Pinning Control and Controllability

of Complex Networks

Guanrong (Ron) Chen

City University of Hong Kong, China

Joint work with

Xiaofan Wang, Lin Wang

Shanghai Jiao Tong University, China

Xiang Li, Baoyu Hou

Fudan University, China

Dedicated to the Memory of

Rudolf E Kalman (1930-5-19 **---** 2016-7-3)

Motivational Examples

Example:

C. elegans

In its Neural Network:

Neurons: 300~500 Synapses: 2500~7000

Excerpt

"The worm Caenorhabditis elegans has 297 nerve cells. The neurons switch one another on or off, and, making 2345 connections among themselves. They form a network that stretches through the nematode's millimeter-long body."

"How many neurons would you have to commandeer to control the network with complete precision?"

The answer is, on avergae: 49

-- Adrian Cho, **Science**, 13 May **2011**, vol. 332, p 777

Another Example

"... very few individuals (approximately **5**%) within honeybee swarms can guide the group to a new nest site."

I.D. Couzin et al., *Nature*, 3 Feb 2005, vol. 433, p 513

These 5% of bees can be considered as "controlling" or "controlled" agents

Leader-Followers network

Now ... mathematically

- o Given a network of identical dynamical systems (e.g., ODEs)
- Given a specific control objective (e.g., synchronization)
- o Assume: a certain class of controllers (e.g., local linear statefeedback controllers) have been chosen to use

Questions:

Objective: To achieve the control goal with good performance

- How many controllers to use?
- Where to put them?(which nodes to "pin")

--- "Pinning Control"

Network Model

Linearly coupled network:

$$\frac{dx_i}{dt} = f(x_i) + c\sum_{j=1}^{N} a_{ij} Hx_j x_i \in \mathbb{R}^n i = 1, 2, ..., N$$

- a general assumption is that f(.) is Lipschitz
- coupling strength c > 0 and H input matrix
- coupling matrices (undirected):

$$A = [a_{ij}]_{N \times N}$$

A: If node i connects to node j $(j \neq i)$, then $a_{ij} = a_{ji} = 1$; else, $a_{ij} = a_{ji} = 0$; and $a_{ii} = d_i$ where d_i - degree of node i

Note: For undirected networks, A is symmetrical; for directed networks, it is not so

What kind of controllers? How many? Where?

$$\frac{dx_i}{dt} = f(x_i) + c\sum_{j=1}^{N} a_{ij}Hx_j \quad \leftarrow \quad +u_i \qquad i = 1, 2, ..., N$$

$$(u_i = -\Gamma x_i)$$

$$\frac{dx_i}{dt} = f(x_i) + c\sum_{i=1}^{N} a_{ij}Hx_j - \delta_i\Gamma x_i \qquad i = 1, 2, ..., N$$

$$\delta_{i} = \begin{cases} 1 & \text{if } to-control \\ 0 & \text{if } not-control \end{cases}$$

Q: How many $\delta_i = 1$? Which i?

Pinning Control: Our Research Progress

Wang X F, Chen G, Pinning control of scale-free dynamical networks, Physica A, 310: 521-531, 2002.

Li X, Wang X F, Chen G, Pinning a complex dynamical network to its equilibrium, IEEE Trans. Circ. Syst. –I, 51: 2074-2087, 2004.

Sorrentino F, di Bernardo M, Garofalo F, Chen G, Controllability of complex networks via pinning, Phys. Rev. E, 75: 046103, 2007.

... ...

Yu W W, Chen G, Lu J H, Kurths J, Synchronization via pinning control on general complex networks, SIAM J. Contr. Optim., 51: 1395-1416, 2013.

Chen G, Pinning control and synchronization on complex dynamical networks, Int. J. Contr., Auto. Syst., 12: 221-230, 2014.

Xiang L, Chen F, Chen G. Pinning synchronization of networked multi-agent systems: Spectral analysis. Control Theory Tech., 13: 45-54, 2015.

Controllability Theory

In retrospect, ...

J.S.I.A.M. CONTROL Ser. A, Vol. 1, No. 2 Printed in U.S.A., 1963

R. E. KALMAN†

Abstract. There are two different ways of describing dynamical systems: (i) by means of state variables and (ii) by input/output relations. The first method may be regarded as an axiomatization of Newton's laws of mechanics and is taken to be the basic definition of a system.

It is then shown (in the linear case) that the input/output relations determine only one part of a system, that which is completely observable and completely controllable. Using the theory of controllability and observability, methods are given for calculating irreducible realizations of a given impulse-response matrix. In particular, an explicit procedure is given to determine the minimal number of state variables necessary to realize a given transfer-function matrix. Difficulties arising from the use of reducible realizations are discussed briefly.

State Controllability

Linear Time-Invariant (LTI) system

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$

 $x \in \mathbb{R}^n$: state vector

 $u \in R^p$: control input

 $A \in \mathbb{R}^{n \times n}$: state matrix

 $\mathbf{B} \in \mathbb{R}^{n \times p}$: control input matrix

[Concept] State Controllable:

The system orbit can be driven by an input from any initial state to the origin in finite time

State Controllability Theorems

$$\dot{x}(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$

(i) Kalman Rank Criterion

The controllability matrix Q has full row rank:

$$Q = [B \ AB \ \cdots \ A^{n-1}B]$$

(ii) Popov-Belevitch-Hautus (PBH) Test

The following relationship holds:

$$v^T A = \lambda v^T, \quad v^T B \neq 0$$

 λ : eigenvalue of A

v: nonzero left eigenvactor with λ

What about networks? -- Some earlier attempts

Leader-follower multi-agent systems

H.G. Tanner, *CDC* , 2004

• • •

Pinning state-controllability of complex networks

F. Sorrentino, M. di Bernardo, F. Garofalo, G. Chen, Phys. Rev. E, 2007

• • •

Structural controllability of complex networks

Y.Y. Liu, J.J. Slotine, A.L. Barabási, Nature, 2011

• • •

Structural Controllability

A network of single-input/single-output (SISO) node systems, where the node systems can be of higher-dimensional

Structural Controllability

In the controllability matrix *Q*:

$$Q = [B \ AB \ \cdots \ A^{n-1}B]$$

All 0 are fixed

There is a realization of independent nonzero parameters such that *Q* has full row-rank

Example 1:

$$Q = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

Realization: All admissible parameters $a \neq 0, d \neq 0$

Example 2: Frobinius Canonical Form

$$Q = \begin{bmatrix} -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

Examples: Structure matters

$$\mathbf{C} = [\mathbf{B}, \mathbf{A} \cdot \mathbf{B}, \mathbf{A}^2 \cdot \mathbf{B}]$$

$$b_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_{21} & 0 \\ 0 & 0 & a_{32}a_{21} \end{bmatrix},$$

$$rank C = 3 = n$$

controllable

$$b_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_{21} & 0 \\ 0 & a_{31} & 0 \end{bmatrix}$$

rank
$$C = 2 < n = 3$$

uncontrollable

$$\begin{array}{c|cccc}
b_1 & 0 & 0 \\
0 & a_{21} & 0 \\
0 & a_{31} & a_{33}a_{31}
\end{array}$$

rank
$$C = 3 = n$$

controllable

$$b_{1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{23}a_{31} \\ 0 & a_{31} & a_{32}a_{21} \end{bmatrix}$$

rank C = ?

controllable?

Partially controllable

Structurally controllable

In retrospect: large-scale systems theory

Structural Controllability (and Structural Observability)

- 1. C.T. Lin, Structural Controllability, IEEE Trans. Auto Contr., 19(3): 201-208, 1974
- 2. R.W. Shields, J.B. Pearson, Structural Controllability of Multiinput Linear Systems, IEEE Trans. Auto. Contr., 21(2): 203-212, 1976
- 3. K. Glover, L.M. Silverman, Characterization of Structural Controllability, IEEE Trans. Auto. Contr., 21(4): 534-537, 1976
- 4. C.T. Lin, System Structure and Minimal Structure Controllability, IEEE Trans. Auto. Contr., 22(5): 855-862, 1977
- 5. S. Hosoe, K. Matsumoto, On the Irreducibility Condition in the Structural Controllability Theorem, IEEE Trans. Auto. Contr., 24(6): 963-966, 1979
- H. Mayeda, On Structural Controllability Theorem, IEEE Trans. Auto. Contr., 26(3): 795-798, 1981
- 7. A. Linnemann, A Further Simplification in the Proof of the Structural Controllability Theorem, IEEE Trans. Auto. Contr., 31(7): 638-639, 1986
- 8. J. Willems, Structural Controllability and Observability, Syst. Contr. Lett., 8(1): 5-12, 1986

Building Blocks

Cactus is the minimum structure which contains no inaccessible nodes and no dilations

Structural Controllability Theorem

The following two criteria are equivalent:

1. Algebraic:

The LTI control system (A,B) is structurally controllable

2. Geometric:

The digraph G(A,B) is spanned by a cactus

Matching in Directed Networks

- Matching: a set of directed edges without common heads and tails
- Unmatched node: the tail node of a matching edge

Maximum matching:

Cannot be extended

Perfect matching:

All nodes are matched nodes

 Maximum but not perfect matching

Minimum Inputs Theorem

Q: How many?

A: The minimum number of inputs N_D needed is:

Case 1: If there is a perfect matching, then

$$N_D = 1$$

Case 2: If there is no perfect matching, then

 N_D = number of unmatched nodes

Q: Where to put them?

A: Case 1: Anywhere

Case 2: At unmatched nodes

State Controllability

A network of multi-input/multi-output (MIMO) node systems, where the node systems are of higher-dimensional

Some Earlier Progress

Consider a network of N identical discrete-time LTI node-systems, with the i th (i=1,2,...,N) sub-system

$$\begin{bmatrix} x(t+1,i) \\ z(t,i) \\ y(t,i) \end{bmatrix} = \begin{bmatrix} A_{TT}(i) & A_{TS}(i) & B_{T}(i) & 0 \\ A_{ST}(i) & A_{SS}(i) & B_{S}(i) & 0 \\ C_{T}(i) & C_{S}(i) & D_{d}(i) & D_{w}(i) \end{bmatrix} \begin{bmatrix} x(t,i) \\ v(t,i) \\ d(t,i) \\ w(t,i) \end{bmatrix}$$

where x(t) – state; y(t) – observation; d(t) – disturbance; w(t) – noise;

$$A_{*,\#} = col\{A_{*,\#}(i)|_{i=1}^{N}\} \quad B_{*} = diag\{B_{*}(i)|_{i=1}^{N}\} \quad C_{*} = diag\{C_{*}(i)|_{i=1}^{N}\}$$

in which *, # = T or S (Note: All nodes are subject to control input)

continued

Result: Assume that all the transfer function matrices $\overline{G}_i^{[1]}|_{i=1}^N$ of the network have full column normal rank. Then, the network is controllable **if and only if** for every $k \in \{1,2,...,\overline{m}\}$, where \overline{m} is the number of distinctive transmission zeros of $G^{[1]}(\lambda)$, and for every $\overline{y}^{[k]} \in Y^{[k]}$, one has $\Phi^T \overline{G}^{[2]}(\overline{\lambda}_0^{[k]}) \overline{y}^{[k]} \neq \overline{y}^{[k]}$.

Here, Φ is the transfer matrix in $z(t) = \Phi v(t)$ and, for i = 1,2,...,N,

$$G_{i}^{[1]}(\lambda) = C_{S}(i) + C_{T}(i)[\lambda I - A_{TT}(i)]^{-1}A_{TS}(i), \quad G_{i}^{[2]}(\lambda) = A_{SS}(i) + A_{ST}(i)[\lambda I - A_{TT}(i)]^{-1}A_{TS}(i)$$

$$\bar{\mathbf{Y}}^{[k]} = \left\{ y \middle| \begin{aligned} y &= \mathbf{col} \left\{ \left(0_{m_{\mathbf{z}(\bar{k}(i)+1)}}, \dots, 0_{m_{\mathbf{z}(\bar{k}(i+1)-1)}}, \\ \bar{y}_{i+1,0}^{[k]} \right) \middle|_{i=0}^{\bar{s}^{[k]}-1}, 0_{m_{\mathbf{z}(\bar{k}(\bar{s}^{[k]})+1)}}, \dots, 0_{m_{\mathbf{z}N}} \right\} \right\} \\ \bar{y}_{i,0}^{[k]} &\in \bar{\mathbf{Y}}_{i}^{[k]}, \ i = 1, 2, \dots, \bar{s}^{[k]}; \ y \neq 0 \end{aligned} \right\}$$

A Network of Multi-Input/Multi-Output LTI Systems

$$\dot{x}_i = Ax_i + Bu_i$$

$$y_i = Cx_i$$

$$x_i \in R^n$$

Node system
$$\dot{x}_i = Ax_i + Bu_i$$
 $y_i = Cx_i$ $x_i \in \mathbb{R}^n$ $y_i \in \mathbb{R}^m$ $u_i \in \mathbb{R}^p$

Networked system

$$\dot{x}_i = Ax_i + \sum_{j=1}^{N} \beta_{ij} Hy_j, \quad y_i = Cx_i, \quad i = 1, 2, \dots, N$$

Networked system with external control

$$\dot{x}_i = Ax_i + \sum_{j=1}^{N} \beta_{ij} HCx_j + \delta_i Bu_i, \quad i = 1, 2, \dots, N$$

 $\delta_i = 1$: with external control $\delta_i = 0$: without external control

Some notations

Node system (A,B,C)

Network structure $L = [\beta_{ii}] \in \mathbb{R}^{N \times N}$

Coupling matrix H

External control inputs $\Delta = diag(\delta_1, \dots, \delta_N)$

Some counter-intuitive examples

Network structure

Node system

Networked MIMO system

$$L = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

structurally controllable

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$C = [0 \ 1]$$

(A,B) is controllable

(A,C) is observable

state uncontrollable

Some counter-intuitive examples

Network structure

Node system

Networked MIMO system

$$L = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

structurally controllable

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

(A,B) is uncontrollable

(A,C) is observable

state controllable

coupling matrix H is important

Hou BY, LiX, Chen G (2016)

A Network of Multi-Input/Multi-Output LTI Systems

A necessary and sufficient condition

$$\dot{x}_{i} = Ax_{i} + \sum_{j=1}^{N} \beta_{ij} HCx_{j} + \sum_{k=1}^{s} \delta_{ik} Bu_{k},$$

$$y_{l} = \sum_{j=1}^{N} m_{lj} Dx_{j}$$

$$L = [\beta_{ii}] \in R^{N \times N} \qquad \Delta = [\delta_{ii}] \in R^{N \times s}$$

$$x_i \in R^n$$
, $i = 1, \dots N$
 $u_k \in R^p$, $k = 1, \dots s$
 $y_l \in R^q$, $l = 1, \dots r$

State Controllable

If and only if

Matrix equations

$$\Delta^T XB = 0, L^T XHC = X(\lambda I - A)$$

has a unique solution X = 0

General Topology with SISO Nodes

$$\dot{x}_{i} = Ax_{i} + \sum_{j=1}^{N} \beta_{ij} HCx_{j} + \delta_{i} Bu_{i}, \quad i = 1, 2, \dots, N \qquad x_{i} \in \mathbb{R}^{n} \quad y_{i} \in \mathbb{R}^{m} \quad u_{i} \in \mathbb{R}^{p}$$

$$L = [\beta_{ij}] \in \mathbb{R}^{N \times N} \quad \Delta = diag(\delta_{1}, \dots, \delta_{N})$$

A network with SISO nodes is controllable if and only if

(A,H) is controllable,

(A,C) is observable,

for any $s \in \sigma(A)$ and $\alpha \in \Gamma(s)$, $\alpha L \neq 0$ if $\alpha \neq 0$,

for any $s \notin \sigma(A)$, $rank(I - L\gamma, \Delta \eta) = N$, with $\gamma = C(sI - A)^{-1}H$, $\eta = C(sI - A)^{-1}B$.

Some most recent progress

Temporally Switching Networks

Edge (i,j,δ_{ij}) from i to j on duration δ_{ij}

Adjacency matrix:

 $[A_k]_{ji} = a_{ji}(k)$ $\begin{cases} \neq 0, \text{ edge}(i, j, [t_{k-1}, t_k)) \neq \emptyset \\ = 0, \text{ otherwise} \end{cases}$

 a_{ji} are constants, but appear and disappear in a temporal manner

Division of time durations

Network topology is temporally switching

B. Y. Hou, X. Li, G. Chen, IEEE Trans. Circ. Syst. Part I (2016)

State Controllability of **Temporally Switching Systems**

Temporally Switching Systems

$$\dot{x}(t) = A(t)x(t) + Bu(t), \quad x(t_0) = x_0$$

$$x(t) \in \mathbb{R}^n$$
, $u(t) \in \mathbb{R}^r$, $B \in \mathbb{R}^{n \times r}$

 $A(t) \in \mathbb{R}^{n \times n}$ is piecewise constant

(A(t),B) can be described by matrix pair (A_i,B) when t belongs to $[t_{i-1}, t_i)$

State Controllability:

any given initial state
$$x(t_0) = x_0$$
 defined on $[t_0, t_1]$

input signal
$$u(\cdot)$$
 defined on $[t_0, t_1]$

final state $x(t_m) = 0$

Necessary and Sufficient Condition

Controllability matrix

State Controllable

has full rank, where
$$C_i = (A_i^{n-1}B, \dots, A_iB, B)$$

Structural Controllability of **Temporally Switching Networks**

Temporally Switching Systems

$$\dot{x}(t) = A(t)x(t) + Bu(t), \ x(t_0) = x_0$$

$$x(t) \in \mathbb{R}^n$$
, $u(t) \in \mathbb{R}^r$, $B \in \mathbb{R}^{n \times r}$

 $A(t) \in \mathbb{R}^{n \times n}$ is piecewise constant

(A(t), B) can be described by matrix pair (A_i, B)

when t belongs to $[t_{i-1}, t_i)$

Structural Controllability: There exist a set of parameter values such that

any given initial state
$$x(t_0) = x_0$$
 defined on $[t_0, t_1]$ final state $x(t_m) = 0$

input signal $u(\cdot)$

Necessary and Sufficient Condition

Controllability matrix

$$\mathcal{C} = \left(e^{A_m(t-t_{m-1})} \cdots e^{A_2(t_2-t_1)} C_1, \cdots, e^{A_m(t-t_{m-1})} C_{m-1}, C_m\right)$$

has full rank for some set of parameter values

Research Outlook

General networks of linear time-varying (LTV) node-systems

General networks of non-identical node-systems

General temporal networks of LTI or LTV node-systems

Some special types of networks of nonlinear node-systems

.

There are more, of course

Thanks

References

- Müller F J, Schuppert A. Few inputs can reprogram biological networks. Nature, 478(7369): E4-E4, 2011.
- Banerjee S J, Roy S. Key to Network Controllability. arXiv 1209.3737, 2012.
- Nacher J C, Akutsu T. Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control. New Journal of Physics. 4(7): 073005, 2012.
- Cowan N J, Chastain E J, Vilhena D A, et al. Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PloS One, 7(6): e38398, 2012.
- Nepusz T, Vicsek T. Controlling edge dynamics in complex networks. Nature Physics. 8(7): 568-573, 2012.
- Xiang L, Zhu J H, Chen F, Chen G. Controllability of weighted and directed networks with nonidentical node dynamics, Mathematical Problems in Engineering. ID 405034, 2012.
- Mones E, Vicsek L, Vicsek T. Hierarchy measure for complex networks. PloS one, 7(3): e33799, 2012.
- Liu Y-Y, Slotine J-J, Barabási A-L. Control centrality and hierarchical structure in complex networks. PLoS ONE 7(9): e44459, 2012.

References

- Wang B, Gao L, Gao Y. Control range: a controllability-based index for node significance in directed networks. Journal of Statistical Mechanics, 2012(04): P04011, 2012.
- Wang W X, Ni X, Lai Y C, et al. Optimizing controllability of complex networks by minimum structural perturbations. Physical Review E, 85(2): 026115, 2012.
- Yan G, Ren J, Lai Y C, et al. Controlling complex networks: How much energy is needed?. Physical Review Letters, 108(21): 218703, 2012.
- Zhou T, On the controllability and observability of networked dynamic systems, Automatica, 52: 63-75, 2015.
- Yan G, Tsekenis G, Barzel B, Slotine J-J, Liu Y-Y, Barabási AL. Spectrum of controlling and observing complex networks, Nature Physics, doi:10.1038/nphys3422, 2015.
- Motter, A E, Networkcontrology, Chaos, 25: 097621, 2015
- Liu Y Y, Barabasi A-L, Control principles of complex networks, 2015 (arXiv: 1508.05384v1).
- Wang L, Chen G, Wang X F, Tang W K S. Controllability of networked MIMO systems, Automatica, 2016, 69: 405-409
- Hou B Y, Li X, Chen G. Structural controllability of temporally switching networks, IEEE Trans. Circ. Syst. –I, 2016, in press.