
Pinning Control and Controllability  

of Complex Networks  

  

Guanrong (Ron) Chen 
City University of Hong Kong, China 

 

 

 

Joint work with 
Xiaofan Wang, Lin Wang 
Shanghai Jiao Tong University, China 

Xiang Li, Baoyu Hou 
Fudan University, China 

 

 

 
35th Chinese Control Conference, Chengdu, July 27-29, 2016 



Dedicated to the Memory of  

Rudolf E Kalman  
(1930-5-19  –--  2016-7-3) 



Motivational Examples 



Example: 

 In its Neural Network: 

 Neurons: 300~500    Synapses: 2500~7000  

C. elegans 

http://www.nhgri.nih.gov/NEWS/Worm/enlarged_c_elegans.jpg


“The worm Caenorhabditis elegans has 297 nerve cells. 

The neurons switch one another on or off, and, making 

2345 connections among themselves. They form a network 

that stretches through the nematode’s millimeter-long body.”  
 

“How many neurons would you have to commandeer       

to control the network with complete precision?”  
 

The answer is, on avergae: 49  

 
-- Adrian Cho, Science, 13 May 2011, vol. 332, p 777 

Excerpt 

Here, control = stimuli 



Another Example 

    “ … very few individuals (approximately 5%) within 

honeybee swarms can guide the group to a new nest site.” 

I.D. Couzin et al., Nature, 3 Feb 2005, vol. 433, p 513 

These 5% of bees can be 

considered as “controlling” 

or “controlled” agents 

Leader-Followers network 



o Given a network of 

identical dynamical 

systems (e.g., ODEs) 

o Given a specific 

control objective       

(e.g., synchronization) 

o Assume: a certain 

class of controllers   

(e.g., local linear state-

feedback controllers) 

have been chosen to 

use 

Now … mathematically 



Questions:  

Objective: To achieve 

the control goal with 

good performance  
 

 How many controllers   

     to use? 

 Where to put them?        

    (which nodes to “pin”) 
 

--- “Pinning Control” 



Network Model 

Linearly coupled network: 

- a general assumption is that  f (.)  is Lipschitz 

A:  If node  i  connects to node  j  (j ≠ i), then aij = aji = 1; else, aij = aji = 0; 

and              where 

- coupling matrices (undirected): 
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 What kind of controllers? How many? Where? 
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Pinning Control: Our Research Progress  
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Controllability Theory  



In retrospect, … 
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[Concept] State Controllable: 

The system orbit can be 

driven by an input from any 

initial state to the origin in 

finite time 

Linear Time-Invariant (LTI)  system 
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State Controllability 

C. K. Chui and G. Chen, Linear Systems and 

Optimal Control, Springer, 1989  



State Controllability Theorems 
 

     (i) Kalman Rank Criterion 

           The controllability matrix  Q  has full row rank: 

 
     

    (ii) Popov-Belevitch-Hautus (PBH) Test 

          The following relationship holds:               
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o Leader-follower multi-agent systems 

    H.G. Tanner, CDC , 2004 

     … 
 

o Pinning state-controllability of complex networks 
     F. Sorrentino, M. di Bernardo, F. Garofalo, G. Chen, Phys. Rev. E, 2007 

     … 
 

o Structural controllability of complex networks  

    Y.Y. Liu, J.J. Slotine, A.L. Barabási, Nature, 2011 

     … 
 

What about networks? -- Some earlier attempts 



Structural Controllability  

A network of single-input/single-output 

(SISO) node systems, where the node 

systems can be of higher-dimensional 



Structural Controllability  
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In the controllability matrix Q:  

 

All 0 are fixed 
 

There is a realization of 

independent nonzero parameters 

such that Q has full row-rank 
 

Example 1:  

 

 
 

Realization: All admissible parameters  

0,0  da
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Example 2: Frobinius Canonical Form  



Examples: Structure matters 
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Y.Y. Liu, J.J. Slotine, and A.L. Barabási, Nature, 2011 
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Structural Controllability (and Structural Observability) 
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In retrospect: large-scale systems theory  



Building Blocks 

Cactus is the minimum structure which contains 

no inaccessible nodes and no dilations 



  Structural Controllability Theorem  

The following two criteria are equivalent: 

 

1. Algebraic: 
 

    The LTI control system (A,B) is structurally controllable 

 

2. Geometric: 
 

    The digraph G (A,B) is spanned by a cactus 

 

C.T. Lin, IEEE Trans. Auto. Contr., 1977 



  Matching in Directed Networks  

 Matching: a set of directed edges without common  

                                                           heads and tails 

 Unmatched node: the tail node of a matching edge 

Maximum matching: 

Cannot be extended 

 

Perfect matching:  

All nodes are 

matched nodes 

 Perfect matching 

 Maximum but not  

      perfect matching 



  Minimum Inputs Theorem  

Q: How many? 

A: The minimum number of inputs ND needed is: 

     Case 1: If there is a perfect matching, then 

                   ND = 1 

     Case 2: If there is no perfect matching, then 

                   ND = number of unmatched nodes 

 

Q: Where to put them? 

A: Case 1: Anywhere 

     Case 2: At unmatched nodes 

Y. Y. Liu, J. J. Slotine, and A. L. Barabási, Nature, 2011 

b3 u3 

b3 



State Controllability  

A network of multi-input/multi-output 

(MIMO) node systems, where the node 

systems are of higher-dimensional 



Some Earlier Progress 

T. Zhou, Automatica (2015) 

(Note: All nodes are subject to control input) 



continued 

T. Zhou, Automatica (2015) 



A Network of Multi-Input/Multi-Output LTI Systems 
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Node  system  (A,B,C) 

Some notations 

Coupling matrix H 

Network structure [ ]   N N

ijL R

External control inputs 1( , , )  Ndiag  

L. Wang, X.F. Wang, G.R. Chen and W.K.S. Tang, Automatica (2016) 



Some counter-intuitive examples 
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Some counter-intuitive examples 

1

1 1

0 
  
 

A

1

0 1

0

 
  
 

L

structurally controllable 

Network structure Node system Networked MIMO system 

 0 1C

(A,C) is observable 

0

1

 
  
 

B

1

0

 
  
 

H

(A,B) is uncontrollable state controllable 

coupling matrix H  

is important 

Hou B Y, Li X, Chen G (2016) 
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A necessary and sufficient condition 

Matrix equations 

has a unique solution  X = 0 

L. Wang, X.F. Wang, G.R. Chen and W.K.S. Tang, Automatica (2016) 

A Network of Multi-Input/Multi-Output LTI Systems 



General Topology with SISO Nodes 
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L. Wang, X.F. Wang and G. Chen (2016) 



Some most recent progress 



Temporally Switching Networks 

time 

ed
g

e 

time 

Division of time durations Network topology is temporally switching 

Adjacency matrix: 

B. Y. Hou, X. Li, G. Chen, IEEE Trans. Circ. Syst. Part I (2016) 

jia      are constants, but appear and 

disappear in a temporal manner 



State Controllability of  

Temporally Switching Systems 

Temporally Switching Systems 

Necessary and Sufficient Condition 

State 

Controllable  

Controllability matrix 

𝒞 = 𝑒𝐴𝑚 𝑡−𝑡𝑚−1 ⋯ 𝑒𝐴2 𝑡2−𝑡1 𝐶1, ⋯ , 𝑒𝐴𝑚 𝑡−𝑡𝑚−1 𝐶𝑚−1, 𝐶𝑚  

has full rank, where 𝐶𝑖 = 𝐴𝑖
𝑛−1𝐵, ⋯ , 𝐴𝑖𝐵, 𝐵  

𝐢𝐟 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐢𝐟
  

State Controllability: 



Structural Controllability of  

Temporally Switching Networks 

Necessary and Sufficient Condition 

Structural 

Controllability 

Controllability matrix 

𝒞 = 𝑒𝐴𝑚 𝑡−𝑡𝑚−1 ⋯ 𝑒𝐴2 𝑡2−𝑡1 𝐶1, ⋯ , 𝑒𝐴𝑚 𝑡−𝑡𝑚−1 𝐶𝑚−1, 𝐶𝑚  

has full rank for some set of parameter values 

𝐢𝐟 𝐚𝐧𝐝 𝐨𝐧𝐥𝐲 𝐢𝐟
  

Temporally Switching Systems 

Structural Controllability: There exist a set of parameter values such that 



Research Outlook 

General networks of linear time-varying (LTV) node-systems 

 

General networks of non-identical node-systems 

 

General temporal networks of LTI or LTV node-systems 

 

Some special types of networks of nonlinear node-systems 

 

…… 

 

There are more, of course 



Thanks 
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