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2. Convex Relaxation for Sparseness

3. Model Predictive Control for Smooth and Accurate
Driving

4. Optimal Experiment Design for System Identification

(References in my complementing CCC paper)



Part 1 Autonomous Transport Systems

» Efficiency

© Scania.



IQMatic - Project Summary

Autonomous driving in closed-off areas
Missions from a Command Centre
Demonstrations (video)

Tests at Customer site
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Mining — Business Case from Scania
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Astator and Its Sensors

and Cruise Control
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IQMatic — System Overview
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Part 2: Convex Relaxation for
Sparseness

Convex optimization methods that promote solutions
that are

e Sparse

e Piecewise constant

e Piecewise linear
Applications in

1. Change Detection

2. Model Predictive Control

Tools to monitor when these algorithms work or not,
and how to fix them!




Thel; Norm “Trick”

Measure of Sparseness:

-2 -1

The number of non-zero elements in a vector:

1[0 = >_ folzi)

The I3 norm of a vector [|x]|1 = > ||

Convexification: Use ||x||1 as substitute for ||x]|o

Piecewise constant: ||Dix|[1 =) |zit1 — =i

Piecewise linear: ||Dox|1 = ) |xiy1 — 22 + zi—1]




Mean Value Segmentation

Data: {yt, t = 1,...,N}

Model: y. ~ N(m¢, 1), where my is piecewise constant

Problem: Estimate the means m;, t =1,..., N.
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Fused Lasso

Method: ML+ TV penalty:

N N
1
W?]n!ﬂ 5 Z[yt — mt]2 + )\Z |mt — Mmi—1
L t:2

t=1

Promote sparseness of [m; — m;_1] using the /1 norm!

Large convex optimization problem that is well-suited for fast
solvers such as ADMM

The Lasso method by Tibshirami, goes back to Laplace?

One design parameter: A < A\nq. (@nalytic expression)



Properties of Optimal Solution

1 N N
: 2
min §Z[yt—mt] +)\Z|’wt!
subject to: wy = my — my_1

t—1
Dual variable: z = » [m; —y;], t=2,...,N
=1

Optimality conditions:

lze) <A t=2,...,N, z1=2y41=0
|z¢| < A (constant) = m; = m;_1

|zt,] = A (change) = sign[my, — my,—1] = sign|z:,]

wheretop = 1 < t1 < ... < tyy < N are the optimal transition

times




Reflective Brownian Bridge

—1
The optimal solution [v \

IS characterized by . | W"‘”

a random walk
with drifts, reflections,

& initial/end-constraints T h L &
Z1 — O
-1
_t — Z[mj yj])
j=1
zn+1 =0

To be used for monitoring!
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e Example 1, Up/Down
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Example 1: Monitoring Up/Down
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Example 2: Monitoring Staircase

True mean
Fused-lasso estimate
Polished estimate

The drift
IS zero!
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Why False Detections

The drift rate equals

1 . .
Alsign[my,,, — my, ] — sign[my, — my, ]
Tet1 — tg
Random walk
500 — — "
. o /// .
For the staircase the drift is zero! - S~
ok T
=50 . . L . . . .
0 500 1000 1500 2000 2500 3000 3500

Time

The optimal solution is then sensitive to noise, which causes
false change points!

Can we fix this?

4000



Yes - We can!

The first and the last change points are accurate!

Restart the algorithm with the interval from the first to the last
change points.

lterate using the taut-string algorithm, which only solves for the
first and last change points.

(Ottersten et.al. 2016)
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Yes - We can!

Use a non-convex penalty function: f(z) =1 —e™®

Plot of f(|x|/o) for different o



Yes - We can!

Preserve convexity:

N

N
"mf” % Z;[yt — my)? )\Z f(me —my—1|/0)

t=2

Convex if A < Co?

lterative Adaptive Lasso Algorithm

(Malek-Mohammadi et.al. 2016)



Part 2 Summary

e The lj-norm is very useful to promote sparseness.
e Monitor the solutions! Improve the algorithms!
e Many applications and extensions!

Ebadat et.al.: Regularized Deconvolution-Based Approaches
for Estimating Room Occupancies, 2015 Googol T-ASE
Best Applications Paper Award

Back to Control



Control Applications

Model Predictive Control with I1 TV input signal penalty

t+h

muin Z {(y(t) —r(t))* + ANu(t+1) — U(t)|}
k=t

subject to the state-space equations and other contraints.

The control actuator should move as few times as possible
while tracking the reference!

Gallieri and Maciejowski: Lasso MPC, ACC 2012, for over-actuated
systems

Jovanovic: Controller Architectures,
Semi-plenary at 2016 European Control Conference



Optimize
S.t.

Driving
Dynamics
Constraints
Safety
Accuracy
Smoothness

Autonomous
vehicle
""""""""" Reference path
--=-=-=-=-=-= Accurate but agressive driving
————————— Smooth but inaccurate driving
Accurate and smooth driving




v[m]

Curvature [m~ l]

Smooth Driving - Clothoids

A clothoid is a curve whose curvature changes linearly with its
arc length.

Roads are designed using clothoids to give smooth driving.

“The steering wheel” has a constant rate along a clothoid.

x [m]

100

Distance traveled [m]



MPC for Autonomous Driving
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Lateral Control using Curvature «

e Minimize rate and rate change of the steering!

Aggresive steering maneuvers lead to high values of
lateral acceleration and jerk.

e Vehicle motion is predicted by a kinematic model.

e Constrain the vehicle to be in the vicinity of the
reference path.




Spatial MPC
’,:SJ 3 /: :\:j'i I:Eiﬁ_—_l-roprmml solution
Use distance instead of time ds = v(t)dt /f’"
& &
Current distance traveled: sg E(

Prediction horizon ~ distance ponts s1, s2,..., sy
Control curvature vector

K = [K/(Sl); ... F&(SH)]

Curvature rate: D« (should be small)

Curvature rate change: D>k (should small and sparse)




Spatial MPC for Smooth and
Accurate Driving

min |D2k||3 4+ o||D1k||3 4 A||D2k||1

V() — Yrefl < &y
ID1k| < 1cmax

|K',| < 1Kmax

"3(50) — Rvehicle)

(Lima et. al. 2016)
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Part 3 Summary

e Passengers and vehicles (wear and tear) prefer smooth
driving

e Need also to be accurate (stay on the road)

e We have developed, implemented and tested
a MPC for smooth and accurate autonomous
driving of a heavy truck

What about the Model?




Part 4. Optimal Experiment Design for
System Identification
The M in MPC is often the most difficult part!

System ldentification (Data-Driven Modelling) is a most active area of
research!

« 8" |FAC Symposium on System Identification (Beijing 1988)
e 17% [FAC Symposium on System Identification (Beijing 2015)

« 18" [FAC Symposium on System Identification (Stockholm 2018)

Performing experiments can be both expensive and take extensive time.




System Identification for Control

SYNCOPSIS

A technique for numerical identification of a discrete time system

from input/output samples is described. The purpose of the identifica~
tion is to design strategies for control of the system. The strategies
are obtained using linear stochastic control theory.

The parameters of the system are estimated by Maximum Likelihood.
An algorithm for solving the M. L. equations is given. The estimates
are in general consistent, asymptotically normal and efficient for in-
creasing sample lengths. These properties and also the parameter
accuracy are determined by the information matrix. An estimate of
this matrix is given. '

The technique has been applied to simulated data and to plant data.

Astrom and Bohlin: Numerical identification of linear
dynamic systems from normal operating records, Proc. IFAC
Symp on Self Adaptive Systems, UK, 1965 .

¥,
=

Torsten Bohlin 1931- 2016
Professor at KTH 1972-1996



EU-Project Autoprofit 2011-2014

Courtesy of Sasol, South Africa

“It iIs estimated that 75% of the cost related
to a control project in industry is dedicated
to the identification of a model.”



Optimal Input Design

Optimize EXxcitation

s.t. Identified Model Quality
Experimental Costs
Constraints




Model Based Control

All models in the Application Set
satisfy the control specifications

Relates to parameter robustness

Ellipsoidal approximation:

[0 — 011 vy

p(89)[0 —0°] < 2/~



System Identification Set

Asymptotically in data size N:

6 € {[60—6°1"VE(6°)[0 — 6°] <2/k}, wp.a

See Ljung: System Identification (1999)
and corresponding Matlab SI Toolbox

Confideﬁnce ellipsoid for the estimated parameter
vector 6




Classical Input Design Methods

Minimize the "size" of the covariance matrix of the
parameter estimates:

- A
AsCov(0) = N[o.5vgg]—1

a function of the input signal.

Quality measures: trace, max eigenvalue,

determinant, ..



Merge Sl with the Application

If the System Identification Set
[0 — 6°1 VE(67)[0 — 0°] < 2/~
iIs inside the Application Set

[9 L QO]TVII

app(07)[0 — 671 < 2/~

then 0 satisfies the application specifications
W.p. a.

True if kVZ;(6°) > ')/Vé;,p(@o)

(Matrix Inequality)




Application Oriented Input Design
Least Costly Identification Experiment

minimize E{y? + Cu?}

subject to kV(0%) > vV, (69).

Minimize the output and input power in the SI
experiment subject to the application constraint.

Convex optimization control problem in the
input covariance function/power spectrum.



Time Domain Optimal Input Design

e Asymptotic SI properties only depends on
the input spectrum/ second order statistics

e Signals are often time domain constrained.

Many possible time realization, e.g. filtered white
noise

Time domain (non-convex) algorithms

Interesting ongoing research!



Model Based Optimal Input Signal Design

MOOSE2 is a model based optimal input design toolbox
developed for MATLAB.

Complemented by an upcoming IEEE Control Systems
Magazine article.

How much do you gain using optimal input design?

Application/controller dependent!
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Conclusions

e Convex optimization for control and estimation based
on the [1 norm

e Convex optimal control for identification input
design

e (Convex optimization for control and estimation
based on the nuclear norm for rank constraint)



Future Challenges

Learning to Control Dynamical Systems -
how do we learn driving?

Non-Linear Stochastic Systems - How do we assess
and cope with uncertainty in autonomous driving?

The interplay between Sensing, Planning and
Control.

Smart Transportation Systems by means of
Connected Vehicles.

“ © Scania.



Thanks - This is a Team Work

Colleagues and post-doc

Cristian R. Rojas
Hakan Hjalmarsson
Jonas Martensson
Mohammadreza Malek Mohammadi

Former and current students

Mariette Annergren

Niclas Blomberg

Afrooz Ebadat

Per Hagg

Robert Mattila

Pedro Russo De Almeida Lima
Johan Ottersten




	Convex Relaxation Techniques �for Control and System Identification
	Outline
	�����Part 1 Autonomous Transport Systems �
	Slide Number 4
	Mining – Business Case from Scania
	Astator and its Sensors�and Cruise Control
	iQMatic – System Overview
	To be continued 
	Part 2: Convex Relaxation for Sparseness��
	The     Norm “Trick”��
	Mean Value Segmentation�
	Fused Lasso�
	 Properties of Optimal Solution
	Reflective Brownian Bridge
	Example 1, Up/Down
	Example 2, Staircase
	Example 1:  Monitoring Up/Down
	Example 2:  Monitoring Staircase
	Why False Detections
	Yes - We can!
	Yes - We can!
	Yes - We can!
	 Part 2 Summary�
	Control Applications�
	 Part 3. MPC for Autonomous Driving�
	Smooth Driving - Clothoids�
	 MPC for Autonomous Driving�
	Spatial MPC�
	Spatial MPC for Smooth and Accurate Driving�
	��Fast Driving�Green: Human like Controller�Blue: MPC for Smooth and Accurate Driving�
	 Part 3 Summary 
	Part 4. Optimal Experiment Design for System Identification�
	System Identification for Control
	EU-Project Autoprofit 2011-2014 
	Optimal Input Design��
	Model Based Control
	System Identification Set
	Classical Input Design Methods
	Merge SI with the Application
	�Application Oriented Input Design�Least  Costly Identification Experiment
	Time Domain Optimal Input Design
	Slide Number 42
	Conclusions
	Future Challenges
	Thanks - This is a Team Work

