Simultaneous Social Cost Minimization and Nash Equilibrium Seeking in Non-cooperative Games

Maojiao Ye, Guoqiang Hu
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore

Abstract: An N-coalition non-cooperative game is formulated in this paper. In the considered game, there are N interacting coalitions and each of them includes a set of agents. Each coalition acts as a virtual player (VP) in the game that aims to minimize its own objective function, which is defined as the sum of the agents’ local objective functions in the coalition. However, the actual decision-makers are not the coalitions but the agents therein. That is, the agents within each coalition collaboratively minimize the coalition’s objective function while constituting an entity that serves as a self-interested player (i.e., the coalition) in the game among the interacting coalitions. A seeking strategy is designed for the agents to find the Nash equilibrium of the N-coalition non-cooperative games. The equilibrium seeking strategy is based on an adaptation of a dynamic average consensus protocol and the gradient play. The dynamic average consensus protocol is leveraged to estimate the averaged gradients of the coalitions’ objective functions. The gradient play is then implemented by utilizing the estimated information to achieve the Nash equilibrium seeking. Convergence results are established by utilizing Lyapunov stability analysis. A numerical example is given in supportive of the theoretical results.

Key Words: Nash equilibrium seeking; social cost minimization; interacting coalitions; non-cooperative game

1 Introduction

The analysis of competition and cooperation across multiple interacting decision-makers has been extensively investigated in recent years (see e.g., [1]-[23]). In particular, Nash equilibrium seeking in non-cooperative games (see e.g., [1]-[11] and the references therein) and distributed optimization problems (see e.g., [12]-[23] and the references therein) are two of the main lines of research. The players in non-cooperative games are self-interested to minimize their own objective functions by adjusting their own actions and Nash equilibrium seeking deals with strategy design that can be adopted by the players to find the Nash equilibrium of the non-cooperative games. Distributed optimization concerning a network of $M (M \geq 2)$ agents that cooperatively minimize $f(x)$, which is defined as

$$f(x) = \sum_{i=1}^{M} f_i(x),$$

where x denotes a vector of the decision variables and $f_i(x)$ is the local objective function of agent i.

This paper sublimes the non-cooperative games and distributed optimization problems to consider N-coalition non-cooperative games. In the N-coalition non-cooperative game, each coalition is considered as a virtual player (VP) that intends to minimize its own objective function. Nevertheless, the virtual players in the game are not the actual decision-makers and the minimization of the coalition’s objective function is achieved by the agents in the corresponding coalition. The coalition’s objective function is defined as the sum of the local objective functions associated with the agents in the corresponding coalition. The objective of this paper is to design a strategy to seek for the Nash equilibrium of the N-coalition non-cooperative games under the condition that the agents only have access into their own local objective functions.

Related Works: Two adversarial networks with opposing network objectives were considered in [1]. The networks’ objective functions were defined as the sum of the local objective functions of the agents in the corresponding networks. The two-network zero-sum game was solved in a distributed manner by using the notion of saddle point. Nash equilibrium seeking for the two-network zero-sum game was further explored in [2] under switching communication topologies. The two-network zero-sum games can be considered as a special class of the considered N-coalition non-cooperative games by noticing that for the two-network zero-sum games, $N = 2$ and $f_1(x_1, x_2) = -f_2(x_1, x_2)$, where N is the number of the coalitions, x, denotes the action of coalition i and $f_i(\cdot)$ denotes the objective function of coalition i.

It was reported in [1, 2] that adversaries in communication networks and sensor networks can be modeled by the aforementioned two-network zero-sum games. Similarly, the considered N-coalition non-cooperative game, which is highly motivated by the coexistence of cooperation and competition in many practical situations, is applicable to capture the cooperation and competition in economic markets and multi-agent networked systems. For example, in cloud computing, subsets of the cloud providers can form coalitions to establish resource pools to serve the users [24]. The service providers within the same coalition collaborate to maximize their total profit. This scenario basically falls into the formulated N-coalition non-cooperative games if the competition among different coalitions is further handled.

To solve the N-coalition non-cooperative games, consensus protocols are employed to disseminate local information among the agents in the same coalition via neighboring communication. Nash equilibrium seeking (see, e.g., [3, 4]) and social cost minimization (see, e.g., [21]-[23]) based on consensus methods have been investigated in several works. Average consensus protocols and leader-following consensus protocols were utilized in [3, 4] for Nash equilib-
rium seeking in aggregate games and multi-agent games, respectively. Similarly, average consensus protocols were leveraged to develop extremum seeking schemes to solve a social cost minimization problem in [21] and [22]. Distributed economic dispatch in smart grids was studied in [23] by designing consensus-based primal-dual dynamics. However, to realize Nash equilibrium seeking for the N-coalition non-cooperative games, simultaneous social cost minimization and Nash equilibrium seeking for non-cooperative games should be achieved, which makes the problem more challenging compared with both social cost minimization problems and Nash equilibrium seeking for non-cooperative games. Despite the challenges, the main contributions of the paper are twofold.

- An N-coalition non-cooperative game is formulated and a Nash equilibrium seeking strategy is designed for the N-coalition non-cooperative games. The proposed Nash equilibrium seeking strategy is based on an adaptation of a dynamic average consensus protocol and the gradient play. The dynamic average consensus protocol is utilized to estimate the averaged gradient information of the coalitions’ objective functions and the gradient play is implemented based on the estimated information to achieve Nash equilibrium seeking.
- It is analytically proven that under certain conditions, the Nash equilibrium of the N-coalition non-cooperative game is exponentially stable by utilizing the proposed seeking strategy. With stronger assumptions, non-local convergence results are derived.

The rest of the paper is structured as follows. Section 2 formulates the N-coalition non-cooperative games. The Nash equilibrium seeking strategy is proposed and analyzed in Section 3. A numerical example is given in Section 4 to verify the effectiveness of the proposed method. Section 5 concludes the paper.

Notations: The set of real numbers is denoted as \mathbb{R} and $[\varphi]_{i,\text{vec}}$ for $i \in \{1, 2, \cdots, N\}$, $j \in \{1, 2, \cdots, m_i\}$ is a $\sum_{i=1}^{N} m_i$ dimensional column vector defined as $[\varphi]_{i,\text{vec}} = [\varphi_{i1}, \varphi_{i2}, \cdots, \varphi_{im_i}]^T$. We say that $\mathcal{H} \subseteq \mathbb{R}^M \times \mathbb{R}^N$ if \mathcal{H} is an $M \times N$ dimensional real matrix. Let $\mathcal{H} \subseteq \mathbb{R}^N \times \mathbb{R}^N$ be a symmetric matrix, then, $\lambda_{\min}(\mathcal{H}), \lambda_{\max}(\mathcal{H})$ are the minimum and maximum eigenvalues of \mathcal{H}, respectively. Furthermore, an N dimensional column vector composed of $1(0)$ is denoted as $1_N(0_N), 0_{M \times N}$ defines an $M \times N$ dimensional matrix composed of 0 and $I_{M \times M}$ denotes an $M \times M$ dimensional identity matrix. Furthermore, $\text{diag}\{k_{ij}\}$, where $k_{ij} \in \mathbb{R}$, $i \in \{1, 2, \cdots, N\}, j \in \{1, 2, \cdots, m_i\}$ is a diagonal matrix whose diagonal elements are $k_{11}, k_{12}, \cdots, k_{im_i}$, successively. Moreover, $\text{diag}\{H_i\}$, where $H_i \in \mathbb{R}^{N_i} \times \mathbb{R}^{M_i}$, $i \in \{1, 2, \cdots, k\}$, is a block diagonal matrix in which the ith diagonal block is H_i. The symbol \otimes denotes the Kronecker product. The constants and parameters defined in the paper are real numbers.

2 Problem Formulation

This paper formulates an N-coalition non-cooperative game. In the N-coalition non-cooperative game, there are $N(N \geq 1)$ interacting coalitions, each of which acts as a virtual player in a non-cooperative game and contains a set of agents, who are the actual decision-makers. Each agent is associated with a local objective function and the agents in the same coalition work collaboratively to minimize the sum of their local objective functions. More specifically, the objective of the agents in coalition i is

$$\begin{align*}
\min_{x_i} \quad & f_i(x_i, x_{-i}), \\
\text{with} \quad & f_i(x_i, x_{-i}) = \sum_{j=1}^{m_i} f_{ij}(x_i, x_{-i}),
\end{align*}$$

where $m_i(m_i \geq 1)$ is the number of agents in coalition i and $f_{ij}(x_i, x_{-i})$ denotes the objective function of agent j in coalition i. Furthermore, x_i denotes the vector of the actions of the agents in coalition i and x_{-i} is the vector representing all the agents’ actions other than the actions of the agents in coalition i, i.e., $x_{-i} = [x_{11}^T, x_{12}^T, \cdots, x_{im_i}^T]^T$. In this paper, we suppose that $x_i \in \mathbb{R}^{m_i} = [x_{i1}, x_{i2}, \cdots, x_{im_i}]^T$, where $x_{ij} \in \mathbb{R}$ denotes the action of agent j in coalition i for $i \in \{1, 2, \cdots, N\}$ and $j \in \{1, 2, \cdots, m_i\}$. For coalition i, $i \in \{1, 2, \cdots, N\}$, the agents therein can communicate with each other via a communication graph denoted as $\mathcal{G}_i = (\mathcal{V}_i, \mathcal{E}_i)$. For notational convenience, let a_{ij}^ℓ denote the element on the jth row and ℓth column of the adjacency matrix of \mathcal{G}_i, and L_i represent the Laplacian matrix of \mathcal{G}_i. Suppose that the Nash equilibrium of the N-coalition non-cooperative game exists and is finite, the objective of this paper is to design a strategy to seek for the Nash equilibrium of the N-coalition non-cooperative games under the condition that only $f_{ij}(x_i, x_{-i})$ is available to agent j in coalition i.

Remark 1 It’s worth noting that if $N = 1, m_1 \geq 2$ the considered problem is reduced to a social cost minimization problem, in which a network of agents collaboratively minimize the sum of their local objective functions. Moreover, if $m_i = 1, \forall i \in \{1, 2, \cdots, N\}$, the considered model is reduced to a non-cooperative game. Hence, the N-coalition non-cooperative games formulated in this paper cover both the social cost minimization problem and the non-cooperative game as special cases. Note that in the subsequent analysis, we focus on the case where $N \geq 2, m_i \geq 2, \forall i \in \{1, 2, \cdots, N\}$.

The following assumptions will be utilized in the rest of the paper.

Assumption 1 The communication graphs $\mathcal{G}_i, \forall i \in \{1, 2, \cdots, N\}$ are undirected and connected.

Assumption 2 The agents’ objective functions $f_{ij}(x_i, x_{-i}), \forall i \in \{1, 2, \cdots, N\}, j \in \{1, 2, \cdots, m_i\}$ are C^2 functions.

3 Nash Equilibrium Seeking for N-coalition Non-cooperative Games

In this section, a Nash equilibrium seeking strategy will be firstly designed for the N-coalition non-cooperative games.\footnote{Related definitions on the graphs and games are given in the Section 6.1.}
Then, discussions on the strategy design will be given to provide analysis on how the strategy is designed. Lastly, convergence analysis of the Nash equilibrium under the proposed seeking strategy is conducted under certain conditions.

3.1 Nash Equilibrium Seeking Strategy Design

In the following, we design a novel Nash equilibrium seeking strategy for the N-coalition non-cooperative games. To search for the Nash equilibrium of the N-coalition non-cooperative games, the action of agent j, $j \in \{1, 2, \ldots, m_i\}$ in coalition i, $i \in \{1, 2, \ldots, N\}$ can be updated according to

$$\dot{x}_{ij} = -k_{ij}g_{ij},$$

(4)

where $k_{ij} = \delta k_{ij}$, δ is a small positive parameter and k_{ij} is a fixed positive parameter. Furthermore, g_{ij} for $j, k \in \{1, 2, \ldots, m_i\}$ are auxiliary variables governed by

$$\dot{g}_{ijk} = -g_{ijk} - \sum_{l=1}^{m} \alpha_{ijl}(g_{ijk} - g_{ilk})$$

$$= -\sum_{l=1}^{m} \alpha_{ijl}(z_{ijk} - z_{ilk}) + \frac{\partial f_j(x)}{\partial x_{ijk}},$$

(5)

where z_{ijk} for $i \in \{1, 2, \ldots, N\}$, $j, k \in \{1, 2, \ldots, m_i\}$ are auxiliary variables.

3.2 Discussions on the Nash Equilibrium Seeking Strategy

In the following, we provide some intuitions on how the seeking strategy is designed. The strategy in (5) is inspired by the average consensus protocol in Lemma 3 (see Section 6.1) and [21, 22]. It can be derived that at the equilibrium of (5), $g_{ijk} = \frac{1}{m_i}\sum_{j=1}^{m_i} \frac{\partial f_j(x)}{\partial x_{ijk}} = \frac{1}{m_i} \frac{\partial f_j(x)}{\partial x_{ijk}}, \forall j \in \{1, 2, \ldots, m_i\}$ for fixed $\frac{\partial f_j(x)}{\partial x_{ijk}} \in \{1, 2, \ldots, N\}, j, k \in \{1, 2, \ldots, m_i\}$, by Lemma 3.

Let $g_i = [g_{i11}, g_{i12}, \ldots, g_{i1m_i}, g_{i21}, \ldots, g_{im_i, m_i}^{\top}] \in \mathbb{R}^{m_i^2}$, $z_i = [z_{i11}, z_{i12}, \ldots, z_{i1m_i}, z_{i21}, \ldots, z_{im_i, m_i}]^T \in \mathbb{R}^{m_i^2}$, $p_i(x) = [\frac{\partial f_1(x)}{\partial x_{i11}}, \frac{\partial f_1(x)}{\partial x_{i12}}, \ldots, \frac{\partial f_1(x)}{\partial x_{i1m_i}}, \frac{\partial f_2(x)}{\partial x_{i21}}, \ldots, \frac{\partial f_{m_i}(x)}{\partial x_{im_i}}] \in \mathbb{R}^{m_i^2}$. Then, for $j, k \in \{1, 2, \ldots, m_i\}$, (5) can be written as

$$\dot{g_i} = - (I_{m_i^2} \times m_i + L_i \otimes I_{m_i, m_i})g_i$$

$$- (L_i \otimes I_{m_i, m_i})z_i + p_i(x)$$

(6)

$$\dot{z}_i = (L_i \otimes I_{m_i, m_i})g_i,$$

$$\forall i \in \{1, 2, \ldots, N\}. \text{Let } U = [U_{i1}, U_{i2}], \text{ where } U_{i1} \in \mathbb{R}^{m_i^2 \times m_i}, \text{ and } U_{i2} \in \mathbb{R}^{m_i^2 \times m_i}, \text{ be an orthogonal matrix such that } U_{i1}^T(L_i \otimes I_{m_i, m_i}) \text{ is full row rank and } U_{i2}^T(L_i \otimes I_{m_i, m_i}) = 0_{m_i \times m_i^2}. \text{ Furthermore, let } z_i = U_i y_i^T \tilde{y}_i^T, \text{ where } y_i \in \mathbb{R}^{m_i^2-m_i}, \text{ and } \tilde{y}_i \in \mathbb{R}^{m_i^2}. \text{ Then,}$

$$\dot{y}_i = - (I_{m_i^2} \times m_i + L_i \otimes I_{m_i, m_i})g_i$$

$$- (L_i \otimes I_{m_i, m_i})U_{i1}y_i + p_i(x)$$

(7)

$$\tilde{y}_i = U_{i1}^T(L_i \otimes I_{m_i, m_i})g_i,$$

and $\dot{\tilde{y}}_i = 0_{m_i^2}$, by which $\tilde{y}_i(t) = \tilde{y}_i(0), i \in \{1, 2, \ldots, N\}$. By the equivalence of (6) and (7), it can be derived that at the equilibrium of (7), $g_{ijk} = \frac{1}{m_i} \frac{\partial f_j(x)}{\partial x_{ijk}}, \forall i \in \{1, 2, \ldots, N\}, j, k \in \{1, 2, \ldots, m_i\}$ for fixed $\frac{\partial f_j(x)}{\partial x_{ijk}}, i \in \{1, 2, \ldots, m_i\}, j, k \in \{1, 2, \ldots, m_i\}$. Define $\tau = \delta t$. Then, in the τ-time scale,

$$\frac{dx_{ij}}{d\tau} = -k_{ij}g_{ijij},$$

(8)

and

$$\frac{d\delta g_i}{d\tau} = - (I_{m_i^2 \times m_i} + L_i \otimes I_{m_i, m_i})g_i$$

$$- (L_i \otimes I_{m_i, m_i})U_{i1}y_i + p_i(x)$$

(9)

$$\delta \frac{d\tilde{y}_i}{d\tau} = U_{i1}^T(L_i \otimes I_{m_i, m_i})g_i.$$
Assumption 4 The matrix

\[
B = \begin{bmatrix}
\frac{\partial^2 f_1}{\partial x_1^2}(x^*) & \frac{\partial^2 f_1}{\partial x_1 \partial x_2}(x^*) & \cdots & \frac{\partial^2 f_1}{\partial x_1 \partial x_N}(x^*) \\
\frac{\partial^2 f_2}{\partial x_2^2}(x^*) & \frac{\partial^2 f_2}{\partial x_2 \partial x_1}(x^*) & \cdots & \frac{\partial^2 f_2}{\partial x_2 \partial x_N}(x^*) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f_N}{\partial x_N^2}(x^*) & \frac{\partial^2 f_N}{\partial x_N \partial x_1}(x^*) & \cdots & \frac{\partial^2 f_N}{\partial x_N \partial x_N}(x^*)
\end{bmatrix}
\]

is strictly diagonally dominant.

Remark 2 Assumptions 3-4 are adapted from [3]-[4] and [7] to ensure the convergence to the Nash equilibrium by utilizing the gradient play as indicated in Lemma 2. Moreover, it’s worth noting that Assumptions 3-4 only characterize local Nash equilibria without requiring the set of the Nash equilibria to be a singleton.

For notational convenience, define \(P(x) = \frac{\partial^2 F(x)}{\partial x \partial j} = \begin{bmatrix} \frac{\partial^2 f_i}{\partial x_2 \partial x_1}(x^*) & \frac{\partial^2 f_i}{\partial x_1^2}(x^*) & \cdots & \frac{\partial^2 f_i}{\partial x_1 \partial x_N}(x^*) \\
\frac{\partial^2 f_1}{\partial x_2 \partial x_1}(x^*) & \frac{\partial^2 f_1}{\partial x_1^2}(x^*) & \cdots & \frac{\partial^2 f_1}{\partial x_1 \partial x_N}(x^*) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f_N}{\partial x_N \partial x_1}(x^*) & \frac{\partial^2 f_N}{\partial x_N \partial x_2}(x^*) & \cdots & \frac{\partial^2 f_N}{\partial x_N^2}(x^*)
\end{bmatrix} \). Further-}

Remark 3 To derive a non-local convergence result, Assumption 5 is enforced to ensure the uniqueness of the Nash equilibrium. Note that this assumption is a commonly adopted assumption in the existing literature that concerns with Nash equilibrium seeking in non-cooperative games (see, e.g., [4] [11] [27] and the references therein).

Define \(g, y \) as the concatenated vectors of \(g_i, y_i \) for \(i \in \{1, 2, \cdots, N\} \). Then, the following result can be derived.

Theorem 2 Suppose that Assumptions 1, 2 and 5 hold. Then, for each positive constant \(\Delta \), there exists a positive constant \(\delta^*(\Delta) \) such that for each \(\delta \in (0, \delta^*) \), \((x(t), g(t), y(t)) \) generated by (4) and (7) converges exponentially to \((x^*, g^*(x^*), y^*(x^*)) \) for \(||(x(0)^T, g(0)^T, y(0)^T)^T|| < \Delta ||\).

Lemma 1 Suppose that Assumptions 1-2 are satisfied. Then, for each \(x^* \) that satisfies Assumption 3, \((x^*, g^*(x^*), y^*(x^*)) \) is the equilibrium of the system in (4) and (7) with the equilibrium of \(\begin{bmatrix} g_i \\
\vdots \\
g_i \end{bmatrix} \), \(i \in \{1, 2, \cdots, N\} \) being unique. Furthermore, \(g_i^*(x_i), y_i^*(x_i), \forall i \in \{1, 2, \cdots, N\} \) are linear combinations of the elements in \(p_i(x) \).

Proof: See Section 6.3 for the proof.

Theorem 1 Suppose that Assumptions 1-2 hold. Then, for each \(x^* \) that satisfies Assumptions 3-4, there exists a positive constant \(\delta^* \) such that for each \(\delta \in (0, \delta^*) \), \((x^*, g^*(x^*), y^*(x^*)) \) is exponentially stable under (4) and (7).

Proof: See Section 6.3 for the proof.

Remark 5 Note that if there are coalitions with only one agent, the corresponding agent can update its own action according to the gradient play (see (12)). If this is the case and the agents in coalitions that have more than one agent update their actions according to the proposed seeking strategy in (4) and (5), then, similar results as Theorems 1-2 can be derived.

4 A Numerical Example

In this section, three interacting coalitions labeled as 1, 2 and 3, respectively, are considered. Furthermore, there are 5, 6 and 4 agents in coalitions 1-3, respectively (i.e., \(m_1 = 5, m_2 = 6, m_3 = 4\)). The communication graphs for the coalitions are depicted in Fig. 1.

The coalitions’ objective functions are

\[
f_1(x) = \sum_{j=1}^{5} f_{1j}(x), f_2(x) = \sum_{j=1}^{6} f_{2j}(x),
\]

\[
f_3(x) = \sum_{j=1}^{4} f_{3j}(x),
\]

for coalitions 1-3, respectively. Furthermore, in coalition 1, the local objective functions of agents 1-5 are respectively...
Conclusion

In the paper, an N-coalition non-cooperative game is considered. The coalitions are modeled as VPs in a non-cooperative game that aim to minimize their own objective functions. Each coalition’s objective function is defined as the sum of the agents’ local objective functions in the corresponding coalition. The actions of the coalitions are determined by the agents in the coalition. Through communication among the agents in each coalition via an undirected and connected communication topology, a Nash equilibrium seeking strategy is proposed. By Lyapunov stability analysis, convergence results are obtained under certain conditions.

References

there exists a path between any pair of distinct vertices. The elements in the adjacency matrix A are defined as $a_{ij} = 1$ if node j is connected with node i, else, $a_{ij} = 0$. Furthermore, $a_{ii} = 0$. The neighboring set of agent i is defined as $N_i = \{j \in V | (i, j) \in E \}$. The Laplacian matrix L is defined as $L = D - A$, where D is a diagonal matrix whose ith diagonal element is equal to the out degree of node i, represented by $\sum_{j=1}^{M} a_{ij}$ [12].

A game in a normal form is defined as a triple $\Gamma = (N, X, f)$ where $N = \{1, 2, \cdots , N \}$ is the set of N players, $X = X_1 \times \cdots \times X_N$, $X_i \subseteq \mathbb{R}^{m_i}$ is the set of actions for player i, and $f = (f_1, f_2, \cdots , f_N)$ where f_i is the cost function of player i [3].

Nash equilibrium is an action profile on which no player can reduce its cost by unilaterally changing its own action, i.e., an action profile $x^* = (x^*_1, x^*_2, \cdots , x^*_N) \in X$ is the Nash equilibrium if
\[f_i(x^*_i, x^*_{-i}) \leq f_i(x_i, x^*_{-i}), \forall i \in N, \]
for all $x_i \in X_i$ [3].

Lemma 3 [25] Let G be an undirected and connected graph, L be the Laplacian matrix of G. Then, for any constant vector $u \in \mathbb{R}^M$, the state of the following system
\[\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -I - L & -L \\ -L & 0_{M \times M} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} u \\ 0_{M} \end{bmatrix} \]
\[\begin{bmatrix} W \\ -Q^T \end{bmatrix} 0_{M \times M} \]

for arbitrary initial conditions $x(0), y(0) \in \mathbb{R}^M$ remains bounded and $x(t)$ converges exponentially to $\frac{1}{M} u_{1M}$ as $t \to \infty$. W is Hurwitz and rank$(Q) = M$, then

Lemma 4 [21] Let $W \in \mathbb{R}^{N \times N}$ and $Q \in \mathbb{R}^{N \times M}$. If W is Hurwitz and rank$(Q) = M$, then

6.2.2 Proof of Lemma 1

Setting the right-hand sides of (4) and (7) to zero gives
\[-(I_{m_1^2} \otimes I_{m_1 \times m_2}) g_{i_1} + (I_{m_2} \otimes I_{m_1 \times m_2}) y_{i_1} + p_i(x) = 0_{m_1^2}, \]
\[U_{i_1}^T (L_i \otimes I_{m_1 \times m_2}) g_{i_1} = 0_{m_1^2-m_2}, \]
and
\[- k_{i_1} g_{i_{1j}} = 0, \quad i \in \{1, 2, \cdots , N \}, \quad j \in \{1, 2, \cdots , m_i \}. \]

By (19), $g_{i_1j} = g_{i_2j} = \cdots = g_{i_{m_i}j} = \frac{1}{m_i} \frac{\partial f_i(x)}{\partial x_{i_1}}$ at the equilibrium for $i \in \{1, 2, \cdots , N \}, j \in \{1, 2, \cdots , m_i \}$. Furthermore, by (20), $g_{i+j} = 0$ at the equilibrium. Hence, $\frac{1}{m_i} \frac{\partial f_i(x)}{\partial x_{i_1}}(x) = 0$ for all $i \in \{1, 2, \cdots , N \}$ and $j \in \{1, 2, \cdots , m_i \}$, which indicates that $(x^*, y^*(x), y^*(x))$ is the equilibrium of the system in (4) and (7). As the matrix H_i is Hurwitz by Assumption 1 and Lemma 4, it is invertible and
\[\begin{bmatrix} \bar{g}_{1}^T(x) \\ \bar{g}_{2}^T(x) \end{bmatrix} = -H_i^{-1} \begin{bmatrix} p_i(x) \\ 0_{m_1^2 - m_2} \end{bmatrix}, \]
which indicates that $\bar{g}_{1}^T(x), \bar{g}_{2}^T(x)$ are linear combinations of the elements in $p_i(x)$. In particular, $\bar{g}_{1}^T(x) = \frac{1}{m_i} \frac{\partial f_i(x)}{\partial x_{i_1}}$, where $\bar{g}_{1}^T(x)$ denotes the quasi-steady state of g_{i_1j}. Hence, for each $x = x^*$,
where
\[
\begin{bmatrix}
g_i \\
y_i \\
\vdots \\
g_N \\
y_N
\end{bmatrix}
= \begin{bmatrix}
g_i^*(x^*) \\
y_i^*(x^*) \\
\vdots \\
g_N^*(x^*) \\
y_N^*(x^*)
\end{bmatrix} = -H_i^{-1}
\begin{bmatrix}
p_i(x^*) \\
0_{m_i^2-m_i}
\end{bmatrix}
\] at the equilibrium of (4) and (7). Therefore, for each
\(x = x^*\), the equilibrium of
\[
\begin{bmatrix}
g_i \\
y_i \\
\vdots \\
g_N \\
y_N
\end{bmatrix} = \begin{bmatrix}
0_{m_i^2-m_i}
\end{bmatrix}
\] is unique and is
\[
-H_i^{-1}
\begin{bmatrix}
p_i(x^*) \\
0_{m_i^2-m_i}
\end{bmatrix}
\].

6.3 Proof of Theorem 1
Letting \(\tau = \delta t\) gives
\[
\frac{d}{d\tau}
\begin{bmatrix}
g_i \\
y_i \\
\vdots \\
g_N \\
y_N
\end{bmatrix} = H
\begin{bmatrix}
g_i \\
y_i \\
\vdots \\
g_N \\
y_N
\end{bmatrix} + \begin{bmatrix}
p_i(x) \\
0_{m_i^2-m_i} \\
\vdots \\
p_N(x) \\
0_{m_N^2-m_N}
\end{bmatrix}
\]
\[
\frac{dx}{d\tau} = -\text{diag}\{\dot{k}_{ij}\}[g_{ij}]_{vec},
\]
i \in \{1, 2, \ldots, N\}, j \in \{1, 2, \ldots, m_i\},

where \(H = \text{diag}\{H_i\}\).

Then,
\[

\frac{d}{d\tau}
\begin{bmatrix}
g_i \\
y_i \\
\vdots \\
g_N \\
y_N
\end{bmatrix} = H
\begin{bmatrix}
g_i \\
y_i \\
\vdots \\
g_N \\
y_N
\end{bmatrix} + \begin{bmatrix}
p_i(x) \\
0_{m_i^2-m_i} \\
\vdots \\
p_N(x) \\
0_{m_N^2-m_N}
\end{bmatrix}
\]
\[
\frac{dx}{d\tau} = -\text{diag}\{\dot{k}_{ij}\}[g_{ij}]_{vec},
\]
i \in \{1, 2, \ldots, N\}, j \in \{1, 2, \ldots, m_i\},

where \(H = \text{diag}\{H_i\}\).

and
\[
\frac{dx}{d\tau} = -\text{diag}\{\dot{k}_{ij}\}
\begin{bmatrix}
g_{ij} \\
\vdots \\
g_{ij} \\
\vdots \\
g_{ij}
\end{bmatrix}+ \begin{bmatrix}
\frac{1}{m_i} \frac{\partial f_i}{\partial x_{ij}}
\end{bmatrix}
\]
i \in \{1, 2, \ldots, N\}, j \in \{1, 2, \ldots, m_i\},

where we have utilized the conclusion that the quasi-
steady state of \(g_{ij}\) is
\[
\frac{1}{m_i} \frac{\partial f_i}{\partial x_{ij}}, i \in \{1, 2, \ldots, N\}, j \in \{1, 2, \ldots, m_i\},
\]
i.e., \(g_{ij}^q = \frac{1}{m_i} \frac{\partial f_i}{\partial x_{ij}}\).

According to Lemma 2, the Nash equilibrium is expo-

nentially stable under the gradient play in (15). Hence,
there exists a function \(W : D_0 \rightarrow R\) where \(D_0 = \{x \in \mathbb{R}^{\sum_{i=1}^N m_i} \mid ||x - x^*|| \leq r_0\} \) for some positive constant \(r_0\) such that
\[
c_1 ||x - x^*||^2 \leq W(x) \leq c_2 ||x - x^*||^2,
\]
\[
\frac{\partial W(x)}{\partial x}^T \left(-\text{diag}\left\{\dot{k}_{ij}\right\} \frac{\partial f_i}{\partial x}\right) \leq -c_3 ||x - x^*||^2,
\]
\[
\left|\frac{\partial W(x)}{\partial x}\right| \leq c_4 ||x - x^*||,
\]
for some positive constants \(c_1, c_2, c_3, c_4\) by Theorem 4.14 of
[26]. The following analysis is conducted for the domain
in which the inequalities in (24) are satisfied.

Define the Lyapunov candidate function as
\[
V = eW(x) + (1 - e)\eta^T P \eta,
\]
where \(e \in (0, 1)\) is a constant, \(\eta = [\eta_1^T, \eta_2^T, \ldots, \eta_N^T]^T\), and \(P\) is a symmetric positive definite matrix that satisfies \(PH + HP = -Q\), for some symmetric positive definite
matrix \(Q\) as \(H\) is Hurwitz by utilizing Assumption 1 and the result in Lemma 4.

Define \(\chi = [(x - x^*)^T, \eta^T]^T\). Then, there exists a domain
\(D_1 = \{|x| \leq r_1\}\), for some positive constant \(r_1\) such that
the time-derivative of the Lyapunov candidate
function along the given trajectory in (22)-(23) satisfies
\[
\frac{dV}{d\tau} = -e\frac{\partial W(x)}{\partial x}^T \text{diag}\{\dot{k}_{ij}\}
\begin{bmatrix}
g_{ij} \\
\vdots \\
g_{ij} \\
\vdots \\
g_{ij}
\end{bmatrix} + \begin{bmatrix}
\frac{1}{m_i} \frac{\partial f_i}{\partial x_{ij}}
\end{bmatrix}
\]
\[
+ (1 - c)
\begin{bmatrix}
\eta^T P + \eta^T \frac{\partial W(x)}{\partial x}
\end{bmatrix}
\]
\[
- e \frac{\partial W(x)}{\partial x}^T \text{diag}\{\dot{k}_{ij}\}[g_{ij}]_{vec}
\]
\[
+ (1 - c)
\begin{bmatrix}
\frac{1}{\delta} \eta^T H \eta - G \left(x, \frac{dx}{d\tau}\right)^T P \eta
\end{bmatrix}
\]
\[
+ \eta^T P \left(\frac{1}{\delta} H \eta \right) G \left(x, \frac{dx}{d\tau}\right)
\]
\[
- e \frac{\partial W(x)}{\partial x}^T \text{diag}\{\dot{k}_{ij}\}[g_{ij}]_{vec}
\]
\[
- 2(1 - c)\eta^T PG \left(x, \frac{dx}{d\tau}\right),
\]
and
\[
\frac{dx}{d\tau} = -\text{diag}\{\dot{k}_{ij}\}
\begin{bmatrix}
g_{ij} \\
\vdots \\
g_{ij} \\
\vdots \\
g_{ij}
\end{bmatrix} + \begin{bmatrix}
\frac{1}{m_i} \frac{\partial f_i}{\partial x_{ij}}
\end{bmatrix}
\]
i \in \{1, 2, \ldots, N\}, j \in \{1, 2, \ldots, m_i\},

where
\[
G(x, \frac{dx}{d\tau}) = \begin{bmatrix}
\frac{\partial g_{ij}^q}{\partial x_{ij}}^T \\
\vdots \\
\frac{\partial g_{ij}^q}{\partial x_{ij}}^T \\
\frac{\partial g_{ij}^q}{\partial x_{ij}}^T \\
\frac{\partial g_{ij}^q}{\partial x_{ij}}^T
\end{bmatrix}
\]
\[
\frac{dx}{d\tau},
\]
Hence, there exists a positive constant β_1 such that for $\chi \in D_1$,
\[
\frac{dV}{dt} \leq -cc_3||x - x^*||^2 - \frac{1-c}{\delta} \lambda_{min}(Q)||\eta||^2 + c\beta_1||x - x^*||||\eta|| + 2(1-c)\beta_2||\eta||^2 + 2(1-c)\beta_3||x - x^*|| ||\eta||.
\] (27)

Since the second partial derivatives of $f_j(x)$ for $i \in \{1, 2, \ldots, N\}$, $j \in \{1, 2, \ldots, m_i\}$ are bounded for $\chi \in D_1$, $||\frac{\partial^2 f_j(x)}{\partial x^2}||$ and $||\frac{\partial^2 f_j(x)}{\partial x \partial \eta}||$, for $i \in \{1, 2, \ldots, N\}$ are bounded for $\chi \in D_1$. Moreover, $\frac{\partial f_j(x)}{\partial x_i}$, for $i \in \{1, 2, \ldots, N\}$ and $j \in \{1, 2, \ldots, m_i\}$ are Lipschitz by Lemma 3.2 in [26]. Hence, it can be derived that there exist positive constants β_2, β_3 such that for $\chi \in D_1$,
\[
\frac{dV}{dt} \leq -cc_3||x - x^*||^2 - \frac{1-c}{\delta} \lambda_{min}(Q)||\eta||^2 + c\beta_1||x - x^*||||\eta|| + 2(1-c)\beta_2||\eta||^2 + 2(1-c)\beta_3||x - x^*|| ||\eta||.
\] (28)

Define
\[
\bar{A} = \begin{bmatrix}
-cc_3 & -\frac{c\beta_1}{\delta} & -\frac{1-c}{\delta} \lambda_{min}(Q) - (1-c)\beta_3 \\
(1-c)\beta_3 & (1-c)\beta_3 & 8cc_3 \end{bmatrix}.
\]

Then, \bar{A} is symmetric positive definite if $\delta < \frac{4(1-c)cc_3 \lambda_{min}(Q)}{(c\beta_1 + 2(1-c)\beta_3)^2 + 8cc_3(1-c)\beta_3}$. Let
\[
\delta^* = \frac{4(1-c)cc_3 \lambda_{min}(Q)}{(c\beta_1 + 2(1-c)\beta_3)^2 + 8cc_3(1-c)\beta_3}.
\] (29)

Then, for each $\delta \in (0, \delta^*)$,
\[
\frac{dV}{dt} \leq -\lambda_{min}(\bar{A})||\chi||^2,
\] (30)

where $\lambda_{min}(\bar{A})$ is positive.

Since
\[
V = cW(x) + (1-c)\eta^T P \eta,
\] (31)

it can be derived that there exist positive constants μ_1 and μ_2 with $\mu_2 \geq \mu_1$ such that $\mu_1||\chi(\tau)||^2 \leq V(\chi) \leq \mu_2||\chi(\tau)||^2$. Hence, by utilizing the Comparison Lemma [26], it can be derived that
\[
\mu_1||\chi(\tau)||^2 \leq V(\tau) \leq e^{-\frac{\lambda_{min}(\bar{A})}{\mu_2}}V(0) \leq e^{-\frac{\lambda_{min}(\bar{A})}{\mu_2}}\mu_2||\chi(0)||^2.
\] (32)

Therefore,
\[
||\chi(\tau)||^2 \leq \frac{\mu_2}{\mu_1}e^{-\frac{\lambda_{min}(\bar{A})}{\mu_2}}||\chi(0)||^2, \quad (33)
\]

i.e.,
\[
||\chi(\tau)|| \leq \sqrt{\frac{\mu_2}{\mu_1}e^{-\frac{\lambda_{min}(\bar{A})}{\mu_2}}}||\chi(0)||. \quad (34)
\]

Since $\chi(\tau) = [(x - x^*)^T, \eta^T]^T$, it can be derived that
\[
\begin{bmatrix}
g_1 - g_1^T(x^*) \\
g_2 - g_2^T(x^*) \\
\vdots \\
g_N - g_N^T(x^*) \\
y_1 - y_1^T(x^*) \\
y_2 - y_2^T(x^*) \\
\vdots \\
y_N - y_N^T(x^*)
\end{bmatrix} \leq \begin{bmatrix}
x - x^* \\
\eta
\end{bmatrix} +
\begin{bmatrix}
g_1^T(x) - g_1^T(x^*) \\
g_2^T(x) - g_2^T(x^*) \\
\vdots \\
g_N^T(x) - g_N^T(x^*) \\
y_1^T(x) - y_1^T(x^*) \\
y_2^T(x) - y_2^T(x^*) \\
\vdots \\
y_N^T(x) - y_N^T(x^*)
\end{bmatrix}
\]

\[
\leq K_1 \begin{bmatrix}
x - x^* \\
\eta
\end{bmatrix} \leq K_1 \begin{bmatrix}
x(0) - x^* \\
g_1(0) - g_1^T(x^*) \\
\vdots \\
g_N(0) - g_N^T(x^*) \\
y_1(0) - y_1^T(x^*) \\
y_2(0) - y_2^T(x^*) \\
\vdots \\
y_N(0) - y_N^T(x^*)
\end{bmatrix} +
\begin{bmatrix}
g_1^T(x) - g_1^T(x^*) \\
g_2^T(x) - g_2^T(x^*) \\
\vdots \\
g_N^T(x) - g_N^T(x^*) \\
y_1^T(x) - y_1^T(x^*) \\
y_2^T(x) - y_2^T(x^*) \\
\vdots \\
y_N^T(x) - y_N^T(x^*)
\end{bmatrix} \leq K_2 \begin{bmatrix}
x(0) - x^* \\
g_1(0) - g_1^T(x^*) \\
\vdots \\
g_N(0) - g_N^T(x^*) \\
y_1(0) - y_1^T(x^*) \\
y_2(0) - y_2^T(x^*) \\
\vdots \\
y_N(0) - y_N^T(x^*)
\end{bmatrix},
\]

for some positive constants K_1 and K_2. Hence, in the τ-time scale, $(x^*, g^T(x^*), y^T(x^*))$ is exponentially stable. Converting it back to t-time scale, the conclusion is derived.

6.4 Proof of Theorem 2

Following the proof of Theorem 1, it can be derived that the system in (4) and (7) can be rewritten as (22)-(23) in the τ-time scale. Define the Lyapunov candidate function as
\[
V = \frac{c}{2}(x - x^*)^T \left(\text{diag} \left\{ \frac{k_{ij}}{m_i} \right\} \right)^{-1} (x - x^*) + (1-c)\eta^T P \eta,
\] (35)

where $c \in (0, 1)$ is a constant. Then, the rest of proof follows the steps in the proof of Theorem 1 and the details are omitted due to space limitation.