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Abstract: This paper proposes an “out-in degree” Laplacian matrix to dispose the distributed optimization problem for both the
continuous-time and discrete-time multiagent systems with the first-order dynamics over a general strongly connected digraph.
By making use of the out-degree and in-degree Laplacian matrices of the directed graph, we establish the parameter matrix
which possesses some properties similar to the Laplacian matrix of the weight-balanced graph. Such a matrix is constructed to
deal with the distributed optimization problem over a directed graph. First, we are concerned with the continuous-time case and
sufficient condition for the existence of the distributed optimal protocol. Second, a similar result is established for the discrete-
time case with a skillful design of Lyapunov function rather than usage of Young’s inequality, which simplifies optimization and
convergence analysis.
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1 Introduction

In recent years, the distributed optimization problem for
multiagent systems has drawn increasing research attention
due to its extensive applications in engineering areas. In the
framework of the distributed optimization, each agent pos-
sesses a local cost function which is only accessible to that
agent, and the aim is to utilize the local data and the neigh-
borhood information such that all the agents converge to the
network optimal state. Such a problem is regarded as the
extension of a consensus problem [1–8] in which the final
state is the global optimal point. Up to now, there have been
a surge of research efforts devoted to the distributed opti-
mization problems [9–16]. References [9] and [10] have
solved the unconstrained and constrained distributed opti-
mization problems for discrete-time multiagent systems with
the step-size converging to zero. Reference [11] has pro-
posed a continuous-time algorithm based on the feedback-
compensation method to solve the above problem. [12]
further has provided a complete convergence proof for the
continuous-time algorithm and solves the considered opti-
mal problem for systems over a weight-balanced graph. Ref-
erence [13] has developed the event-triggered condition for a
continuous-time algorithm to reduce the cost and the energy
during the state information transmission.

In most of the existing literature relating to the distributed
optimization problem, the communication topology among
agents is assumed to be a directed strongly connected topol-
ogy [17–24]. To be more specific, a push-sum algorithm has
been put forward to solve the discrete-time distributed opti-
mization problem over a directed graph in [17–20]. How-
ever, the step-size in these papers has to reduce to zero as
time goes to infinity, which limits the application of the
algorithm. On the other hand, most of the above results
exclusively use the out-degree information of agents with
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which the optimal problem can be solved and consensus is
achieved if and only if time converges to infinity, which leads
to the algorithms conservative, complex and difficult to ap-
ply in practice. As such, there is a great need to establish
some novel methods to investigate the distributed optimiza-
tion problem. This constitutes the main motivation of this
paper.

According to the above discussions, the distributed op-
timization problem for both continuous-time and discrete-
time multi-agent systems based on out-degree and in-degree
matrices over a general strongly connected graph is studied
in this paper. The main contributions are threefold: 1) an ap-
proach to constructing “out-in degree” Laplacian matrix for
the strongly connected graph is proposed, which possesses
the similar properties of weight-balanced graph; 2) with the
aid of the constructive ”out-in degree” matrix, not only the
criterion achieves optimization but also the convergence rate
can be obtained by applying the Lyapunov method; and 3)
the developed results are extended to the discrete-time case
through an elaborate Lyapunov function. Compared with
the existing results [13, 15], Young’s inequality is no longer
employed when dealing with the derivative of the selected
Lyapunov function, thereby reducing the conservatism of the
optimal condition and the difficulties handling the feedback-
compensation term.

The rest of the paper is organized as follows. Section
2 formulates the distributed optimization problem over a
general strongly connected graph. The algorithm for the
continuous-time systems and its convergence analysis is pre-
sented in Section 3. Section 4 provides the corresponding
results under the discrete-time distributed protocol. In Sec-
tion 5, numerical examples are provided to show the validity
of the established results. Finally, the summary and future
work direction is concluded in Section 6.

Notations: BT represents the transpose of the matrix B.
1n and 0n are the column vectors of n ones and n zeros re-
spectively. In denotes the n×n identity matrix. The compact
set is denoted by C. The real number is denoted by R. The



dimension of the matrix is omitted if it is obvious from the
context.
2 Problem Formulation

In this section, we formulate the distributed optimization
problem over a general strongly connected graph, and pro-
vide some related assumptions and lemmas which will be
used in the subsequent analysis.

Let G = (v, ε) represent a graph, where v = {1, ..., N}
and ε ⊆ v × v denote the node set and the edge set, re-
spectively. If there is an edge from i to j, denoted by (i, j),
then agent i can transmit information to agent j. Here, agent
i is the neighbor of agent j. If we can find at least one
path between any two nodes, the graph is connected. If
there is a directed path for every pair of nodes, then, the
digraph is strongly connected. A = [aij ] ∈ RN×N is a
weighted adjacency matrix related to G such that aij > 0
if (i, j) ∈ ε, otherwise aij = 0. For each node i ∈ v,
N−
i := {h ∈ v : (i, h) ∈ ε} and N+

i := {j ∈ v : (j, i) ∈ ε}
represent the set of its out-neighbors and in-neighbors, re-
spectively. douti =

∑N
j=1 aji and dini =

∑N
j=1 aij denote

the out-degree and in-degree of agent i, respectively. G is
a weight-balanced graph if dini = douti for all i ∈ v. The
out-degree and in-degree Laplacian matrixes of G are de-
fined as L1 = D1 − A,L2 = D2 − A, respectively, where
D1 = diag(dout1 , . . . , doutN ), D2 = diag(din1 , . . . , d

in
N ).

Consider a multiagent system with n agents labeled by
V = {1, 2, ..., n}. The network topology is just strongly
connected graph. Each agent i ∈ V is assigned to a local
cost function fi(x) : Rm → R which is only known by agent
i. Let f(x) =

∑n
i=1 fi (x). The distributed optimization is

achieved if all the agents cooperatively accomplish

min
x∈Rm

f (x) (1)

utilizing the local data and the communication with its neigh-
bors.

The assumptions, lemmas and definitions are provided in
what follows.

Assumption 1 The local cost function fi(xi) is ϖi-strongly
convex (ϖi > 0), which indicates that it satisfies
(z − x)

T
(∇fi (z)−∇fi (x)) ≥ ϖi∥z − x∥2 for all x, z ∈

Rm.

From Assumption 1, it is not difficult to obtain that the
global cost function f(x) is strictly convex, which means
the uniqueness of the network optimizer.

Assumption 2 The subgradient of the local cost func-
tion fi(xi) is θi-Lipschitz (θi > 0), which implies that
∥∇fi (z)−∇fi (x)∥ ≤ θi∥z − x∥ for all x, z ∈ Rm.

Assumption 3 The graph of the communication topology is
strongly connected.

Lemma 1 (Young’s inequality). Given x, y ∈ Rm, for any
ζ > 0, we have

xT y ≤ xTx

2ζ
+
ζ

2
yT y

Lemma 2 [4] The Laplacian matrix L of the strongly con-
nected graph has a simple zero eigenvalue and the remaining
eigenvalues with positive real parts.

Assumption 4 For the strongly connected graph, 0 is a
simple eigenvalue of the “out-in degree” Laplacian matrix
L1L2, and the rest eigenvalues of L1L2 have positive real
part.

Remark 1 L1L2 is defined as the “out-in degree” Lapla-
cian matrix for a general strongly connected graph. Gen-
erally, L1 ̸= L2 for the directed graph. Note that L1L2

has some similar properties with the Laplacian matrix of the
weight-balanced graph, such as 1TnL1L2 = 0, L1L21n = 0,
which implies that we can substitute L1L2 for the weight-
balanced Laplacian matrix to achieve some targets.

It is not difficult to validate that 0 is the eigenvalue of L1L2

with the corresponding right eigenvector 1n. Introduce an
orthogonal matrix Q = [r,R] ∈ Rn×n satisfying

r =
1n√
n
, 1TnR = 0n−1, R

TR = In−1,

RRT = In − 1n1
T
n

n
(2)

For Z ∈ Rn, utilizing Lemma 2 and the properties of the
above matrix yields

ZTQTL1L2QZ

=ZT2:nR
TL1L2RZ2:n

=ZT2:nR
TL1(RR

T +
1n1

T
n

n
)L2RZ2:n. (3)

It is obtained that the eigenvalues for the product matrix of
any two positive definite Hermite matrixes are positive in
[25]. Although such a conclusion may not be extended to
the case of the product of two generalized positive definite
matrixes [26], matrix L1L2 is assumed to be a generalized
positive semi-definite matrix with a simple zero eigenvalue.

Definition 1 The distributed optimization (1) is achieved if
the states of the agents satisfy

lim
t→∞

||xi(t)− x∗|| = 0, ∀i ∈ v,

where x∗ is a desired optimal point. Furthermore, the con-
vergence rate for the continuous-time systems is a positive
scalar δ if

||xi(t)− x∗|| ≤ Ce−δ(t−t0), ∀t >t0

where C and t0 are positive scalers. For the discrete-time
case, the convergence rate is a positive scalar φ ∈ (0, 1) if

||xi(t)− x∗|| ≤ Cφt−t0 , ∀t >t0.

The aim of this paper is to achieve consensus to the global
optimal point through the local data of the agents and com-
municating with the neighbors over a general strongly con-
nected graph.

3 Distributed optimization algorithm with
continuous-time dynamics over a general
strongly connected graph

In this section, a distributed algorithm for the continuous-
time context is provided to dispose of the optimization prob-
lem described in (1) over a directed graph. Without loss of
generality, the state dimension of each agent is set as 1.



Consider a continuous-time system with the following
first-order dynamics:

ẋi = ui, i = 1, · · · , n (4)

where xi is the state of the i-th agents, and ui is the corre-
sponding control input.

The proposed algorithm is given as follows:

yi =
∑
j∈N+

i

aij(xi − xj)

ui = −β(
∑
j∈N−

i

ajiyi −
∑
j∈N+

i

aijyj)− α∇fi(xi)− ωi

ω̇i = αβ(
∑
j∈N−

i

ajiyi −
∑
j∈N+

i

aijyj) (5)

where both α and β are positive scalars.

Remark 2 It is noted that in (5) aij and aji are both em-
ployed from the Laplacian matrix. The distributed opti-
mization cannot be achieved with the proposed algorithm in

[13, 15] due to the variation of
n∑
i=1

ωi(k). In fact, only the

out-degree Laplacian matrix is used in [13, 15], hence, the
graph information is not employed sufficiently. By contrast,
the algorithms based on the out-degree and in-degree Lapla-
cian matrixes are designed to achieve distributed optimiza-
tion for both continuous-time and discrete-time multiagent
systems over strongly connected graph in this paper.

Theorem 1 Suppose that Assumptions 1 − 4 are satisfied.
Distributed optimization with the first-order multi-agent sys-

tems (4) is reached under algorithm (5) given
n∑
i=1

ωi(0) = 0,

α > 0 and β > 0.

Proof Combining (4) with (5) yields the following compact
dynamics

Y = L2X

Ẋ = −βL1Y − α∇f̃(X)−W

Ẇ = αβL1Y (6)

which implies

Ẋ = −βL1L2X − α∇f̃(X)−W

Ẇ = αβL1L2X (7)

where X = [x1, ..., xn]
T , W = [w1, ..., wn]

T and f̃(X) =
n∑
i=1

fi(xi).

Since all the column sum of L1 are zero, we have 1TnL1 =
0n. It follows from (7) that

n∑
i=1

ω̇i = 0 (8)

which indicates
n∑
i=1

ωi(t) =

n∑
i=1

ωi(0) =0. (9)

If the derivatives of closed-loop system (7) are zero, the equi-
librium point (X∗,W ∗) satisfies the following equalities:

L1L2X
∗ = 0

βL1L2X
∗ +W ∗ + α∇f̃(X∗) = 0. (10)

It follows (9) and (10) that

1Tnα∇f̃(X∗) = −1TnW
∗ = −

n∑
i=1

ωi(t) = 0. (11)

SinceL2 is a Laplacian matrix whose row sums are zero, one
has L21n = 0, which means 1n is a right eigenvector for L2.
It is straightforward to obtain

X∗ = 1nx
∗. (12)

For the stability analysis of (7), we utilize the following vari-
able transformation to make the equilibrium point change to
the origin

η = X −X∗, τ= W−W∗. (13)

Then, it follows from (7) that{
η̇ = −βL1L2η − αh− τ
τ̇ = αβL1L2η

(14)

where h = ∇f̃(η +X∗)−∇f̃(X∗).
Selecting the transformation in (2) yields

η̂ = QT η, τ̂ = QT τ (15)

and thus it follows from (14) that
˙̂η1 = −αrTh
˙̂τ1 = 0
˙̂η2:n = −β(RTL1L2R)η̂2:n − τ̂2:n − αRTh
˙̂τ2:n = αβ(RTL1L2R)η̂2:n

(16)

where η̂1 and η̂2:n denote the first row element and the rest
elements of η̂, respectively.

We choose the candidate Lyapunov function as follow

V =
η̂T1 η̂1
2

+
η̂T2:nη̂2:n

2
+
τ̂T2:nP

−1τ̂2:n
2αβ

(17)

where P =
RT (L1L2+L

T
2 L

T
1 )R

2 is a symmetric and positive
definite matrix from Assumption 4. The eigenvalues of P
are arranged as λ2 ≤ · · · ≤ λn. Taking the derivative of (17)
gives rise to

V̇ = −αη̂T1 rTh− βη̂T2:n(R
TPR)η̂2:n − αη̂T2:nR

Th. (18)

Recalling that the local cost functions satisfy Assumption 1,
we have

−αη̂T1 rTh− αη̂T2:nR
Th ≤ −αϖη̂T η̂ (19)

where ϖ = min{ϖ1, . . . , ϖn}. It is not difficult to obtain
from (18) and (19) that

V̇ < 0. (20)



Therefore, the solution of (14) asymptotically converges to
the largest invariant set M = {η̂, τ̂ |η̂ = 0, τ̂ = 0} based on
the LaSalles Invariance Principle, which indicates

lim
t→∞

η̂(t) = lim
t→∞

τ̂(t) = 0. (21)

Then, it follows from (13) that

lim
t→∞

X(t) = X∗ = 1n ⊗ x∗ (22)

which implies that the distributed optimization is achieved.
�
Remark 3 It is worth mentioning that yi in (5) acts as an
intermediate variable after the first communication, which is
omitted in the compact form (7), while it is lack of the effect
to make all the agents converge to the same point. Therefore,
the second communication is necessary to make the consen-
sus be achieved.

In Theorem 1, the agents asymptotically converge to the
global optimizer for any α, β > 0 with algorithm (5). We
will discuss the convergence rate in the following theorem
to show the performance of the algorithm.

Theorem 2 Suppose that Assumptions 1 − 4 are satisfied.
All the agents under algorithm (5) for the first-order multi-

agent systems (4) with
n∑
i=1

ωi(0) = 0 exponentially converge

to the global optimizer with a rate no less than ψ if there
exist positive scalers α > 1 and β satisfying

b2 = αϖ − βλnµ+ θµ

2α
> 0

b3 =
2µ− βλn − θ

2αµ
> 0

1− βλn > 0, (23)

where θ = max{θi}, λn is the largest eigenvalues of P , µ
denotes a positive auxiliary parameter generated by employ-
ing Lemma 1.

Proof We utilize the equivalent transformation (16) of (7)
to analyze the convergence rate of the system. Select the
candidate Lyapunov function as

V =
η̂T1 η̂1
2

+
η̂T2:nη̂2:n

2
+
τ̂T2:nP

−1τ̂2:n
2αβ

+
1

2α
η̂T2:nτ̂2:n

+
1

2α
τ̂T2:nη̂2:n. (24)

The conditions 1 − βλn > 0 and α > 1 are sufficient to
guarantee V > 0. The derivative of (24) is as follow

V̇ =− αη̂T1 r
Th− αη̂T2:nR

Th− β

α
η̂T2:nP τ̂2:n

− 1

α
τ̂T2:nτ̂

T
2:n − 1

α
τ̂T2:nR

Th. (25)

By making use of Lemma 1, we have

−η̂T2:nP τ̂2:n ≤ λn|η̂T2:nτ̂2:n| ≤
λnµ

2
η̂T2:nη̂2:n +

λn
2µ
τ̂T2:nτ̂2:n

−τ̂T2:nRTh ≤ θ|τ̂T2:nη̂2:n| <
θµ

2
η̂T2:nη̂2:n +

θ

2µ
τ̂T2:nτ̂2:n.

(26)

Using (19), (25) and (26) leads to

V̇ ≤ −b1η̂T1 η̂1 − b2η̂
T
2:nη̂2:n − b3τ̂

T
2:nτ̂2:n (27)

where

b1 = αϖ

b2 = αϖ − βλnµ+ θµ

2α

b3 =
2µ− βλn − θ

2αµ
.

According to (24) and Lemma 1, one has

V ≤ e1η̂
T
1 η̂1 + e2η̂

T
2:nη̂2:n + e3τ̂

T
2:nτ̂2:n (28)

where e1 = 1
2 , e2 = α+1

2α , e3 = βλ2+1
2αβλ2

. It follows from (27)
and (28) that

V̇ ≤ −ψV (29)

where ψ = min{ biei },vi = 1, 2, 3. Then, we have V (t) ≤
V (0)e−ψt, which implies the agents exponentially converge
to the network optimizer with the rate no less than ψ from
Definition 1. �
Remark 4 Most of the existing results [9, 10, 16] regard-
ing the optimization problem are based on undirected graph
or weight-balanced graph. Nevertheless, the distributed op-
timization problem in the present paper only requires that
the directed graph is strongly connected, which is more gen-
eral and weaker. In addition, the continuous-time algorithm
based on in-degree and out-degree information has an ad-
vantage over those developed in [17–19]. Particularly, we
utilize the double communication to compensate the lack of
information resulting from the directed graph, which guar-
antees the validity of (8). This is the key point whether the
distributed optimization based on feedback-compensation
method is achieved or not.

4 Distributed optimization algorithm with
discrete-time dynamics over a general strongly
connected graph

In this section, we propose the discrete-time distributed
algorithm to address the optimization problem in (1) over a
directed graph.

The dynamics of the discrete-time systems is described by

xi(k + 1)− xi(k)

ϵ
= ui(k), i = 1, · · · , n (30)

where ϵ > 0 is the step-size of the discrete-time system. The
proposed algorithm for the discrete-time systems is

ui(k) =− (
∑
j∈N−

i

ajiyi(k)−
∑
j∈N+

i

aijyj(k))

−∇fi(xi(k))− ωi(k)

yi(k + 1) =
∑
j∈N+

i

aij(xi(k + 1)− xj(k + 1))



ωi(k + 1) =ωi(k) + ϵ(
∑
j∈N−

i

ajiyi(k + 1)

−
∑
j∈N+

i

aijyj(k + 1)). (31)

Remark 5 Actually, (31) can be written as the following
equivalent form

yi(k) =
∑
j∈N+

i

aij(xi(k)− xj(k))

ωi(k) =ωi(k − 1) + ϵ(
∑
j∈N−

i

ajiyi(k)

−
∑
j∈N+

i

aijyj(k))

ui(k) =− (
∑
j∈N−

i

ajiyi(k)−
∑
j∈N+

i

aijyj(k))

−∇fi(xi(k))− ωi(k) (32)

The main difference between (31) and (32) lies in that the
initial states in (31) are xi(0) and wi(0) while xi(1) and
wi(0) in (32). Thus, we can observe from (32) that the times
of network communication are twice for one iteration. We
adopt the algorithm (31) to better explain the convergence
of the algorithm.

Theorem 3 Suppose that Assumptions 1 − 4 are satis-
fied. The distributed optimization problem (1) over a
general strongly connected graph is solved with proto-
col (31) for the first-order multi-agent systems (30) with
n∑
i=1

ωi(0) = 0 under a convergence rate no less than ρ if

ϵ < min{ 1√
κ
, 2ϖθ2 ,

2λ2+2ϖ
γn+2θλn+θ2

}.

Proof The compact form for the discrete time case is

X(k + 1) = X(k)− ϵ(L1L2X(k) +∇f̃(X(k)) +W (k))

W (k + 1) =W (k) + ϵL1L2X(k + 1). (33)

By making use of the following transformation and (2)

ϕ(k) = X(k)−X∗, σ(k)= W(k)−W∗ (34)

ϕ̂(k) = QTϕ(k), σ̂(k) = QTσ(k), (35)

one has

ϕ̂1(k + 1) = ϕ̂1(k)− ϵrTh(k)

σ̂1(k + 1) = σ̂1(k)

ϕ̂2:n(k + 1) = ϕ̂2:n(k)− ϵRTL1L2Rϕ̂2:n(k)

− ϵRTh(k)− ϵσ̂2:n(k)

σ̂2:n(k + 1) = σ̂2:n(k) + ϵRTL1L2Rϕ̂2:n(k + 1). (36)

Select the Lyapunov function as follows

V (k) = V1(k) + (1− κϵ2)V2(k) + V3(k) (37)

where

V1(k) = ϕ̂T1 (k)ϕ̂1(k)

V2(k) = ϕ̂T2:n(k)ϕ̂2:n(k)

V3(k) = σ̂T2:n(k)(R
TPR)−1σ̂2:n(k).

Taking the forward difference of (37) leads to

∇V1(k) = ϕ̂T1 (k + 1)ϕ̂1(k + 1)− ϕ̂T1 (k)ϕ̂1(k)

= −2ϵϕ̂T1 (k)r
Th(k) + ϵ2hT (k)rrTh(k), (38)

∇V2(k) = ϕ̂T2:n(k + 1)ϕ̂2:n(k + 1)− ϕ̂T2:n(k)ϕ̂2:n(k)

= −2ϵϕ̂T2:n(k)R
TPRϕ̂2:n(k)− 2ϵϕ̂T2:n(k)R

Th(k)

− 2ϵϕ̂T2:n(k)σ̂2:n(k) + ϵ2ϕ̂T2:n(k)R
TMRϕ̂2:n(k)

+ 2ϵ2ϕ̂T2:n(k)R
TPRσ̂2:n(k) + ϵ2hT (k)RRTh(k)

+ 2ϵ2ϕ̂T2:n(k)R
TPRRTh(k) + ϵ2σ̂T2:n(k)σ̂2:n(k)

+ 2ϵ2hT (k)Rσ̂2:n(k), (39)

∇V3(k) = 2ϵϕ̂T2:n(k + 1)ϕ̂2:n(k)

+ ϵ2ϕ̂2:n(k + 1)TRTSRϕ̂2:n(k + 1)

≤ 2ϵϕ̂T2:n(k)σ̂2:n(k)− 2ϵ2ϕ̂T2:n(k)R
TPRσ̂2:n(k)

− 2ϵ2hT (k)Rσ̂2:n(k)− 2ϵ2σ̂T2:n(k)σ̂2:n(k)

+ κϵ2(∇V2(k) + ϕ̂T2:n(k)ϕ̂2:n(k)). (40)

By means of Assumption 1, we obtain

ϕ̂T1 (k)r
Th(k) + ϕ̂T2:n(k)R

Th(k) ≥ ϖϕ̂T (k)ϕ̂(k). (41)

From Assumption 2, it follows that

hT (k)rrTh(k) + hT (k)RRTh(k) ≤ θ2ϕ̂T (k)ϕ̂(k) (42)

where

P = (L1L2 + LT2 L
T
1 )/2

M = LT2 L
T
1 L1L2

S = LT2 L
T
1 R(R

TPR)−1RTL1L2.

From Assumption 4, λ1, . . . , λn satisfying 0 = λ1 <
λ2 ≤ · · · ≤ λn denote the eigenvalues of P . The eigen-
values of M are denoted by 0 = γ1 < γ2 ≤ · · · ≤ γn. The
largest eigenvalue of S is denoted by κ. Combining with
(37)-(42) yields

∇V (k) ≤ −l1ϕ̂T1 (k)ϕ̂1(k)− l2ϕ̂
T
2:n(k)ϕ̂2:n(k)

− l3σ̂
T
2:n(k)σ̂2:n(k) (43)

where

l1 = 2ϵϖ − ϵ2θ2

l2 = 2ϵλ2 + 2ϵϖ − ϵ2γn − 2ϵ2θλn − ϵ2θ2

l3 = ϵ2.

With the condition ϵ < min{ 1√
κ
, 2ϖθ2 ,

2λ2+2ϖ
γn+2θλn+θ2

}, we
have V (k) > 0,∇V (k) < 0. Then, the distributed op-
timization is achieved. As for the convergence rate, with
(37) and (43), we get the inequality V (k + 1) ≤ ρV (k),
ρ = 1−min{l1, l2

1−κϵ2 , l3λ2}. Furthermore, it is not difficult
to obtain that ∥xi(t)− x∗∥2 ≤ Cρt−t0 , ∀t >t0. Thus, the
convergence rate of the discrete-time distributed optimiza-
tion protocol is at least ρ from Definition 1. �



Remark 6 For the discrete time case, X(k + 1) is used to
act as the iteration term ofW (k+1) instead ofX(k) in (33).
The advantages are threefold:
(1) Motivated by the improved Jacobi iterative method,

which uses the the former iterative result to calculate the lat-
ter value for each iteration, the iterative data is sufficiently
used when X(k) is replaced by X(k + 1) in (33). The con-
vergence rate and stability of the system can be improved
due to the introduction of the latest data in the undirected
graph. Nevertheless, there is little difference between the use
of X(k) and X(k + 1) over the directed graph, which may
be caused by the property variation of the Laplacian matrix
L1L2.
(2) Although the Young’s inequality is valid to deal with

the cross terms, it also enhances the conservatism of the ob-
tained conditions. This causes the difficulty in selecting the
design parameters. In Theorem 3, the Young’s inequality is
discarded via constructing the proper candidate Lyapunov
function. From this point of view, the derived condition has
less conservatism.
(3) The terms containing σ̂2:n except σ̂T2:nσ̂2:n are elim-

inated through design of Lyapunov function, which gets rid
of the problem to analyze the effect of σ̂2:n. Generally, the
terms with σ̂2:n are dealt with Young’s inequality, which
causes certain challenges in the stability analysis of the
multi-agent systems.

Remark 7 For the discrete-time multiagent systems, the
Lyapunov method is employed to establish the stability crite-
ria of the closed-loop system and achieve the distributed op-
timization. In comparison with the literature [9, 10], where
the proof procedures are quite complex and mass, an appro-
priate Lyapunov function is selected in this paper to simplify
the proof. In addition, we avoid utilizing the Young’s in-
equality and hence the obtained results are less conservatism
and the established condition is easy to achieve.

Remark 8 Theorem 3 illustrates that the system is definitely
stable when the step-size ϵ is sufficiently small, which is cor-
responding to the result in Theorem 1 that the continuous-
time system is stable for any positive parameters α and β.

Remark 9 In multiagent systems, all the agents move
according to the control protocol, which could account
for the variation of the communication topology due to
the communication link failure when distances between
agents go beyond the data transmission radius of sen-
sors. Switching topologies with strongly connected prop-
erty are discussed for consensus of multiagent systems
in [1]. The distributed optimization problem over di-
rected graph with similar requirements is capable of be-
ing solved with (31) if ϵ < min{ 1√

κ
, 2ϖθ2 ,

2λ2+2ϖ

γn+2θλn+θ2
}

and all the possible topologies are strongly connected,
where κ = max{κn(Gs)}, λ2 = min{λ2(Gs)}, λn =
max{λn(Gs)}, γn = max{γn(Gs)}, s = 1, 2, · · · , Gs rep-
resents the switching topology.

Remark 10 In the distributed optimization problem solved
by the protocols (5) and (31), it is necessary to require that
the graph is strongly connected. Such protocols are not ap-
plied to the connected graph. The reason is that there may
exist an agent just receiving or sending information over the

1

2
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Fig. 1: The communication topology graph.

connected graph, which implies the elements of a row or a
column for the corresponding Laplacian matrix L1L2 are all
zero. The distributed optimization is not achieved owing to
the inability of updating information or the lack of the infor-
mation for this agent.

5 Simulation

In this section, numerical examples are given to testify the
main results.

Consider a multiagent system with five agents over a gen-
eral strongly connected graph. The local cost functions sat-
isfying Assumptions 1-2 are selected as follows

f1(x) = x2 + 0.1cos(x) + 3

f2(x) = 0.1e−0.2x + x+ 5

f3(x) = x2 − 2x+ 3

f4(x) = 4x2 + sin(0.2x)

f5(x) = 0.3e−0.3x − 2x.

It is observed that the whole cost function f(x) is divided
into five local cost functions and each local cost function is
assigned to an agent such that all the agents cooperatively
reach globally optimal point. Note that f(x) =

∑5
i=1 fi (x)

is convex. The adjacency matrix for the strongly connected
graph is formulated as a binary matrix, where each element
is either 1 or 0. The communication topology is shown as
Fig. 1. Then, the corresponding out-degree and in-degree
Laplacian matrixes are described by

L1 =


3 −1 −1 −1 0
−1 1 −1 0 0
0 0 3 0 −1
−1 0 −1 2 0
−1 0 0 −1 1


and

L2 =


3 −1 −1 −1 0
−1 2 −1 0 0
0 0 1 0 −1
−1 0 −1 2 0
−1 0 0 −1 2

 .
The initial state of x is x(0) = [1, −1, 0, 3, 2]T . Param-

eters α and β are given as α = β = 1. The trajectories of
each agent controlled by algorithm (5) with continuous-time
systems over a general strongly connected graph are shown
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Fig. 2: The trajectories of the five agents for continuous-
time systems over a general strongly connected graph with
α = β = 1.
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Fig. 3: The trajectories of the five agents for discrete-time
systems over a general strongly connected graph with ϵ =
0.1

in Fig. 2, where the states of the agents globally asymptoti-
cally converge to the network optimizer x∗ = 0.2439. Fig. 3
provides the trajectories of the agents under discrete-time
systems with ϵ = 0.1. The simulation results illustrate the
effectiveness of our results.

6 Conclusion

In this paper, the distributed optimization algorithm has
been proposed for both the continuous-time and discrete-
time multiagent systems over a general strongly connected
graph. The optimization condition and convergence rate
have been obtained for the considered systems based on the
Lyapunov method. Moreover, numerical simulations have
also been provided to testify the theoretical results. One of
the future research topics is to establish the algorithm for
average consensus over a general strongly connected graph.
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