Experimental results (lettuce)

Automatic control and biological systems

- Dynamical Modelling
 - Basic & General Dynamical Model (+ structural properties)
 - Metabolic engineering & microbial ecology
 - Model identification
- Monitoring Software sensors
- Control
 - Link between control theory and biological regulatory mechanisms
 - Adaptive extremum seeking & real-time optimization

Reaction invariants : a tool for the synthesis of state observers

Consider the state partition : $x = \begin{vmatrix} x_a \\ x_b \end{vmatrix}$

such that K_a is full rank

Then there exists $z = A_0 x_a + x_b$ with $A_0 K_a + K_b = 0$ such that:

$$\begin{cases} \frac{dx_a}{dt} = K_a r(x) + F_a - Q_a - \frac{q}{V} x_a \\ \frac{dz}{dt} = A_0(F_a - Q_a) + F_b - Q_b - \frac{q}{V} z \\ \end{cases} \begin{array}{c} \text{does not} \\ \text{depend on the} \\ \text{kinetics} \\ \end{cases}$$

Application : state observer independent of the kinetics

Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ \rightarrow measured variables (dim[x_1] \ge rang[K]) \rightarrow unmeasured variables

We can then write: $z = A_1 x_1 + A_2 x_2$

« Asymptotic » observer : $\lim_{t \to \infty} (x_2 - \hat{x}_2) = 0 \quad \text{si} \quad \int_{t}^{t+\delta} \frac{q}{V}(\tau) d\tau \ge \beta > 0$ Example : Intracellular production of PHB

PHB = Poly-β-hydroxybutyric acid (biodegradable polymer)

Aerobic culture of Alcaligenes eutrophus in fedbatch reactor

• 2 limiting substrates :

Carbon source (fructose, glucose, ...) Nitrogen source (NH_4^+)

- Intracellular production : 2 metabolic pathways :
 - 1) associated to the growth (low yield)
 - 2) X catalyzed by an enzyme (fully inhibited by the nitrogen)
- Bioreactor operation : 2 steps :
 - 1) growth "without" production \rightarrow fed with both substrates
 - 2) production without growth \rightarrow fed only with carbon

Data

Automatic control and biological systems

- Dynamical Modelling
 - Basic & General Dynamical Model
 - (+ structural properties)
 - Metabolic engineering & microbial ecology
 - Model identification
- Monitoring Software sensors
- Control
 - Link between control theory and biological regulatory mechanisms

- Adaptive extremum seeking & real-time optimization

Link between control theory and biological regulatory mechanisms

- Homeostasis (definition) :
- Property of a system within the body of an organism in which a variable, such as the concentration of a substance in solution, is actively regulated to remain very nearly constant
- Characteristics of an ecosystem that resists to changes (disturbances) and preserves an equilibrium state.
- Can we make the link e.g. with a PI controller?

(F. Mairet, « A biomolecular proportional integral controller based on feedback regulation of protein level and activity »)

Rationale

- Protein X with active state (x^*) and inactive state $(x) : X = x^* + x$
- Product *y* : represses the production of the protein (gene regulation) and its activity (e.g. phosphorylation)
- Variation around the reference equilibrium: $e = y_{ref} y$
- Dynamics of X: production f(y) degradation k_d where $f(y) \approx f(y_{ref}) + f'(y_{ref})e$ with $f'(y_{ref}) < 0$ (repression by y): $\dot{X} = f(y) - k_d = f'(y_{ref})e$

• Solution :
$$X(t) = X_{ref} + f'(y_{ref}) \int_0^t e(s) ds$$

- Dynamics of the active protein: $\dot{x}^* = k_a x k_i(y) x^*$
- Slow-fast assumption: $k_a x >> k_i(y) x^* \rightarrow$ quasi steady-state (QSS) approximation:

$$x^*(t) = \frac{k_a}{k_a + k_i(y)} X(t)$$

• Case #1 : no regulation of the activity (k_i constant)

$$x^{*}(t) = \frac{k_{a}}{k_{a} + k_{i}} X_{ref} + \frac{k_{a}}{k_{a} + k_{i}} f'(y_{ref}) \int_{0}^{t} e(s) ds$$

integral action

1

• Case #2 : regulation of the activity

Let
$$k_i(y) \simeq k_i(y_{ref}) + k'_i(y_{ref})e$$

 $\frac{1}{a+\epsilon} \simeq \frac{1}{a} \left(1 - \frac{\epsilon}{a}\right), \ \epsilon << 1$

-->
$$x^*(t) \simeq x^*_{ref} - K_P e(t) - K_I(y) \int_0^t e(s) ds$$

with

$$\begin{aligned} x_{ref} &= \frac{k_a X_{ref}}{k_a + k_i (y_{ref})} \\ K_P &= \frac{k'_i (y_{ref}) k_a X_{ref}}{(k_a + k_i (y_{ref}))^2}, \ K_I(y) = -\frac{k_a f'(y_{ref})}{k_a + k_i (y)} \end{aligned}$$

Basic schemes

Example : regulation of the ammonia consumption by *E. Coli* via AmtB transporters

Automatic control and biological systems

- Dynamical Modelling
 - Basic & General Dynamical Model
 - (+ structural properties)
 - Metabolic engineering & microbial ecology
 - Model identification
- Monitoring Software sensors
- Control
 - Link between control theory and biological regulatory mechanisms

- Adaptive extremum seeking & real-time optimization

Control of biological systems : which issues ?

Stabilisation

A key feature of reaction systems : multiple steady states

Real-time optimisation

... in the absence of the precise knowledge of the optimum

Real-time optimisation

- Example : biomedical
- Context : drug delivery
- Tolerance to the cardio-accelerating effect of nicotine :
 - --> attributed to the buildup of a drug metabolite
 - --> antagonist to the drug
 - --> reduces drug effect over time

drug concentration

- Dynamical model : $\dot{c} = -c + u \leftarrow drug \text{ infusion rate}$ $\dot{a} = k_a(c-a)$ antagonist concentration
- Drug effect E on the patient : $E(c, a) = \frac{c}{(1+c)(1+a/a^*)}$

relative potency of the antagonist wrt drug

- Optimal Steady State (OSS) : $\bar{E}_{max} = \frac{\sqrt{a^*}}{(1+\sqrt{a^*})^2}$
- A simple objective : to keep E in a prescribed interval $[E_1, E_2]$ (desired interval for the heart rate)

• What if $\bar{E}_{max} < E_1$?

Bittanti et al (1973) : possible improvement with periodic operation (« П-test »)

--> periodic drug delivery that maximizes the time average of *I(E)* :

$$J = \frac{1}{T} \int_0^T I(E(c,a)) dt$$

 $J(u_{periodic}) = 0.35$ > $J(u_{constant}) =$ 0.14 It is here that the adaptive extremum seeking controller comes into play

- The model parameters vary depending on the patients
 --> the periodic optimum is unknown
- The adaptive extremum seeking controller will find the optimum while controlling the system

Remark : the optimum can also be a static point

Thank you for your attention