
Robust Internal Models for Nonlinear Output Regulation with
Uncertain Exosystems

XU Dabo
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

E-mail: xu.dabo@gmail.com

Abstract: This paper presents a nonlinear internal model construction method by introducing certain coined Luenberger
observer-like trial samples and further using Lyapunov’s auxiliary theorem for confirmation. Specifically, it comes up with sever-
al novel types of parameterized nonlinear internal models with certain output in a constructive fashion, distinguishing themselves
from existing ones proposed in the literature. In particular, they are most effective in tackling non-adaptive output regulation
with uncertain exosystems, i.e., stabilizing control for the resulting augmented system can be treated independent of any adaptive
control law. For an exemplary application, an output consensus control problem is proven solvable for multi-agent systems with
uncertain leaders/exosystems under general directed communication topologies. As a major consequence, the hurdles can be
circumvented arising in the same problem if the conventional canonical internal model were used.
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1 Introduction

Output regulation, or called generalized servomechanism,
aims at addressing tracking control and/or disturbance re-
jection for a composite system, to say, a basic single-input
single-output scenario, described by a set of equations{

ẋ = f(x, u, v, w), ẇ = 0,

e = h(x, u, v, w), v̇ = S(σ)v, σ̇ = 0
(1)

with the plant state x ∈ Rn, the exosystem state v ∈ Rnv ,
the control input u ∈ R, the regulated output (or tracking
error) e ∈ R, uncertain parameters (or real parametric un-
certainties) w ∈W ⊂ Rnw of the plant and σ ∈ S ⊂ Rnσ of
the exosystem. For more background materials, we shall re-
fer to [9] for a landmark paper on the topic and just to name
but a few, [6, 10] and references therein for a brief overview
of up-to-date studies on nonlinear output regulation.

It is known that for robust error output feedback control,
the internal model is indispensable and plays a central role
in the problem; see [7] for the general framework and char-
acterization of steady-state generators and internal models.
The internal model is essentially recognized as a dynamic
compensator. It quite affects effective problem conversions
from output regulation to stabilization of the so-called aug-
mented system, composed of the plant dynamics and the in-
ternal model. Therefore, internal model design is a most cru-
cial issue for tackling nonlinear output regulation. In the lit-
erature, the underlying idea of designing internal model is to
seek a steady-state generator shaping an internal model can-
didate. For example, when the input feedforward function
is a finite number of harmonics, it can be well established
thanks to the equivalence to its characteristic polynomial as
addressed in [4]. In this way, it builds up the canonical in-
ternal model; see [20]. However, when the frequencies in
question are unknown, it merely gives a steady-state gen-
erator with uncertain output and the internal model as well
(see Definition 2.1 of this paper). As a result, stabilization
of the augmented system should be done by means of incor-
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porating suitable adaptive control techniques. Such a design
refers to adaptive internal model approach or adaptive output
regulation in literature.

Considerable interest in adaptive output regulation has ex-
tensively developed over the past few years for a number of
distinguished scenarios using such canonical internal mod-
els, pioneered in [20] and thereafter in [2, 16, 23, 28] for a
broad range of normal-form nonlinear systems, in [19] for
linear systems, and in [24] for a bi-directed multi-agent net-
work. However, it would bring formidable obstacles in at
least three situations: (i) it would not be applicable to local
robust output regulation design and thus prevents its appli-
cation to more systems; (ii) it remarkably complicates the
auxiliary recursive as well as distributed stabilization design;
see, e.g., [2, 25] for general lower triangular systems con-
trol and [26] for multi-agent systems control under general
communication topologies; (iii) the involved adaptive con-
trol itself may increase difficulties for robust output regula-
tion design, including the parameter convergence question;
see [16, 23]. These factors motivate us to develop new tech-
niques on constructive internal model design giving rise to
much more flexible or tractable augmented systems.

One main objective of this paper is to explore robust inter-
nal models with the idea that: Some trial parameterized ser-
vo compensators may indicate steady-state generators with
certain output to shape internal models with certain output.
The investigation is substantially inspired by an observer de-
sign technique developed in [12] using Lyapunov’s auxiliary
theorem. For different control objectives and control goals,
we aim to discover useful compensators, modified from [13],
to establish potential steady-state generators and eventually
construct useful internal models with certain output.

Contribution. The main contribution of the present s-
tudy is three-fold. Firstly, a systematic approach is pro-
posed toward designing the internal model with certain out-
put. Secondly, a couple of novel nonlinear internal models
are proposed serving the non-adaptive output regulation de-
sign. The internal model at issue is actually made to oper-
ate the parameter adaptation as an inner process, preventing
adaptive stabilization for the augmented systems. Thirdly,



as an application, the proposed internal model enables us to
confirm solvability of an interesting consensus control prob-
lem with uncertain leaders and under general directed com-
munication topologies. It is a distinguished scenario in con-
trast to distributed control problems such as [3, 15, 24, 26]
and a decentralized one addressed in [28]. To the best of our
knowledge, such problems have rarely been addressed.

Prior Work. Recently, a few notable internal model de-
sign techniques have been proposed serving such a non-
adaptive output regulation design; see [6] for an overview
and also refer to references therein for more results on ro-
bust output regulation, especially the internal model design
techniques. In particular, [21] addressed a robust internal
model for a linear output regulation problem without using
any adaptive control law. [10] revealed that any finite num-
ber of harmonics can be generated by a uniformly observ-
able steady-state generator with certain output and it was fur-
ther applied to solve a semi-global output regulation problem
thereof. [25, 27] proposed some nonlinear internal model de-
sign techniques based on translated steady-state generators
for global robust output regulation problems. In contrast to
those results, the finding of new internal models is from a
different perspective of Lyapunov’s auxiliary theorem.

Outline. After this section, Section 2 formulates the prob-
lem of robust output regulation, gives a definition of the
concerned internal model, and shows motivating materials
of the present study. Section 3 addresses a new systemat-
ic approach on constructing nonlinear internal models with
certain output. Section 4 shows solvability of a consensus
control problem by applying the proposed internal model.
Section 5 closes this paper.

Terminology. ‖ · ‖ is the Euclidean norm. In is the n-
dimensional identity matrix for a positive integer n. For
a square matrix A ∈ Rn×n, [·]vec stands for the colum-
n stacking operator and [·]mat is its inverse, i.e., [A]vec =
[AT

1, · · · , AT
n]T and [[A]vec]mat = A, where Ai is the ith col-

umn vector of A for 1 ≤ i ≤ n and the symbol T is matrix
transpose. The symbol ⊗ denotes the Kronecker product.

Due to page limit, all the relevant proofs and simulation
results are omitted in this paper.

2 Formulation & Background

Consider the composite system (1). Suppose the exosys-
tem therein is capable of generating trigonometric functions
of the sum form ∑`

i=1
Ωi sin(σit+ φi) (2)

with uncertain parameters Ωi, σi, φi ∈ R for 1 ≤ i ≤ ` and
an integer ` > 0, relying on initial conditions and uncertain-
ties of (1). The sum function (2) is general enough to model
or approximate most periodic references and disturbances.
It relates to a fundamental question in systems and control
to cope with trigonometric functions with unknown ampli-
tudes, frequencies and phases. Thus, it is of great interest in
tracking or consensus control. From this aspect, we use the
following standing assumption.

Assumption 1 For the exosystem, S(σ) has distinct eigen-
values lying on the imaginary axis for each σ ∈ S. The ini-
tial condition v(0) ∈ V ⊂ Rnv where V is a given invariant
compact set for the exosystem.

2.1 Problem of Robust Output Regulation
For the composite system (1), the global robust output reg-

ulation is to seek a smooth error feedback controller

ẋc = fc(xc, e), u = hc(xc, e) (3)

such that, for each (v(0), σ, w) ∈ D := V× S×W and for
each of the other initial conditions, (i) the trajectory of the
closed-loop system, composed of (1) and (3), exists for all
t ≥ 0 and is bounded over the time interval [0,+∞); (ii) the
regulated output satisfies limt→+∞ e(t) = 0.

Recall that to handle the robust output regulation, a d-
dimensional internal model

η̇ = γ(η, u), η ∈ Rd (4)

acting as a dynamic compensator embedded in the controller
(3), is basically indispensable, cf. [5, Lemma 1.21]. On the
other hand, stabilization of the augmented system composed
of (1) and (4) would be much complicated due to system
augmentation. In view of these aspects, our chief objective
is to develop nonlinear internal models enabling us to pursue
non-adaptive output regulation. Also, the latter result will be
demonstrated by a consensus control problem as a significant
extension of that addressed in [26].

2.2 Definition & Background
To show the background of the present study, let us begin

with a standing assumption on solvability of the so-called
regulator equations and a popular internal model design con-
dition; see, e.g., [4, 9] for more details.

Assumption 2 For the system (1), there are smooth func-
tions x : D→ Rn and u : D→ R such that, for all µ ∈ D,

[∂x(µ)/∂v]S(σ)v = f(x(µ),u(µ), v, w),

0 = h(x(µ),u(µ), v, w), µ(t) := [vT(t), σT, wT]T (5)

Moreover, u(µ) = u(v, σ, w) is polynomial in v.

Definition 2.1 For the system (1), a dynamic compensator
of the form (4) is called an internal model with (linearly pa-
rameterized) uncertain output u if, there exist a triple of
well-defined smooth functions θ : D → Rs, Γ : D →
Rs̄, ~ : S → R1×s̄ for integers s, s̄ > 0, such that, for
all µ ∈ D,

[∂θ(µ)/∂v]S(σ)v = γ(θ(µ),u(µ)), u(µ) = ~(σ)Γ(θ(µ)).
(6)

Moreover, it is called an internal model with certain output
u if, instead of (6), there exist a pair of well-defined smooth
functions θ : D→ Rs, Γ̄ : D→ R such that, for all µ ∈ D,

[∂θ(µ)/∂v]S(σ)v = γ(θ(µ),u(µ)), u(µ) = Γ̄(θ(µ)). (7)

The system (6) is called a steady-state generator with un-
certain output u. In contrast, the system (7) is called a
steady-state generator with certain output u.

Remark 2.1 The preceding definition is given in the same
spirit of [5, Definition 6.2] to characterize the internal model
candidates of interest in the present study. The output of the
system (6) or (7) formulates the necessary input information
to assure asymptotic convergence of tracking error e(t) in



(1). The mapping ~(σ)Γ(θ) or Γ̄(θ) offers design output of
the internal model. Because the required steady-state input
u(µ) is not available, it will be eventually duplicated by the
output of an effective internal model (4). In fact, one can
always split up the control input u of (1) by the equation1

u(t) = û(t) + ū(t) with û(t) = Γ̂(η(t)) (8)

where Γ̂(·) coincides with the output mapping of (7) in the
sense that Γ̂(θ(µ)) = Γ̄(θ(µ)) for all µ ∈ D. In the equation
(8), following û(t) by the internal model design, the stabi-
lization part ū(t) is designed by the second-step stabilizing
control for the augmented system.

Hence, what qualifies (4) for a well-defined internal mod-
el at issue is that the corresponding condition (6) or (7) is
verifiable. On the other hand, characterization of the sys-
tem like (6) or (7) guides construction of the internal model
candidates. Compared with (6), the output mapping Γ̄(·) in
(7) is independent of any uncertainties. To be explained at
the end of this section, this may quite facilitate and simplify
the output regulation design. The focus of the present study
is on the latter one as a basic criterion to seek new internal
models.

In the rest of this section, we shall review the canonical
linear internal model design of (11) in the literature. Then we
explain why the internal model with certain output is much
more advantageous than those with uncertain outputs.

Firstly, it is known that, if u(µ) satisfying (5) is a non-
linear polynomial in v, its minimal zeroing polynomial (see
[5]) can be derived leading to a steady-state generator (that
is essentially nonlinear when σ is unknown)

[∂τ(µ)/∂v]S(σ)v = Φ(a)τ(µ), ȧ = 0, u(µ) = Ψτ(µ)
(9)

with output u, where τ : D→ Rs, a : S→ Rs for an integer
s > 0, and

Φ(a) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a1(σ) −a2(σ) · · · −as(σ)

 , Ψ =


1
0
...
0


T

.

Note that Φ(a) has distinct eigenvalues lying on the imagi-
nary axis and (Ψ,Φ(a)) is observable. For the generator (9)
with a fixed region of interest, we denote T as the image of
the set D under the map τ : D → Rs and A as the image of
S under the map a : S→ Rs.

Keep the above materials in mind. We next pick an
s-dimensional controllable pair (M,N) and M is Hur-
witz. Then the parameterized algebraic Sylvester equa-
tion T (a)Φ(a) = MT (a) + NΨ has an invertible solu-
tion T (a) by [17, Theorem 2], because (M,N) is control-
lable, (Ψ,Φ(a)) is observable, and M and Φ(a) have no
related eigenvalues in the sense that, for each a ∈ Rs, the
eigenvalues {λi}si=1 of M and {λ′i}si=1 of Φ(a) are so that∑s

i=1 ciλi 6= λ′j , ∀c1, · · · , cs > 0, ∀j : 1 ≤ j ≤ s. It fol-
lows that θ(τ, a) = T (a)τ defines a similarity transforma-
tion for the system (9). Then we have another steady-state

1For any effective regulator (3), the total control input u(t) can be split
in two parts: the compensation one û(t) and the stabilization one ū(t) in
the sense that û(t) may not vanish while ū(t) vanishes at the infinity.

generator written by

[∂θ(τ, a)/∂τ ]Φ(σ)τ = Mθ(τ, a) +NΨτ,

Ψτ = ΨT−1(a)θ(τ, a) (10)

with output u. As a result, the translated generator (10) im-
mediately shapes the so-called canonical internal model

η̇ = Mη +Nu, η ∈ Rd with d = s (11)

that is with uncertain output in the sense of Definition 2.1.
If the design of (11) is adopted for output regulation de-

sign, then an adaptive design has to be done for the aug-
mented system composed of (1) and (11) because of the un-
certain function ΨT−1(a) appearing in the output of (10)
and therefore appearing in the control input (8); see, e.g.,
[16, 19, 20, 23] and references therein. Moreover, in dis-
tributed control problems such as [26], this adaptation will
unfortunately bring serious obstacles, though it can be done
in some special cases such as bi-directed multiple agent net-
works [24] and decentralized large-scale systems [28]. Thus,
it is viable and of greater interest to develop internal model-
s with certain output, leading to a relatively straightforward
non-adaptive stabilization.

Now, we show in detail the technical superiority of inter-
nal models with certain output in tackling nonlinear output
regulation. Following an internal model design of (4) for the
composite system (1), we may write the augmented system
by the equations{

ẋ = f(x, Γ̂(η) + ū, v, w), η̇ = γ(η, Γ̂(η) + ū),

e = h(x, Γ̂(η) + ū, v, w), v̇ = S(σ)v
(12)

that is established by attaching (4) to (1), bringing the control
input (8), and ignoring the trivial dynamics. The system (12)
is autonomous. Set ū ≡ 0. It is observed that the unforced
system

ẋ = f(x, Γ̂(η), v, w), η̇ = γ(η, Γ̂(η))

enjoys a zero-error manifold (see [8]){
(x, η, µ) | x = x(µ), η = θ(µ), µ ∈ D

}
. (13)

Moreover, within (13), it assures h(x(µ), Γ̂(θ(µ)), v, w) =
0 for all µ(t) ∈ D. In consequence, to achieve the output
regulation design, we can perform the second-step stabiliz-
ing control ū(t) to make the zero-error manifold (13) for (12)
attractive in some sense; see [8] for rigorous arguments.

Boosted in [7], the preceding stabilizing can be man-
aged by making a suitably translated system of (12) robustly
asymptotically stable at an equilibrium point with a domain
of attraction covering a desired initial region. For example,
the translated system may be described with certain error s-
tates or translated coordinates like (x̄, η̄) = (x − x, η − θ)
(see [5] for concrete problems). Then, roughly speaking,
convergence of (x̄(t), η̄(t)) → (0, 0) as t → ∞ by stabiliz-
ing control implies attractiveness of (13). If this stabilization
can be done after the internal model design, then it solves the
original output regulation problem and consequently validate
the compensator in (12) to be an effective internal model.
The above design framework offers to a problem conversion



Table 1: Exemplary Trial Servo Compensators
Symbol Design Parameter Form

C0 {M,N} η̇ = Mη +Nu with η ∈ Rd (Canonical form)

C1 {M,N} η̇a = Mηa +Nu,
η̇b = −ηa(ηT

aηb − u),
with η = [ηT

a, η
T
b]T, ηa ∈ Rs, ηb ∈ Rs

C2 {M,N,A,B,C}
η̇a = Mηa +NCηc,
η̇b = −ηa(ηT

aηb − Cηc),
η̇c = Aηc +Bu,
with η = [ηT

a, η
T
b, η

T
c]T, ηa, ηb ∈ Rs, ηc ∈ Rnf

C3 {M,N,A,B,C}
η̇a = Mηa +NCηe,
η̇b = −ηb + [ηaη

T
a]vec,

η̇c = −ηc + ηaηe,
η̇d = −[ηb]matηd + ηc,
η̇e = Aηe +Bu,
with η = [ηT

a, η
T
b, η

T
c, η

T
d, η

T
e]T,

ηa, ηc, ηd ∈ Rs, ηb ∈ Rs2 , ηe ∈ Rnf

from output regulation to more tractable stabilization con-
trol. Hence, by an internal model with certain output, i.e.,
the above Γ̂(·) is provided independent of any uncertainty,
the latter stabilization can be more simplified than those us-
ing internal models with uncertain output like (11).

3 Design of Internal Models with Certain Output

We address a new internal model construction method by
introducing a set of coined trial samples and further using
Lyapunov’s auxiliary theorem (see [12]) to do the confirma-
tion according to Definition 2.1. In this way, it may come
up with well-defined nonlinear internal models with certain
output serving the non-adaptive output regulation.

3.1 Selecting/Coining Trial Servo Compensators
In the present study, we shall limit ourselves to some

coined Luenberger observer-like servo compensators as trial
samples, listed in Table 1, toward nonlinear internal model
design in a constructive fashion. Specifically, the class C0
was originally introduced in [18] for linear systems and fur-
ther addressed in [14] for nonlinear systems. C1 was adopted
from [13]. Both C2 and C3 are introduced based on specif-
ic modifications of Kreisselmeier’s parameterized observers
proposed in [13].

Known from [14], note that the case C0 can be done gener-
ically by enhancing the system dimension. However, the cal-
culation of Γ̄(·) would be difficult and unfortunately, the ap-
pealing smoothness or even Lipschitz continuity would not
be assured in general. This case is lack of interest in smooth
stabilization of the augmented system and is beyond the s-
cope of the present study.

In Table 1, viewed as design parameters, (A,B,C) is
any nf -dimensional controllable and observable triple and
(M,N) is any s-dimensional controllable pair. In the present
study and for simplicity, we may set (A,B,C) = (−1, 1, 1),

M =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−m1 −m2 · · · −ms

 , N =


0
...
0
1


with m = [m1, · · · ,ms]

T given such that M is Hurwitz.

3.2 Internal Model Construction
Let us now carry out the internal model design. Loosely

speaking, our main task is to examine the compensators in

Table 2: Confirming Internal Models with Certain Output
STEP 1 Select a sample η̇ = γ(η, u), η ∈ Rd

STEP 2 Solve the equations:
[∂θ(τ, a)/∂τ ]Φ(a)τ = γ(θ(τ, a),Ψτ),
Ψτ = Γ̄(θ(τ, a)) with (τ, a) ∈ T× A

− If {θ, Γ̄} are well-defined, the internal model is confirmed. END.
− Otherwise, turn to STEP 1.

Table 1 and to verify the respective conditions in Table 2 by
adjusting the design parameters. It determines the internal
model of interest according to Definition 2.1 by a two-step
procedure as a method of trial and error.

Note that one feasible design for the case C0 of Table 1
can be referred to Section 2.2 for an internal model with un-
certain output by letting d = s. For the design of an internal
model with certain output, C0 may be confirmed, not shown
here in detail, by [14, Theorem 2] for a large integer d > s.
Associated with C3, it relates to the set of equations

[∂θa(τ, a)/∂τ ]Φ(a)τ = Mθa(τ, a) +Nθe(τ, a), (14)
[∂θb(τ, a)/∂τ ]Φ(a)τ = −θb(τ, a) + [θa(τ, a)θT

a(τ, a)]vec,

[∂θc(τ, a)/∂τ ]Φ(a)τ = −θc(τ, a) + θa(τ, a)θe(τ, a),

0 = −[θb(τ, a)]matθd(a) + θc(τ, a),

[∂θe(τ, a)/∂τ ]Φ(a)τ = −θe(τ, a) + Ψτ, Ψτ = Γ̄(θ(τ, a))

with θ(τ, a) := [θT
a, · · · , θT

e]T for smooth maps (τ, a) 7→
θa(τ, a), θb(τ, a), θc(τ, a), θe(τ, a), a 7→ θd(a), and θ 7→
Γ̄(θ). It is worth noting that a closed-form solution of (14)
can be derived by translating the PDEs into algebraic equa-
tions. As a major consequence, constructiveness of the in-
ternal model design is assured for all the cases C1 to C3. The
main conclusion of this section is stated.

Theorem 3.1 For the composite system (1) under Assump-
tions 1 & 2, each of C0 to C3 in Table 1 can be made an
internal model with certain output u per Definition 2.1.

Remark 3.1 The design method as shown in Tables 1 & 2 is
tractable for a two-fold reason. Firstly, it is practically viable
to establish effective trial candidates by taking into account
of the necessary conditions of Lyapunov’s auxiliary theorem
and carefully adapting popular forms in system observation
and identification, owning to their common characteristics.
Secondly, the set of PDEs may reduce to certain algebraic
equations. It indeed provides a tractable path and much flex-
ibility for internal model construction.

Remark 3.2 The trial servo compensators in Table 1 have
been coined inspired by the observation research of [13].
From the system observation viewpoint, the proposed inter-
nal models are conceptually closer to “output observers” be-
cause only the output function Γ̄(·) is required in the internal
model design problem. On the other hand, by a slight modi-
fication of equations in Table 2, we can impose a “stronger”
condition, for suitable mappings {θ, Γ̄},

[∂θ(τ, a)/∂τ ]Φ(a)τ = γ(θ(τ, a),u(µ)),

[
τ
a

]
= Γ̄(θ(τ, a)).

(15)
The condition (15) is exactly an observer design condition
for (9) in the coordinate (τ, a); see [12, Definition 1] us-
ing Lyapunov’s auxiliary theorem and refer to [14, Theo-



rem 1] for a general result on solvability of (15). By con-
trast, the condition in Table 2 is never stronger than that of
(15). Also note that instead of convergence analysis for er-
ror dynamics in observer design problems, a subsequent sta-
bilization design should be performed in output regulation
design problems or specifically for the resulting augmented
systems. This is a crucial question to accomplish output reg-
ulation control goal. At this point, it is stressed that C2 and
C3 in Table 1 are strictly extended from the standing observ-
er forms proposed in [14]. With a consideration of rendering
the aforementioned stabilization problem tractable, both C2
and C3 are coined to adapt output regulation design. This
will be further explained by Remark 4.2.

4 Application to Output Consensus

This section is devoted to an exemplary application of the
case C3 for an extended study of a global (distributed) ro-
bust output regulation problem addressed in [26] when the
exosystems or leaders are unknown.

4.1 Problem Description
For a concrete investigation of the general setting (1), let

us turn to a composite system consisting of p agents
żi = F (w)zi + ∆0(yi, w),

ẏi = G(w)zi + ∆1(yi, w) + ui,

ei = yi − q(v), 1 ≤ i ≤ p, v̇ = S(σ)v

(16)

where each agent or subsystem takes an output feedback nor-
mal form (see, e.g., [3, 16]). In (16), it is assumed that F (w)
is Hurwitz for each unknown parameter w ∈ W and func-
tions ∆0,∆1, q are polynomials in their argument(s).

The system (16) may be regarded as a leader-follower
multi-agent nonlinear system. In contrast to that posed in (1),
the exosystem here is named a leader to characterize the syn-
chronous output q(v) for a consensus control goal. It is now
the situation that each local agent measurement χi := χi(e)
for 1 ≤ i ≤ p is given by

χ = [χ1, · · · , χp]T = He with e = [e1, · · · , ep]T (17)

for an invertible matrixH ∈ Rp×p relating to general direct-
ed communication topologies. Indeed, H is stemmed from
output interactions in the sense of [26, H1 & Remark 3.3]
(cf. [24, Assumption 5], [3, Assumption 4], and [15, As-
sumption 3.2] and references thereof). Also note that there
is a positive definite matrix R = diag(r1, · · · , rp) such that
RH +HTR ≥ Ip.

For the above described system (16) with the agent-wise
measurement (17), the global robust distributed output con-
sensus problem (GROC) is to seek a smooth controller

η̇ = γ(η, u), ui = −ρ(χi) + Γcs(η), 1 ≤ i ≤ p (18)

for an index  satisfying 0 ≤  ≤ p (namely, the host agent2

in line with [26]), that solves the relevant distributed non-
adaptive output regulation without a prior of σ in (16).

4.2 Output Consensus Design Using C3
To solve the GROC, it is easy to show that Assumption 2 is

verifiable for each agent or subsystem of (16). Its regulator
2The case  = 0 may be understood as the non-host agent design.

equations are solvable with a common solution. That is, they
has the same regulator equations

[∂z(µ)/∂v]S(σ)v = F (w)z(µ) + ∆0(q(v), w), (19)
[∂q(v)/∂v]S(σ)v = G(w)z(µ) + ∆1(q(v), w) + u(µ)

with a solution {z(µ),u(µ)}. In particular, each steady-
state input can be given by u(µ) = [∂q(v)/∂v]S(σ)v −
∆1(z(µ), q(v), w) that is polynomial in v by assumption.
Moreover, known from [4], for the function u(µ), there is
an integer s? > 0 such that u(µ) can be expressed by
u(µ(t)) =

∑s?

i=1 Ci(v(0), σ, w)eıω̂it where ı is the imagi-
nary unit and ω̂i for 1 ≤ i ≤ s? are distinct real numbers.

Assumption 3 The condition (v(0), σ, w) ∈ D is generic so
that Ci(v(0), σ, w) 6= 0 for each 1 ≤ i ≤ s?.

Remark 4.1 Assumption 3 is standing and the trivial case is
excluded from the present problem. It is noted that Assump-
tion 3 also assures a certain stabilizability property of the
augmented system to be given by (22). A similar condition
is often used to assure convergence in observation problems
such as [13], understood as a persistency of excitation (PE)
condition (see [22, pp. 265]).

In the following, we fix the host agent  = 1 and employ
the internal model C3. Further define a smooth and compact-
ly supported3 function Γ̄cs(η) satisfying

Γ̄cs(η) = Γ̄(η), ∀η ∈
{
η = θ(τ(µ), a(σ)) | µ ∈ D

}
. (20)

In other words, Γ̄cs(η) should coincide with Γ̄(η). We are
ready to establish a tractable augmented system by letting

z̄ = [z̄T
1, · · · , z̄T

p]T, z̄i = zi − z(µ), 1 ≤ i ≤ p,

ξ =


ξ1
ξ2
ξ3
ξ4

 =


ηa − θa(τ(µ), a(σ))
ηb − θb(τ(µ), a(σ))
ηc − θc(τ(µ), a(σ))

ηe − θe(τ(µ), a(σ))− e1

 ,
ζ = ηd − θd(a(σ)), χ = He,

ū = [ū1, · · · , ūp]T, ūi = ui − Γ̄cs(η), 1 ≤ i ≤ p (21)

where {θa, θb, θc, θd, θe} satisfy (14), z(µ) satisfies (19),
and χ is given by (17). For the augmented system composed
of (16) and C3, using the new coordinates and input (21) we
obtain a translated system described by

˙̄z =
[
Ip ⊗ F (w)

]
z̄ + fa(χ, µ),

ξ̇ =

[
M 0
0 −Is2+s+1

]
ξ + f b(z̄, ξ, χ, µ),

ζ̇ = −[θb(τ, a)]matζ + f c(ξ, ζ, µ),

χ̇ = Hū+Hg(z̄, ξ, ζ, χ, µ)

(22)

for some smooth functions fa, f b, f c, and g. The augmented
system (22) enjoys an equilibrium (z̄, ξ, ζ, χ) = (0, 0, 0, 0)
and moreover, for any (z̄, ξ, χ, µ), g(z̄, ξ, ζ, χ, µ) is bounded
in ζ due to the specific design of Γ̄cs(·) by (20).

As a result, the GROC can be solved as long as the equilib-
rium (z̄, ξ, ζ, χ) = (0, 0, 0, 0) can be made globally robustly

3A function is compactly supported if it is zero outside a compact set.



asymptotically stable by a decentralized mode controller of
the form

ū = −ρ̄(χ) := −[ρ(χ1), · · · , ρ(χp)]T, ρ : R→ R. (23)

This problem conversion is effective and exactly achieved in
the spirit of [7]. The main conclusion of this section is stated.

Theorem 4.1 For the system (16) under Assumptions 1 & 3,
the GROC is solvable by a controller of the form (18).

Remark 4.2 Regarding the coordinate transformation (21),
we shall note that, what makes the candidate C1 difficult to
be performed for output regulation design is that derivation
of an augmented system of the normal form like (22) having
well-defined uniform relative degrees would be very difficult
and not clear in most situations. Nevertheless, the modified
candidates C2 and C3 can get through this obstacle in virtue
of their interconnection structures.

On the other hand, the resulting augmented system (22)
has both static and dynamic uncertainties (see [11]), µ(t)
and (z̄(t), ξ(t), ζ(t)), respectively. It is should be noted that
some of the dynamic uncertainties may merely satisfy cer-
tain integral input-to-state stability (ISS) (see [1]). The en-
countered globally stabilizing control for (22) by (23) is a
distinguished scenario and much more challenging than the
ISS case addressed in [26]. Nonetheless, solvability of this
stabilization can still be assured due to a stronger integral IS-
S property of the proposed internal models, that is also why
they are named robust internal models in this study. Hence,
the stabilizing design (23) for (22) is the main body of the
proof of Theorem 4.1.

5 Conclusion

Several novel types of robust nonlinear internal model-
s with certain output have been proposed based on an ap-
proach of introducing certain coined trial samples and using
Lyapunov’s auxiliary theorem for confirmation. For an ex-
emplary application, a distributed output regulation problem
has been shown solvable.
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