Pinning Control and Controllability

of Complex Networks

Guanrong (Ron) Chen
City University of Hong Kong, China

Joint work with

Xiaofan Wang, Lin Wang
Shanghai Jiao Tong University, China
Xiang Li, Baoyu Hou

Fudan University, China

35th Chinese Control Conference, Chengdu, July 27-29, 2016




Dedicated to the Memory of

Rudolf E Kalman
(1930-5-19 —- 2016-7-3)




Motivational Examples




Example:

C. elegans

In its Neural Network:
Neurons: 300~500 Synapses: 2500~7000



http://www.nhgri.nih.gov/NEWS/Worm/enlarged_c_elegans.jpg

Excerpt

“The worm Caenorhabditis elegans has 297 nerve cells.
The neurons switch one another on or off, and, making
2345 connections among themselves. They form a network
that stretches through the nematode’s millimeter-long body.”

‘How many neurons would you have to commandeer
to control the network with complete precision?”

The answer is, on avergae: 49

-- Adrian Cho, Science, 13 May 2011, vol. 332, p 777

Here, control = stimuli




Another Example

“ ... very few individuals (approximately 5%) within
honeybee swarms can guide the group to a new nest site.”

|.D. Couzin et al., Nature, 3 Feb 2005, vol. 433, p 513

These 5% of bees can be
considered as “controlling”
or “controlled” agents

Leader-Followers network




Now ... mathematically
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o Given a network of
identical dynamical
systems (e.g., ODEs)

o Given a specific
control objective
(e.g., synchronization)

0 Assume: a certain
class of controllers

have been chosen to
use
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--- “Pinning Control”




Network Model

Linearly coupled network:

dx &
d—t'z f(x)+cD a;Hx, x. € R" i=12,..,N
j=1

- a general assumption is that f (.) is Lipschitz
- coupling strength ¢ >0 and H - input matrix

- coupling matrices (undirected):

A:[aij]NxN

A: If node i connects to node | (j #1), then aij= qji= 1, else, adij= aji=0;
and a, =d. where di - degree of node i

Note: A




What kind of controllers? How many? Where?

dx, S
E: f(Xi)"‘CZl:ainXj < +U 1=12,...,N
j=
(ui :_in)
—

dx. N :
d—tI: f(xi)+cz:ainXj—é’iFXi 1=12,...,N

=1

5 — 1 if to-control
" |10 if not-control

Q: How many § =1 ? Which I ?




Pinning Control: Our Research Progress
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Controllability Theory




In retrospect, ...
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MATHEMATICAL DESCRIPTION OF LINEAR
DYNAMICAL SYSTEMS*

R. E. KALMANYT

Abstract. There are two different ways of deseribing dynamical systems: (i) by
means of state variables and (ii) by input/output relations. The first method may be
regarded as an axiomatization of Newton’s laws of mechanics and is taken to be the
basic definition of a system.

It is then shown (in the linear ease) that the input/output relations determine
only one part of a system, that which is completely observable and completely con-
trollable. Using the theory of controllability and observability, methods are given
for calculating irreducible realizations of a given impulse-response matrix. In par-
ticular, an explicit procedure is given to determine the minimal number of state
variables necessary to realize a given transfer-funetion matrix. Difficulties arising
from the use of reduecible realizations are discussed briefly.




State Controllability

. . . (O x(ty)
Linear Time-Invariant (LTI) system R

X(t) = AX(t) + BU(t) X(t)

X € R" : state vector X, (t)
ue R : control input
A e R™ : state matrix X(t)

B e R™ : control input matrix [Concept] State Controllable:
The system orbit can be

driven by an input from any
initial state to the origin in
finite time

C. K. Chui and G. Chen, Linear Systems and
Optimal Control, Springer, 1989




State Controllability Theorems

%(t) = Ax(t) + Bu(t)

(1) Kalman Rank Criterion

The controllability matrix Q has full row rank:

Q=[B AB --- A"'B]

(i1) Popov-Belevitch-Hautus (PBH) Test
The following relationship holds:
VA=AV, Vv'B=0
A . eigenvalue of A
V. nonzero left eigenvactor with A




What about networks? -- Some earlier attempts

o Leader-follower multi-agent systems
H.G. Tanner, CDC , 2004

state-controllability of complex networks
F. Sorrentino, M. di Bernardo, F. Garofalo, G. Chen, Phys. Rev. E, 2007

o Structural controllability of complex networks
Y.Y. Liu, J.J. Slotine, A.L. Barabasi, Nature, 2011




Structural Controllability

A network of single-input/single-output
(SISO) node systems, where the node
systems can be of higher-dimensional




Structural Controllability

In the controllability matrix Q: Q=[B AB --- A™'B]

All O are fixed

There Is a realization of
Independent nonzero parameters
such that Q has full row-rank

Example 1: 4 0 Example 2: Frobinius Canonical Form
Q = —y —y —dz o —flpo —iy
0 d 1 0 0 - 0 0
— | 0 1 o - (0 0
Q =

Realization: All admissible parameters

o0 1 --- 0 0
a0, d=0 : : T : :

0 0 o ... 1 0




Examples: Structure matters

a b -
|
by by
X1
%4 i a3,
Qy,
X2 X2 X3
a3y
X3
C:[B,A-B,AZ-B]
(1 0 0 | (1 0 O 1 0 0 | 1 0 0
b1 0 ay 0 b1 0 ay, O b1 0 ay 0 b1 0 a, Ay38y;
_O 0 a32a21_, _O A3y O_, _O CE a33a'31_, _O Ay gy |
rank C=3=n rank C=2<n=3 rank C=3=n rank C =7
controllable uncontrollable controllable controllable ?
Partially controllable Structurally controllable

Y.Y. Liu, J.J. Slotine, and A.L. Barabasi, Nature, 2011




In retrospect: large-scale systems theory

Structural Controllability (and Structural Observability)
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Building Blocks

cactus inaccessibility dilation
ap—_
Cactus Is the minimum structure contains

Nno inaccessible nodes no dilations




Structural Controllability Theorem

The following two criteria are equivalent:

1. Algebraic:

The LTI control system (A,B) is structurally controllable

2. Geometric:

The digraph G (A,B) is spanned by a cactus




Matching in Directed Networks

e Matching: a set of directed edges without common
heads and tails
e Unmatched node: the tail node of a matching edge

© matched node Maximum matching:
O iiniasihadnoda Cannot be extended
< Perfect matching

Perfect matching:

All nodes are
@/f\) Ok matched nodes
< Maximum but not
perfect matching

4 Of




Minimum Inputs Theorem

Q:
A

: The minimum number of inputs Ny needed is:

> O

: Where to put them? 1 0 0
. Case 1: Anywhere 6|10 a, O
Case 2: At unmatched nodes | & %

How many?

Case 1: If there is a perfect matching, then
Np=1

Case 2: If there is no perfect matching, then
Ny = number of unmatched nodes




State Controllability

A network of multi-input/multi-output
(MIMO) node systems, where the node
systems are of higher-dimensional




Some Earlier Progress

Consider a network of N identical discrete-time LTl node-systemes,
with the ith (i =12,...,N) sub-system

L] (4G A BGy o 70D
2(ti) |=| Ag() As@ ByG) O ;(t”.)
v | | C e D Do ||

- - = ‘_w(t,z)_

where x(r)—state; y(r)—observation; d(¢)—disturbance; w() - noise;

A, =colf A, ()"} B.=diag{B.()",} C.=diag{C.()|",}

in which *,# =7 or §  (Note: All nodes are subject to control input)

T. Zhou, Automatica (2015)




Result: Assume that all the transfer function matrices (_?,-“] Y. of the

network have full column normal rank. Then, the network is
controllable if and only if for every k€{l,2,..m}, where m is the

number of distinctive transmission zeros of G'''(1), and for every
y[k] c Y[k]’ one has (I)T(_;[Z](Z[Ok])}_/[k] i}_/[k].

Here, @ is the transfer matrix in z(f) = ®v(f) and, for i=1.2.....N,

G(A) = Cy) +CpDU =AD" (D), G2 = Agg(D) + Ay (DAL — Ay ()] Apg ()

Y= col i (Omz(l?(i)-z—l) """ My k(i+1)-1)°
?[k] =1y K] skl _1q &
yi+1.0) i=0 Omzu'<(§“<h+1) .... OmZN}
Hae¥ i=12,..., s y#£0

T. Zhou, Automatica (2015)




A Network of Multi-Input/Multi-Output LTI Systems

Node system X = Ax + Bu, y, =Cx, x €R" yeR"™ ueR’
N -

Networked system % =Ax+> BHy, y=Cx, i=12:-N
-1

Networked system

N
with external control X = AX +Z;IBUHCX1 +o,Bu;, 1=1,2,---,N
J:

o, =1: with external control &, =0 without external control

Some notations
Node system (A,B,C) Network structure L=[8;1e R™

Coupling matrix H External control inputs A =diag(s,,--,8,)

L. Wang, X.F. Wang, G.R. Chen and W.K.S. Tang, Automatica (2016)




Some counter-intuitive examples

Network structure Node system Networked MIMO system

Py

L

® ® | 11 t

xlo xllgy O
/812
0 1 acft ? 1 2
1 O

c=[01]

structurally controllable ‘

(A,B) is controllable state uncontrollable

(A,C) is observable




Some counter-intuitive examples

Network structure

P
® ®

/812

S

structurally controllable ‘

Node system

SN

c=[0 1]

(A,B) is uncontrollable

Networked MIMO system ‘

(A,C) is observable

u,

state controllable

coupling matrix H
is important

Hou B Y, Li X, Chen G (2016)




A Network of Multi-Input/Multi-Output LTI Systems

A necessary and sufficient condition

N S o -_ o o0
% = A+ B HCx +3'5,By, NER, 1=1-N
-1 k=1 u €R”, k=1---s

N
Yy =2 m;Dx, y,eRY, I=1--r
j=1

L=[f]eR™  A=[g]eR"

If and only if Matrix equations

State ATXB =0, L' XHC = X (11-A)
<>

Controllable has a unique solution X =0

L. Wang, X.F. Wang, G.R. Chen and W.K.S. Tang, Automatica (2016)




General Topology with SISO Nodes

N

X =Ax+> BHCx, +5Bu;, i=12---,N xeR" yeR" uyeR’
=1
’ L=[;]1eR™™ A=diag(s,,,5,)

A network with SISO nodes is controllable if and only if

(A,H) is controllable,
(A,C) is observable,

foranyseo(A) and a eI'(s), aL = 01if o =0,
forany s ¢ o(A), rank(l —Ly, An) = N, with y=C(sl = A)*H, n=C(s| - A)"'B.

L. Wang, X.F. Wang and G. Chen (2016)




Some most recent progress




edge

Temporally Switching Networks

Edge (4, j,0,)from i to j onduration &, Adjacency matrix:
G 812 = [to,t1) U [t3,t,] -+ 0 edge(i j [t t,)) =0
_ ) yJrLtk—1 Yk
83 = [t1,t3) |4l ji = a; () {= 0, otherwise

831 = [t5, t4] g, 5 g
85 = i b5) ji are constants, but appear an

& = [ts.t5) disappear in a temporal manner

834 = [to, t4] t

Division of time durations Network topology is temporally switching

——I | _:—
a3z ; : : : G
=== L : : o2 ;
Ayq~ : : ' ‘ |
i | i 1 1 ,
a23 1 1 1 : ; I
(11 -, S ————— -
B L, ! time to il — &
to t ta ts Ly b g =
2

time

B. Y. Hou, X. Li, G. Chen, IEEE Trans. Circ. Syst. Part | (2016) t;



State Controllability of
Temporally Switching Systems

Temporally Switching Systems  x(t) = A(t)x(t) + Bu(t), x(ty) = xg
x(t) € R", u(t) € R", B € R™"
A(t) € R is piecewise constant

(A(t), B) can be described by matrix pair (4;,B)
when t belongs to [t;_4,t;)

State Controllability:

input signal u(-)

any given initial state x(t,) = x, final state x(t,,,) = 0

defined on [t, t;]

Necessary and Sufficient Condition

Controllability matrix

State if and only if A (b=t 1) Ay (t,—ty) A (=t 1)
) . C = m m-1) ... 2L2 1C’..., m m1C_’C
Controllable > (e € 1,70, € m-1,Cm)

has full rank, where C; = (A?'B, -+, A;B, B)




Structural Controllability of
Temporally Switching Networks

|
Temporally Switching Systems  x(t) = A(t)x(¢t) + Bu(t), x(t;) = xg

x(t) € R*, u(t) € R", B € R™*"
A(t) € R™ ™" is piecewise constant

(A(t),B) can be described by matrix pair (4;, B)
when t belongs to [t;_q,t;)

Structural Controllability: There exist a set of parameter values such that

input signal u(-)

any given initial state x(t,) = x, final state x(t,,,) = 0

defined on [t, t4]

Necessary and Sufficient Condition

Controllability matrix

Structural if and onlyif , _ (eAm(t—tm_l) A2t Am(ttno) C,.)
Controllability ?

has full rank for some set of parameter values




Research Outlook

General networks of linear time-varying (LTV) node-systems
General networks of non-identical node-systems

General temporal networks of LTl or LTV node-systems
Some special types of networks of nonlinear node-systems

There are more, of course
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