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Introduction and Context 

• Programmable Logic Controllers (PLCs) are widely 
used in a very large number of systems since the 1970s 

• Control engineers classically interpret the informal 
specifications to implement the control tasks with the 
help of standardized tools for programming of PLCs 

• Growing complexity, demand for reduced development 
time & criticality of control problems              formal 
verification & design methods to guarantee & reinforce 
the requirement specifications   

• Synthesis approaches aim at generating a controller 
that satisfy the required specifications by construction, 
with very little involvement of the designer 
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Problems and Challenges 

• Formalization: unsuitability of classical control-
based specifications to identify plant reactions             
     how to obtain meaningful models of the 
plant (abstraction level, complexity, modularity, 
genericity) and the desired properties? 

• Synthesis: Complexity, readability of the result! 
• Implementation: code is generated in a 

standardized PLC  Language/architecture, 
semantically incompatible with the used models   



Control Realization:  
PLC Cycle 
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(Ramadge et Wonham, 87, 89) 

Apply control theoretic concepts to Discrete-Event Systems (separate open loop 
dynamics from f/b control, controllability, observability, …) to provide solutions 
for a variety of control synthesis problems using automata and formal languages 
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Supervisory control theory 
Example: Cat & Mouse Maze 
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Supervisory control theory 
Example: Cat & Mouse Maze 
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Supervisory control theory: 
Advantages 

• Solid formal background, with well-established theoretic 
results dealing with different problems & settings 

• Some few successful applications of the resulting 
supervisors, but it is not clear how to generalize the results 

• Provides a systematic approach to supervisory control 
design, but does not cover the overall design process to 
obtain the control realization 
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Supervisory control theory: 
Control implementation problems  

• How to obtain suitable plant & requirements models, 
knowing that industrial practice is primarily concerned with 
control-based rather than plant-based specifications?               
    Proposal of high-level specification models & suitable 
methods, but how to adapt them to SCT semantics? 

• Calculation complexity due to combinatorial explosion              
     Modularity, decentralization & hierarchy, but these 
structures may be incompatible with the natural modularity 
or hierarchy of the control system 



Supervisory control theory: 
Control implementation problems  

• behavioral discrepancy between SCT supervisors and 
the resulting PLC implementation:  

     1-  Asynchronous instantaneous events vs. persisting  
 synchronously updated Binary signals         
 mapping events to signals, missing events, and 
 avalanche effects  
 
     2- Successive events occurring between 2 PLC cycles 
 are considered by the PLC as simultaneous 
 loss of order of events occurring close together 
 

a a 1 2 3 



Supervisory control theory: 
Control implementation problems  

3- Causality and nature of control mechanism: enable/disable 
    controllable events (what should not be done) vs. set/reset  
    output signals (what to be done)  
4- Determinism: How to choose the control action among 
    the alternative paths provided by the supervisor   
5- Inexact Synchronization: due to PLC scan cycle delay,  
    the control logic is always performed on old frozen data 
  

 The proposed approaches either deal with only part of 
            the above problems or are not adapted to modular &  
            hierarchical supervision   
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SCT based approaches: 
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SCT-based approaches:  
refinement of the supervisor 

• Extracting a deterministic controller from the supervisor by 
selecting only one among the enabled controllable events: 

    - a  non-blocking supervisor may yield a blocking controller 

      Computation of  a nonblocking safe controller 

    - How to guarantee that the selected event correspond to the best 

      choice available for each case?             Proposal of criteria for choice 

    - How to provide meaningful models?             Enrich plant model with   
      plant/controller interaction features: I/O, PLC-cycle based interpretation  
  



SCT-based approaches:  
refinement of the supervisor 

• PLC implementation of local modular supervisory control 
(Leal et al., 09, 12; Queiroz & Cury, 02): Model 
decomposition is driven by the controllability of the events 

• Directed Control (Chandra et al. 03; Huang & Kumar, 08) 

• Use of a generic PLC cycle and I/O models (Cantarelli & 
Roussel, 08; Roussel & Giua, 05) 

• Timed DES supervisors and sampled-data controllers 
(Brandin & Wonham, 94; Leduc et al., 14) 



SCT based approaches:  
Introducing a specification 

model of the controller 

Informal 
Specification 

Specification 
of desired 
Properties 

Formal 
Specification of 
the Controller 

Supervisor 

implementation 

Control 
Program 

direct 
implementation 

Controller 

formalization 

Control 
Realization 

refinement  

Plant Model 

Supervisor 
synthesis control 

synthesis 
Extended process 

Supervised Control without a plant model 



• Translate Grafcet control specifications into automata, the 
supervisor acts as a coordinator (Charbonnier et al., 1991):     

           - limited to a subset of Grafcet structure with restrictive assumptions 
 on plant-controller interactions  

• Extension to service-based architecture (Basile et al., 13):  
           - IEC 61131 is used to code the basic control sequences in Function 
 Blocks (FB) providing their functionalities as services whose 
 execution is forced by a Petri Net controller (forced events)   

           - improved reusability: FB programming only deals with functional 
 aspects, logical constraints are enforced using a formal method  

           - well-adapted to the coordination level, does not guarantee deadlock-
 freeness at the control implementation level  

SCT based approaches:  
Introducing a specification 

model of the controller 
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Correction of Grafcet 
& visualisation  

SCT based approaches 
Zaytoon et al. (1999, 2001) 
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SCT based approaches 
Zaytoon et al. (1999, 2001) 

• The supervisor enforces the safety & liveness 
specifications, the controller directs the system toward 
the desired goal, to accomplish a specific set of tasks 

• Problem: semantic distance separating Grafcet (a 
commonly used control model in practice based on 
conditions, events, logic operations, synchronism, 
reactivity, parallelism) and the SCT model 
(asynchronous, interpretation of events & controller-
plant interactions)              How to obtain meaningful 
models for the plant and the required properties?  
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Non SCT based approaches:              
Algebraic approaches (Roussel & Lesage, 14)  

yj[k] = Fj (u1[k], …, up[k], x1[k-1], …, xr[k-1]) 
xl[k] = Fq+1 (u1[k], …, up[k], x1[k-1], …, xr[k-1]) 
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equation solving 

  

Advantages: 
- using a unique formal framework for:  
i) modelling, verification & control synthesis, 
ii) assisting the designer in formalizing & 
refining the requirements as PLC design 
process is iterative, not linear 
- recurrent Boolean equations are well 
adapted to express safety requirements and 
for implementation 
 
But:  
- algebraic approaches are not very popular 
in engineering practice;  
- difficulty of maintenance of the PLC 
realization, based on a different formalism;  
- how to deal with modular design? 

Non SCT based approaches:              
Algebraic approaches (Roussel & Lesage, 14)  
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Non SCT based approaches:      
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Non SCT based approaches: 
 Logical Filter (Riera et al. 14, 15) 
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∀yj , 4 logical (safety) functions 
can be defined to set/reset yj if 
the function = True , otherwise 
yj = oj  

Sj : f (u, x, y *) , sets yj  

Rj : f (u, x, y *) , resets yj  

                    Sj.Rj= 0 

Scj : f (u, x, y *, o ) , sets yj  

Rcj : f (u, x, y *, o) , resets yj  

                   Scj.Rcj= 0 

Sj , Rj have priority over Scj , Rcj  
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Non SCT based approaches: 
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Calculation of outputs set/reset by Sj and Rj 
∀yj : IF Sj =1: yj=mj=1; ELSEIF Rj =1: yj=mj =0; 

ELSE yj=mj=nd   

Iterative calculation of outputs set/reset due to Scj and Rcj  
 REPEAT:  {∀yj =nd: Calculate Scj and Rcj ;  
      ∀mj =nd: mj=1 if Scj =1; mj=0 if Rcj =1} 
   UNTIL (no change of Scj or Rcj over the last 2 iterations  
                  OR max iteration number attained)     
IF max iteration number not attained  
    THEN { ∀yj=nd  IF mj=nd: yj=oj  ; ELSE yj=mj } 
    ELSE  ∀yj=nd : yj=0 (block the system in a safe state) 
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Sequential observers & memorization of previous outputs  

Converges if number of iterations ≤ twice the number of outputs with combined functions, otherwise 
 

the system is blocked in a safe state if constraints are badly defined or if a malfunction occurs   

Non SCT based approaches: 
 Logical Filter (Riera et al. 14, 15) 



• The designer needs not alter his/her traditional engineering 
method             Guarantee safe execution of existing PLC programs 
without modifying them 

• safety & functional requirements separately defined: 
    - Intuitive and natural way to represent safety constraints as output 
      set/reset functions that can be formally checked (offline) to verify  
      pertinence and consistency 

    - Simplify the definition of functional aspects: no need to use a  
       complete GRAFCET specification 

   - The controller is safe even if functional requirements are  
       badly defined (if PLC program is wrong) 

 

Non SCT based approaches: 
 Logical Filter (Riera et al. 14, 15) 



ELEMENTS Sensors Actuators 

Cylinder 1 Se0, Se1 y1  

Cylinder 2 Sf0, Sf1 y2 

Cylinder 3 Sg0, Sg1 y3 

Cylinder 4 Sh0, Sh1 y4 

Presence I13, I14, I15, I16 

Example: 4 cylinders 
Requirement:  
Parts have to turn in the clockwise motion avoiding collisions 

- functional aspect: when a part is in front of a cylinder, the cylinder extends & retracts 

- safety: avoid collisions between parts and cylinders 

 



Boolean constraints for 
safe PLC control y1 

y2 

y3 
y4 

For each y, 3 functions (simple reset, simple set, combined reset) + 1 observer 
 
Simple Reset function: Forbid extending cylinder 1 if:  

 

R1 = y1* . ( Se0  + I13 . I14 + I13 . Sf0 + X31 + y2 * . I13 ) 
  

S1 = y1* . Se1  

 

Rc1 = I16 . y4   
 

Similar for: y2 ; y3 ; y4   

30 

31 
I16 . y4* 
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It not 
retracted 
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front of 

cylinders 1 & 2 

there is a part in front 
of it and cylinder 2 

not retracted 

cylinder 4 is 
moving with a 

part 

there is a part in front of it 
and if cylinder 2 is extending 

continue extending cylinder 1 if it is not 
completely extended (forbid stopping extension)  

forbid extending 2 adjacent cylinders simultaneously 
when there is a part 



The method has been implemented and tested with a M340  soft PLC 

Application to a 4 cylinders 
system 
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Example: virtual palettizer  
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41
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• 2 case elevators, conveyor belt, exit bay 
• 11 sensors, 8 actuators 
•  Safety analysis (based on FMEA & offline model 

checking)               30 SLC, 9 CLC, and 4 observers 
• Objective: palletize cases up to three levels  
• Simple functional specification & safe operation, 

whereas a complete Grafcet is difficult to elaborate 
because safety & functional aspects mst be mixed  



Conclusion 

• Powerful theoretical & engineering practice tools/methods 
have been developed to synthesis & implement logic 
controllers              Need meaningful models & adapted 
methods to match the gap between theory & practice 

• Adaptation to Industry 4.0, modern factories, networks:  
    - Importance and impact of Education and Simulation 

    - Exploit/adapt the event-driven, distributed, service-oriented Function 
      Block structure of the new IEC 61499 standard: combine SCT,         
      algebraic approaches & filter-based approaches, each at the right level 

    - Adapt to / Make best use of RFID & high-power sensor technology 
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