Pinning Control and Controllability of Complex Networks

Guanrong (Ron) Chen
City University of Hong Kong, China

Joint work with
Xiaofan Wang, Lin Wang
Shanghai Jiao Tong University, China
Xiang Li, Baoyu Hou
Fudan University, China

Dedicated to the Memory of

Rudolf E Kalman
(1930-5-19 — 2016-7-3)
Motivational Examples
Example:

C. elegans

In its Neural Network:

Neurons: 300~500 Synapses: 2500~7000
The worm Caenorhabditis elegans has 297 nerve cells. The neurons switch one another on or off, and, making 2345 connections among themselves. They form a network that stretches through the nematode’s millimeter-long body.

“How many neurons would you have to commandeer to control the network with complete precision?”

The answer is, on average: 49

Here, control = stimuli
Another Example

“... very few individuals (approximately 5%) within honeybee swarms can guide the group to a new nest site.”

These 5% of bees can be considered as “controlling” or “controlled” agents

Leader-Followers network
Given a network of identical dynamical systems (e.g., ODEs)

Given a specific control objective (e.g., synchronization)

Assume: a certain class of controllers (e.g., local linear state-feedback controllers) have been chosen to use
Questions:

Objective: To achieve the control goal with good performance

- How many controllers to use?
- Where to put them? (which nodes to “pin”)

--- “Pinning Control”

\[
\frac{dx_i}{dt} = f(x_i), \quad x_i \in \mathbb{R}^n
\]

\[
u_i = -H_i x_i
\]
Network Model

Linearly coupled network:

\[
\frac{dx_i}{dt} = f(x_i) + c \sum_{j=1}^{N} a_{ij} H x_j \quad x_i \in \mathbb{R}^n \quad i = 1,2,\ldots,N
\]

- a general assumption is that \(f(.)\) is Lipschitz
- coupling strength \(c > 0\) and \(H\) - input matrix
- coupling matrices (undirected):

\[
A = [a_{ij}]_{N \times N}
\]

\(A\): If node \(i\) connects to node \(j\) \((j \neq i)\), then \(a_{ij} = a_{ji} = 1\); else, \(a_{ij} = a_{ji} = 0\);
and \(a_{ii} = d_i\) where \(d_i\) - degree of node \(i\)

Note: For undirected networks, \(A\) is symmetrical; for directed networks, it is not so
What kind of controllers? How many? Where?

\[
\frac{dx_i}{dt} = f(x_i) + c \sum_{j=1}^{N} a_{ij} Hx_j \quad \Leftarrow \quad + u_i \quad i = 1,2,\ldots, N
\]

\[
(u_i = -\Gamma x_i)
\]

\[
\frac{dx_i}{dt} = f(x_i) + c \sum_{j=1}^{N} a_{ij} Hx_j - \delta_i \Gamma x_i \quad i = 1,2,\ldots, N
\]

\[
\delta_i = \begin{cases}
1 & \text{if to - control} \\
0 & \text{if not - control}
\end{cases}
\]

Q: How many \(\delta_i = 1 \)? Which \(i \)?
Pinning Control: Our Research Progress

Controllability Theory
MATHEMATICAL DESCRIPTION OF LINEAR DYNAMICAL SYSTEMS*

R. E. KALMAN†

Abstract. There are two different ways of describing dynamical systems: (i) by means of state variables and (ii) by input/output relations. The first method may be regarded as an axiomatization of Newton’s laws of mechanics and is taken to be the basic definition of a system.

It is then shown (in the linear case) that the input/output relations determine only one part of a system, that which is completely observable and completely controllable. Using the theory of controllability and observability, methods are given for calculating irreducible realizations of a given impulse-response matrix. In particular, an explicit procedure is given to determine the minimal number of state variables necessary to realize a given transfer-function matrix. Difficulties arising from the use of reducible realizations are discussed briefly.
State Controllability

Linear Time-Invariant (LTI) system

\[\dot{x}(t) = Ax(t) + Bu(t) \]

\(x \in \mathbb{R}^n \) : state vector

\(u \in \mathbb{R}^p \) : control input

\(A \in \mathbb{R}^{n \times n} \) : state matrix

\(B \in \mathbb{R}^{n \times p} \) : control input matrix

[Concept] State Controllable:

The system orbit can be driven by an input from any initial state to the origin in finite time

State Controllability Theorems

\[\dot{x}(t) = Ax(t) + Bu(t) \]

(i) Kalman Rank Criterion

The controllability matrix \(Q \) has full row rank:

\[Q = [B\ AB\ \cdots\ A^{n-1}B] \]

(ii) Popov-Belevitch-Hautus (PBH) Test

The following relationship holds:

\[v^T A = \lambda v^T, \quad v^T B \neq 0 \]

\(\lambda \) : eigenvalue of \(A \)

\(v \) : nonzero left eigenvector with \(\lambda \)
What about networks? -- Some earlier attempts

- **Leader-follower multi-agent systems**
 H.G. Tanner, *CDC*, 2004

- **Pinning state-controllability of complex networks**

- **Structural controllability of complex networks**
Structural Controllability

A network of single-input/single-output (SISO) node systems, where the node systems can be of higher-dimensional
In the controllability matrix Q:

$$Q = [B \ AB \ \cdots \ A^{n-1} B]$$

All 0 are fixed

There is a realization of independent nonzero parameters such that Q has full row-rank

Example 1:

$$Q = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

Realization: All admissible parameters

$a \neq 0, \ d \neq 0$

Example 2: Frobenius Canonical Form

$$Q = \begin{bmatrix} -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$
Examples: Structure matters

\[C = [B, A \cdot B, A^2 \cdot B] \]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & a_{21} & 0 \\
0 & 0 & a_{32}a_{21}
\end{bmatrix}, \quad \begin{bmatrix}
1 & 0 & 0 \\
0 & a_{21} & 0 \\
0 & a_{31} & 0
\end{bmatrix}, \quad \begin{bmatrix}
1 & 0 & 0 \\
0 & a_{21} & 0 \\
0 & a_{31} & a_{33}a_{31}
\end{bmatrix}, \quad \begin{bmatrix}
1 & 0 & 0 \\
0 & a_{21} & a_{23}a_{31} \\
0 & a_{31} & a_{32}a_{21}
\end{bmatrix}
\]

\[
\text{rank } C = 3 = n \quad \text{rank } C = 2 < n = 3 \quad \text{rank } C = 3 = n \quad \text{rank } C = ?
\]

controllable \quad \text{uncontrollable} \quad \text{controllable} \quad \text{controllable?}

Partially controllable \quad \text{Structurally controllable}

In retrospect: large-scale systems theory

Structural Controllability (and Structural Observability)

Cactus is the minimum structure which contains no inaccessible nodes and no dilations.
Structural Controllability Theorem

The following two criteria are equivalent:

1. Algebraic:
 The LTI control system (A,B) is structurally controllable

2. Geometric:
 The digraph $G(A,B)$ is spanned by a cactus

Matching in Directed Networks

- **Matching**: a set of directed edges without common heads and tails
- **Unmatched node**: the tail node of a matching edge

Maximum matching:
Cannot be extended

Perfect matching:
All nodes are matched nodes

← Maximum but not perfect matching
Minimum Inputs Theorem

Q: How many?
A: The minimum number of inputs N_D needed is:

Case 1: If there is a perfect matching, then
$N_D = 1$

Case 2: If there is no perfect matching, then
$N_D =$ number of unmatched nodes

Q: Where to put them?
A: Case 1: Anywhere
Case 2: At unmatched nodes

State Controllability

A network of multi-input/multi-output (MIMO) node systems, where the node systems are of higher-dimensional
Some Earlier Progress

Consider a network of N identical discrete-time LTI node-systems, with the i th ($i = 1, 2, \ldots, N$) sub-system

$$
\begin{bmatrix}
 x(t+1,i) \\
 z(t,i) \\
 y(t,i)
\end{bmatrix} =
\begin{bmatrix}
 A_{TT}(i) & A_{TS}(i) & B_T(i) & 0 \\
 A_{ST}(i) & A_{SS}(i) & B_S(i) & 0 \\
 C_T(i) & C_S(i) & D_d(i) & D_w(i)
\end{bmatrix}
\begin{bmatrix}
 x(t,i) \\
 v(t,i) \\
 d(t,i) \\
 w(t,i)
\end{bmatrix}
$$

where $x(t)$ – state; $y(t)$ – observation; $d(t)$ – disturbance; $w(t)$ – noise;

$A_{*,\#} = \text{col}\left\{A_{*,\#}(i) \mid i = 1, \ldots, N\right\}$ \hspace{1cm} $B_{*} = \text{diag}\left\{B_{*}(i) \mid i = 1, \ldots, N\right\}$ \hspace{1cm} $C_{*} = \text{diag}\left\{C_{*}(i) \mid i = 1, \ldots, N\right\}$

in which $*, \# = T$ or S \hspace{1cm} (Note: All nodes are subject to control input)
Result: Assume that all the transfer function matrices $\overline{G}_i^{[1]} |_{\lambda = 1}$ of the network have full column normal rank. Then, the network is controllable if and only if for every $k \in \{1, 2, \ldots, m\}$, where m is the number of distinctive transmission zeros of $G^{[1]}(\lambda)$, and for every $\bar{y}^{[k]} \in \bar{Y}^{[k]}$, one has $\Phi^T \overline{G}^{[2]}(\lambda_0^{[k]}) \bar{y}^{[k]} \neq \bar{y}^{[k]}$.

Here, Φ is the transfer matrix in $z(t) = \Phi v(t)$ and, for $i = 1, 2, \ldots, N$,

$G_i^{[1]}(\lambda) = C_S(i) + C_T(i) [\lambda I - A_{JT}(i)]^{-1} A_{TS}(i), \quad G_i^{[2]}(\lambda) = A_{ss}(i) + A_{st}(i) [\lambda I - A_{TT}(i)]^{-1} A_{TS}(i)$

$\bar{Y}^{[k]} = \left\{ \begin{array}{l}
\bar{y} = \text{col} \left\{ \begin{array}{c}
0_{mz(\tilde{k}(i)+1)}, \ldots, 0_{mz(\tilde{k}(i+1)-1)} , \\
\bar{y}^{[k]}_{i+1,0}, \bar{y}^{[k]}_{i+1,0} \vdots , 0_{mz(\tilde{k}(3[k])+1)}, \ldots, 0_{mzN} \end{array} \right. \\
\bar{y}^{[k]}_{i,0} \in \bar{Y}^{[k]}_i, \ i = 1, 2, \ldots, s^{[k]}; \ y \neq 0
\end{array} \right\}$
A Network of Multi-Input/Multi-Output LTI Systems

Node system
\[\dot{x}_i = Ax_i + Bu_i, \quad y_i = Cx_i, \quad x_i \in R^n, \quad y_i \in R^m, \quad u_i \in R^p \]

Networked system
\[\dot{x}_i = Ax_i + \sum_{j=1}^{N} \beta_{ij} Hy_j, \quad y_i = Cx_i, \quad i = 1, 2, \ldots, N \]

Networked system with external control
\[\dot{x}_i = Ax_i + \sum_{j=1}^{N} \beta_{ij} HCx_j + \delta_i Bu_i, \quad i = 1, 2, \ldots, N \]

\[\delta_i = 1: \text{with external control} \quad \delta_i = 0: \text{without external control} \]

Some notations

Node system \((A,B,C)\)
Network structure \(L = [\beta_{ij}] \in R^{N \times N}\)
Coupling matrix \(H\)
External control inputs \(\Delta = \text{diag}(\delta_1, \ldots, \delta_N)\)

Some counter-intuitive examples

Network structure

![Network structure diagram]

Node system

Example

\[L = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \]

\[B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

\[C = \begin{bmatrix} 0 & 1 \end{bmatrix} \]

\[H = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

- \(L\) is structurally controllable
- \((A,B)\) is controllable
- \((A,C)\) is observable
- The state is uncontrollable

Networked MIMO system

![Networked MIMO system diagram]
Some counter-intuitive examples

Network structure

Node system

Networked MIMO system

\[\begin{align*}
L &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
A &= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \\
B &= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\
C &= \begin{bmatrix} 0 & 1 \end{bmatrix}
\end{align*} \]

\[H = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

\((A,B) \) is uncontrollable

\((A,C) \) is observable

state controllable

coupling matrix \(H \)
is important

Hou B Y, Li X, Chen G (2016)
A Network of Multi-Input/Multi-Output LTI Systems

A necessary and sufficient condition

\[
\begin{align*}
\dot{x}_i &= Ax_i + \sum_{j=1}^{N} \beta_{ij} HCx_j + \sum_{k=1}^{s} \delta_{ik} Bu_k, & x_i &\in \mathbb{R}^n, \quad i = 1, \ldots N \\
y_l &= \sum_{j=1}^{N} m_{ij} Dx_j, & u_k &\in \mathbb{R}^p, \quad k = 1, \ldots s \\
L &= [\beta_{ij}] \in \mathbb{R}^{N \times N}, \quad \Delta = [\delta_{ij}] \in \mathbb{R}^{N \times s}
\end{align*}
\]

State Controllable

If and only if

\[
\Delta^T XB = 0, \quad L^T XHC = X(\lambda \mathbf{I} - A)
\]

has a unique solution \(X = 0\)

A network with SISO nodes is **controllable** if and only if

(A,H) is controllable,

(A,C) is observable,

for any \(s \in \sigma(A) \) and \(\alpha \in \Gamma(s), \alpha L \neq 0 \) if \(\alpha \neq 0 \),

for any \(s \notin \sigma(A) \), \(\text{rank}(I - L\gamma, \Delta \eta) = N \), with \(\gamma = C(sI - A)^{-1}H, \eta = C(sI - A)^{-1}B. \)
Some most recent progress
Temporally Switching Networks

Adjacency matrix:

\[[A_k]_{ji} = a_{ji}(k) \begin{cases}
\neq 0, & \text{edge}(i, j, [t_{k-1}, t_k]) \neq \emptyset \\
= 0, & \text{otherwise}
\end{cases} \]

\(a_{ji}\) are constants, but appear and disappear in a temporal manner.

Network topology is temporally switching.
State Controllability of Temporally Switching Systems

Temporally Switching Systems

\[\dot{x}(t) = A(t)x(t) + Bu(t), \quad x(t_0) = x_0 \]
\[x(t) \in \mathbb{R}^n, \quad u(t) \in \mathbb{R}^r, \quad B \in \mathbb{R}^{n \times r} \]
\[A(t) \in \mathbb{R}^{n \times n} \text{ is piecewise constant} \]
\[(A(t), B) \text{ can be described by matrix pair } (A_i, B) \]
when \(t \) belongs to \([t_{i-1}, t_i)\)

State Controllability:

any given initial state \(x(t_0) = x_0 \)

input signal \(u(\cdot) \)
defined on \([t_0, t_1]\)

final state \(x(t_m) = 0 \)

Necessary and Sufficient Condition

State Controllable \(\iff \)

Controllability matrix

\[C = (e^{A_m(t-t_{m-1})} \ldots e^{A_2(t_2-t_1)}C_1, \ldots, e^{A_m(t-t_{m-1})}C_{m-1}, C_m) \]

has full rank, where \(C_i = (A_i^{n-1}B, \ldots, A_iB, B) \)
Structural Controllability of Temporally Switching Networks

Temporally Switching Systems
\[\dot{x}(t) = A(t)x(t) + Bu(t), \quad x(t_0) = x_0 \]
\[x(t) \in \mathbb{R}^n, \quad u(t) \in \mathbb{R}^r, \quad B \in \mathbb{R}^{n \times r} \]
\[A(t) \in \mathbb{R}^{n \times n} \text{ is piecewise constant} \]
\[(A(t), B) \text{ can be described by matrix pair } (A_i, B) \]
\[\text{when } t \text{ belongs to } [t_{i-1}, t_i) \]

Structural Controllability: There exist a set of parameter values such that

any given initial state \(x(t_0) = x_0 \)

input signal \(u(\cdot) \)

defined on \([t_0, t_1]\)

final state \(x(t_m) = 0 \)

Necessary and Sufficient Condition

Structural Controllability if and only if

Controllability matrix
\[C = (e^{A_m(t-t_{m-1})} \ldots e^{A_2(t_2-t_1)} C_1, \ldots, e^{A_m(t-t_{m-1})} C_{m-1}, C_m) \]

has full rank for some set of parameter values
Research Outlook

General networks of linear time-varying (LTV) node-systems

General networks of non-identical node-systems

General temporal networks of LTI or LTV node-systems

Some special types of networks of nonlinear node-systems

......

There are more, of course
Thanks
• Motter, A E, Networkcontrology, Chaos, 25: 097621, 2015