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Abstract: This paper studies the event-triggered control problem of nonlinear discrete-time systems in the presence of external
disturbances. In particular, we focus on the case in which whether or not the system state is sampled at step k is determined by the
feedback information at step k − 1. This problem is motivated by practical applications, and the proposed solution drastically
differs from the existing event-based control methods. One of the fundamental difficulties is caused by the existence of external
disturbances in predicting x(k) by using x(k − 1). In this paper, refined tools of input-to-state stability (ISS) and the nonlinear
small-gain theorem are developed to estimate the influence of external disturbances, and an input-to-state stabilizing design is
proposed to solve the event-triggered control problem.
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1 Introduction

Nowadays, practical control systems increasingly rely on
the use of computers. The computer-controlled systems can
be considered as sampled-data systems [1]. In order to im-
prove the performance of the controlled system and reduce
the waste of computing and communication resources, state-
dependent event-triggered sampling has been proposed [2].
Compared with the traditional time-triggered control, the sam-
pling time instants of event-triggered control are determined
by state-dependent events. Early papers [2, 3] have shown the
advantages of event-triggered control over traditional time-
triggered control. See also [4, 5] for a literature review and
tutorial.

In the past ten years, tremendous effort has been paid to the
study of event-triggered control. The focus of this research
area has moved from first-order systems to multivariable,
high-order systems; see, e.g., [6–13] and the references there-
in. Most of these published papers deal with linear systems
or simplified nonlinear models. In event-triggered control,
threshold signals are usually employed to generate the events
of data sampling. Constant threshold signals are used in ear-
lier results, e.g., [14, 15], while in the recent results, e.g.,
[16–18], the threshold signals are designed to depend on the
previously sampled data or the real-time state. Standard con-
trol design methods have been refined for event-triggered
control. For instance, the concept of input-to-state stability
(ISS) is used to characterize the robustness of the control
system to sampling error, and the threshold signal is designed
as a function of the real-time state of the controlled system
[9, 19]. References [18, 20] present a Lyapunov approach to
event-triggered control. Event-triggered control with distur-
bances has also been studied. For instance, reference [21]
analyzes the robustness with respect to disturbances in a self-
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triggered implementation. An extended result is obtained in
the reference [22] in which the proposed control strategy can
guarantee exponential input-to-state stability of the closed-
loop system with respect to disturbances. The event-triggered
control problem of continuous-time nonlinear systems in the
presence of external disturbances is discussed in [23]. The
theoretical results have also been extended to the setting of
distributed control and output-feedback control [24, 25]. For
more recent work, see [26–28] and the references therein.

The main purpose of this paper is to study the event-
triggered control problem for discrete-time nonlinear sys-
tems subject to external disturbances. In [29], event-triggered
condition and self-triggered formulation are proposed for
discrete-time systems without external disturbances by using
the notion of ISS. Reference [8] proposes sensor-controller
and controller-actuator event-triggering mechanisms, and al-
so model-based periodic event-triggered control strategies
to achieve L2 property gain with respect to external distur-
bances. In [30, 31], the event-triggered consensus problem
of discrete-time multi-agent systems is investigated, and the
triggering condition is designed based on the measurement
error to ensure multi-agent consensus.

In this paper, we consider discrete-time systems with non-
linear uncertain dynamics and external disturbances. In view
of practical applications, there is always a gap between event-
triggering and actuator realization. To address this issue, this
paper focuses on the case in which we only use the current
state to determine the logics of data-sampling event at the next
step. To the best of our knowledge, this problem has not been
systematically studied in the past literature. The major contri-
bution of this paper lies in a new event-triggering mechanism
based on the refined tools of ISS [32, 33] and the nonlinear
small-gain theorem [34–36] for discrete-time systems. With
the proposed design, the closed-loop event-triggered system
can be rendered ISS with the external disturbance as the input.

The rest of the paper is organized as follows. Section 2
gives the problem formulation of event-triggered control for
discrete-time nonlinear systems. In Section 3, we present
our main results on the event-triggered robust stabilization.



We first consider the case of state-dependent disturbance,
in which the disturbance magnitude depends on the state
magnitude. A nonlinear small-gain design is proposed such
that the closed-loop event-triggered system is robustly stable.
Then, the case of state-independent disturbance is studied. In
this second case, the event-triggered sampling mechanism is
designed to be able to predict the influence of the external
disturbance, and input-to-state stabilization is achieved. In
Section 4, we employ an illustrative example to show the
effectiveness of the theoretical results.

For completeness of the paper, some notations and defini-
tions are given here. Recall that a function α : R+ → R+

is a K-function if it is continuous, strictly increasing and
α(0) = 0; it is a K∞-function if it is a K-function and is
unbounded. In this paper, γ ◦ ρ represents the composition
function of γ and ρ. For γ, ρ ∈ K, γ ◦ ρ < Id means
γ(ρ(s)) < s for all s > 0. We use Z+ to denote the set of all
nonnegative integers. For any vector x ∈ Rn, |x| represents
its Euclidean norm.

2 Problem Formulation

Consider a class of discrete-time nonlinear systems with
external disturbances:

x(k + 1)− x(k) = f(x(k), u(k), d(k)), k ∈ Z+ (1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
d ∈ Rnd represents external disturbances, and f : Rn ×
Rm × Rnd → Rn is a continuous function representing the
rate of change of state x.

We consider the state-feedback control law in the form of

u(k) = κ(x(ki)), ki ≤ k < ki+1, i ∈ S (2)

where κ : Rn → Rm is a continuous function, {ki}i∈S is the
sequence of sampling times with S = {0, 1, 2, · · · } ⊆ Z+

and k0 = 0. In the problem setting of event-triggered control,
S is determined by a state-dependent function corresponding
to the events.

In practice, some response time is often required for data
sampling after the triggering of an event. In this paper, we
consider the case in which whether the sampling event is
triggered at step k is determined by state x(k − 1). In partic-
ular, the event-triggering mechanism proposed in this paper
is defined in the form of

ki+1 = min {k ≥ ki : ϕ(x(k), x(ki)) > 0}+ 1 (3)

where ϕ : Rn × Rn → R is the triggering function, to be
designed later.

Set

w(k) = x(ki)− x(k), ki ≤ k < ki+1, i ∈ S (4)

as the error caused by event-triggered sampling.
By substituting (2) and (4) into (1), we obtain the closed-

loop system

x(k + 1)− x(k) = f(x(k), κ(x(k) + w(k)), d(k))

=: f̃(x(k), w(k), d(k)), (5)

for which, the sampling error w and the external disturbance
d are considered as the inputs. Without loss of generality,
assume f̃(0, 0, 0) = 0.

This paper focuses on the design of a desired event-
triggering mechanism. Like the work of others on event-
based nonlinear control, we assume that system (1) already
has a stabilizing control law (2), and that the closed-loop
system (5) is ISS with respect to w and d.

Assumption 1. System (5) is ISS with w and d as the in-
puts, and admits an ISS-Lyapunov function V : Rn → R+

satisfying the following conditions:
1) There exist α, α ∈ K∞ such that

α(|x|) ≤ V (x) ≤ α(|x|), ∀x; (6)

2) There exist functions α ∈ K∞ and γw, γd ∈ K, such
that

V (f̄(x,w, d))− V (x)

≤ −α(|x|) + max{γw(|w|), γd(|d|)}, ∀x,w, d (7)

where f̄(x,w, d) = f̃(x,w, d) + x.

Without loss of generality, the following standing assump-
tion is made on f̃ .

Assumption 2. There exist functions ψx
f̃
, ψw

f̃
, ψd

f̃
∈ K∞

such that

|f̃(x,w, d)| ≤ ψx
f̃
(|x|) + ψw

f̃
(|w|) + ψd

f̃
(|d|) (8)

for all x ∈ Rn, w ∈ Rn and d ∈ Rnd .

According to the definition of w(k) in (4), the closed-loop
event-triggered system can be represented in the feedback
form shown in Fig.1.

x(k + 1) = f̄(x(k), w(k), d(k))

S
x(ki)
+−

w(k)

x(k)d(k)

Fig. 1: The block diagram of the closed-loop system (5),
where S represents the event-triggered sampler defined by
(3).

3 Event-Triggered Robust Stabilization

Following the standard line of robustness analysis, this sec-
tion studies the event-triggered robust stabilization problem
for discrete-time nonlinear systems by considering the cases
of state-dependent disturbance and state-independent distur-
bance, respectively. Input-to-state stabilization with respect
to external disturbances is achieved.

3.1 State-Dependent Disturbance
In this subsection, we suppose that the external disturbance

d is upper bounded by a function of system state x. In partic-
ular, there exists a γ ∈ K∞ such that

|d(k)| ≤ γ(|x(k)|) (9)

for all k ∈ Z+.



Motivated by previously existing results of event-triggered
control, we propose an event-triggering mechanism such that
the error w satisfies

|w(k)| ≤ ρ(|x(k)|) (10)

for all k ∈ Z+, where ρ is an appropriately chosen K∞
function.

Then, the closed-loop system (5) with interconnections
satisfying (9) and (10) can be described as a network of three
subsystems as shown in Fig.2.

Considering the network structure and the gain intercon-
nection, we employ the cyclic-small-gain theorem to analyze
the robust stability of the closed-loop system. Loosely speak-
ing, according to cyclic-small-gain theorems [37, 38], the
closed-loop system is stable if the following cyclic-small-
gain conditions are satisfied:

α−1 ◦ (Id− δ)−1 ◦ γd ◦ γ < Id, (11)

α−1 ◦ (Id− δ)−1 ◦ γw ◦ ρ < Id, (12)

where α is defined in Assumption 1, and δ is a continuous
and positive definite function satisfying Id− δ ∈ K∞.

x(k + 1) = f̄(x(k), w(k), d(k))

|w(k)| ≤ ρ(|x(k)|)

|d(k)| ≤ γ(|x(k)|)

w(k)

x(k)d(k)

Fig. 2: The block diagram of the closed-loop event-triggered
system (5) with state-dependent disturbance.

Since w is determined by the event-triggered sampling
mechanism, we find an appropriate event trigger to satisfy
both conditions (10) and (12).

Specifically, the function ϕ of the event-triggering mecha-
nism (3) is defined as follows:

ϕ(r1, r2) = −χx(|r1|) + χw(|r1 − r2|) (13)

for all r1, r2 ∈ Rn, with functions χx and χw to be chosen
later.

From (13), it holds that

ϕ(x(k), x(ki)) = −χx(|x(k)|) + χw(|x(k)− x(ki)|)
= −χx(|x(k)|) + χw(|w(k)|), (14)

which, together with (3), determines the sequence of sampling
times ki.

Compared with the triggering function normally used in
the previously published results, the triggering function ϕ is
in a more general form. The advantage of such ϕ is discussed
in Remark 1. Our first main result on event-triggered stabi-
lization for the case of state-dependent disturbance is given
by Theorem 1.

Theorem 1. Consider system (5). Under Assumptions 1
and 2, if the external disturbance d satisfies (9) and (11),

then global asymptotic stabilization can be achieved with the
event-triggering mechanism (3) and (13), where

χx = ρ ◦ (Id + ρ)−1 − (ψx
f̃

+ ψd
f̃
◦ γ) (15)

χw = ψw
f̃

+ Id (16)

with ρ ∈ K∞ satisfying (12).

Proof. The event-triggering mechanism (3) uses x(k) and
w(k) to determine whether x(k + 1) should be sampled for
feedback.

Note that |w(0)| = 0 ≤ ρ(|x(0)|). With ϕ defined in (13),
we prove that for any given k ∈ Z+ and any x(k) and w(k),

|w(k + 1)| ≤ ρ(|x(k + 1)|). (17)

We study two cases: (a) ϕ(x(k), x(ki)) > 0; (b)
ϕ(x(k), x(ki)) ≤ 0.
Case (a): In this case, by directly using (3), we have
ki+1 = k + 1, and thus

|w(k + 1)| = 0, (18)

which guarantees (17).
Case (b): In this case, x(k+ 1) is not sampled, which means
ki+1 > k + 1. Thus, we have

|w(k + 1)| = |x(k + 1)− x(ki)|. (19)

Recall that x(k+1) is determined by x(k), x(ki) and d(k),
and also d(k) satisfies (9). We estimate an upper bound of
|w(k + 1)| by using x(k) and x(ki).

From (19), we have

|w(k + 1)| = |x(k + 1)− x(k) + x(k)− x(ki)|
≤ |x(k + 1)− x(k)|+ |x(k)− x(ki)|. (20)

By substituting (8) and (9) into the right-hand side of (20),
we get an upper bound of w(k + 1) as

|w(k + 1)| ≤ |x(k + 1)− x(k)|+ |x(k)− x(ki)|
≤ ψx

f̃
(|x(k)|) + ψw

f̃
(|x(k)− x(ki)|)

+ ψd
f̃
(|d(k)|) + |x(k)− x(ki)|

≤ ψx
f̃
(|x(k)|) + ψd

f̃
◦ γ(|x(k)|)

+ (ψw
f̃

+ Id)(|x(k)− x(ki)|)

≤ (ψx
f̃

+ ψd
f̃
◦ γ)(|x(k)|)

+ (ψw
f̃

+ Id)(|x(ki)− x(k)|). (21)

Using ϕ(x(k), x(ki)) ≤ 0, we have (ψx
f̃

+ ψd
f̃
◦

γ)(|x(k)|)− ρ ◦ (Id + ρ)−1(|x(k)|) + (ψw
f̃

+ Id)(|x(ki)−
x(k)|) ≤ 0, and thus

(ψx
f̃

+ ψd
f̃
◦ γ)(|x(k)|) + (ψw

f̃
+ Id)(|x(ki)− x(k)|) ≤

ρ ◦ (Id + ρ)−1(|x(k)|). (22)

From the first and the last inequalities of (21), we also have

|x(k + 1)− x(k)| ≤ ρ ◦ (Id + ρ)−1(|x(k)|). (23)



By using [23, Lemma A.1], it follows that

|x(k + 1)− x(k)| ≤ ρ ◦ (Id + ρ)−1(|x(k)|)
≤ ρ(|x(k + 1)|). (24)

Then, (17) is proved for Case (b) by combining (21), (22),
and (24).

From the discussions above, we have

|w(k)| ≤ ρ(|x(k)|) (25)

for all k ∈ Z+.
Then, with the satisfaction of (11) and (12), property (7)

implies

V (f̄(x,w, d))− V (x)

≤ −α(|x|) + max{γw ◦ ρ(|x|), γd ◦ γ(|x|)}
≤ −α(|x|) + max{(Id− δ) ◦ α(|x|), (Id− δ) ◦ α(|x|)}
≤ −δ ◦ α(|x|)
=: −α̂(|x|) (26)

for all x,w, d. This ends the proof of Theorem 1.

Remark 1. It can be observed that |w(k+1)| ≤ ρ(|x(k+1)|)
cannot be directly guaranteed by |w(k)| ≤ ρ0(|x(k)|) for
some ρ0 ∈ K∞, since the amplitude of x(k + 1) depends on
the uncertain f̃(x(k), w(k), d(k)). The problem is solved by
introducing a new event-triggering function ϕ, for which χx

is not necessarily positive definite, and χw is defined to be of
class K∞. In the case of χx(|x(k)|) < 0, it can be directly
concluded that

ki+1 = k + 1. (27)

If, moreover, χx is negative definite, then (27) holds for all
k ∈ Z+, i ∈ Z+. In this case, each x(k) for k ∈ Z+ should
be sampled for feedback.

If χx is positive definite, then for each i ∈ S, we have
ϕ(x(ki), x(ki)) = −χx(|x(ki)|) ≤ 0, and min{k ≥ ki :
ϕ(x(k), x(ki)) > 0} ≥ ki + 1, which implies

ki+1 ≥ ki + 2. (28)

As a result, if x(k) is sampled for feedback, then x(k + 1)
will not be sampled.

Remark 2. Suppose that system (1) is an Euler approxima-
tion of a continuous-time system

ẋ(t) = g(x(t), u(t), d(t)). (29)

Then, we have

f(x(k), u(k), d(k)) = Tg(x(k), u(k), d(k)) (30)

where constant T > 0 is the sampling period for the
continuous-time system (29).

Clearly, by choosing T small enough, one can make
ψx
f̃
, ψw

f̃
, ψd

f̃
small enough, and thus χx positive definite. In-

tuitively, this means that if T is small, then some x(k) is not
necessarily sampled; otherwise, each x(k) should be sampled
for feedback.

There is a trade-off between the sampling period for
continuous-time system and the number of sampling events
for the discrete-time system.

3.2 State-Independent Disturbance
In this subsection, condition (9) used in Subsection 3.1 is

not assumed, and we aim to show the effectiveness of the
proposed event-triggering mechanism for input-to-state sta-
bilization of the closed-loop event-triggered system. The
analysis in Subsection 3.1 is not valid for this case. Specifi-
cally, if |d(k)| > γ(|x(k)|) for some k, then the event trigger
(3) with function ϕ defined in (13) cannot directly guarantee
(17), and thus the stability of the closed-loop event-triggered
system cannot be directly proved. This leads to one major
difference between the event-triggered control system studied
in this paper and the conventional discrete-time nonlinear
systems.

We prove that the closed-loop event-triggered system is
ISS, though the resulted ISS gain does not have the stan-
dard relation with the γ satisfying (11) or the γd defined in
Assumption 1.

Theorem 2. Consider system (5). Under Assumptions 1
and 2, if the event-triggering mechanism (3) with function ϕ
defined in (13) satisfies (15) and (16), we have

V (f̄(x,w, d))− V (x)

≤ −ᾰ(|x|) + max{γ̆d(|d(k − 1)|), γd(|d(k)|)}, ∀x,w, d

where

ᾰ(s) = min{α̂(s), α(s)} (31)

for all s ∈ R+, and

γ̆d = γw ◦ λd (32)

with λd = (ψx
f̃

+ ρ ◦ (ψw
f̃

+ Id)) ◦ γ−1 + ψd
f̃

.

Proof. The basic idea of the proof is to reveal that the closed-
loop system is ISS by finding the true ISS gain, which is
different from the proof of Theorem 1. For any specific
k∗ ∈ Z+, we consider the cases of |w(k∗)| ≤ ρ(|x(k∗)|) and
|w(k∗)| > ρ(|x(k∗)|), respectively.
Case (a): |w(k∗)| ≤ ρ(|x(k∗)|). Under Assumption 1, with
condition (12) satisfied, we have

V (x(k∗ + 1))− V (x(k∗)) ≤ −α(|x(k∗)|)
+ max{(Id− δ) ◦ α(|x(k∗)|), γd(|d(k∗)|)}. (33)

If, moreover, (9) is satisfied, then property (33) implies

V (x(k∗ + 1))− V (x(k∗)) ≤ −α̂(|x(k∗)|) (34)

where α̂ is defined as for (26).
If, on the other hand, condition (9) is not satisfied, then

property (33) leads to

V (x(k∗ + 1))− V (x(k∗)) ≤ −α(|x(k∗)|) + γd(|d(k∗)|).
(35)

By combining (34) and (35), we have

V (x(k∗ + 1))− V (x(k∗)) ≤ −α̂(|x(k∗)|) + γd(|d(k∗)|).
(36)

Case (b): |w(k∗)| > ρ(|x(k∗)|). In this case, we first prove

|w(k∗ − 1)| ≤ ρ(|x(k∗ − 1)|), (37)
|d(k∗ − 1)| > γ(|x(k∗ − 1)|). (38)



By contradiction, assume that (37) does not hold, that is,
|w(k∗−1)| > ρ(|x(k∗−1)|). Then, ϕ(x(k∗−1), x(ki−1)) >
0, and thus x(k∗) is sampled, i.e., x(ki) = x(k∗). From the
definition of w in (4), we have |w(k∗)| = 0 ≤ ρ(|x(k∗)|).
This contradicts with |w(k∗)| > ρ(|x(k∗)|), and thus (37) is
proved.

With (37) proved, if |d(k∗ − 1)| ≤ γ(|x(k∗ − 1)|), then
following the proof of Theorem 1, we have |w(k∗)| ≤
ρ(|x(k∗)|). This contradicts with |w(k∗)| > ρ(|x(k∗)|), and
thus (38) is proved.

Then, the following relation between |w(k∗)| and |d(k∗ −
1)| can be observed:

|w(k∗)| = |x(k∗)− x(ki)|
≤ |x(k∗)− x(k∗ − 1)|+ |w(k∗ − 1)|
≤ ψx

f̃
(|x(k∗ − 1)|) + ψw

f̃
(|w(k∗ − 1)|)

+ ψd
f̃
(|d(k∗ − 1)|) + |w(k∗ − 1)|

≤ (ψx
f̃

+ ρ ◦ (ψw
f̃

+ Id))(|x(k∗ − 1)|) + ψd
f̃
(|d(k∗ − 1)|)

≤ λd(|d(k∗ − 1)|) (39)

where λd = (ψx
f̃

+ ρ ◦ (ψw
f̃

+ Id)) ◦ γ−1 + ψd
f̃

.
From (7), we have

V (x(k∗ + 1))− V (x(k∗))

≤ −α(|x(k∗)|) + max{γw ◦ λd(|d(k∗ − 1)|), γd(|d(k∗)|)}
= −α(|x(k∗)|) + max{γ̆d(|d(k∗ − 1)|)γd(|d(k∗)|)}

(40)

where γ̆d = γw ◦ λd.
Then, (36) and (40) together imply

V (x(k∗ + 1))− V (x(k∗))

≤ −ᾰ(|x(k∗)|) + max{γ̆d(|d(k∗ − 1)|), γd(|d(k∗)|)}

where ᾰ(s) = min{α̂(s), α(s)} for all s ∈ R+.
By applying this reasoning repeatedly, we have, for any

k ∈ Z+,

V (x(k + 1))− V (x(k))

≤ −ᾰ(|x(k)|) + max{γ̆d(|d(k − 1)|), γd(|d(k)|)}, (41)

which means ISS of the closed-loop event-triggered system.
This ends the proof of Theorem 2.

Remark 3. It can be observed that the right-hand side of
(39) depends on d(k∗ − 1). Intuitively, this is caused by
the “+1” term in (3). More specifically, for the case of
|w(k∗)| > ρ(|x(k∗)|) of the proof of Theorem 2, some up-
per bound of |w(k∗)| is needed to guarantee the ISS-like
relation between |x| and |d|. This is achieved by using event-
triggering mechanism (3).

4 An Illustrative Example

In this section, we employ an example to show the effec-
tiveness of the obtained results in this paper. We consider
event-triggered state-feedback control system in the following
form:

x(k + 1) = x(k) + 0.05|x(k)|+ 0.01d(k) + 0.1u(k)

u(k) = −x(ki), ki ≤ k < ki+1, i ∈ S (42)

where x is the state, u is the control input, and d is the external
disturbance. With w defined in (4), we obtain the closed-loop
system

x(k + 1) = 0.9x(k) + 0.05|x(k)|+ 0.01d(k)− 0.1w(k).
(43)

By transforming system (43) into the form of (5), it can be
directly proved that

|f̃(x,w, d)| ≤ 0.15|x|+ 0.1|w|+ 0.01|d| (44)

holds for all x,w, d.
We define an ISS-Lyapunov function V (x) = |x| for sys-

tem (43). Then, it holds that

V (f̄(x,w, d))− V (x)

≤ −0.05|x|+ max{0.2|w|, 0.02|d|}, ∀x,w, d. (45)

In the simulation, the disturbance d(k) is selected as

d(k) = 0.01 sin(0.03k) + 0.01 cos(0.09k) + 0.03. (46)

By choosing δ = 0.1, ρ = 0.22, γ = 0.2, we calculate
λd = 1.97, and thus γ̆d = 0.394. The simulation result for
the gain of system (43) with initial states x(0) = −1 is shown
in Fig.3. Clearly, in case of state-independent disturbance,
the γd in (7) is not the true ISS gain.
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Fig. 3: The state trajectory |x(k)| (“––”) and related signals
max{α̃ ◦ γ̆d(|d(k − 1)|), α̃ ◦ γd(|d(k)|)} (“· · · ”) and α̃ ◦
γd(|d(k)|) (“R”), where α̃(s) = α−1 ◦ (α ◦ α−1)−1(s) with
α(s) = 0.9s, α(s) = 1.1s.

5 Conclusions

This paper proposes a new event-triggering mechanism for
event-triggered control of nonlinear discrete-time systems in
the presence of external disturbances. Compared with the
huge literature of event-based control on continuous-time
systems, the study in this paper reveals new phenomena ap-
pearing in event-triggered controlled discrete-time nonlinear
systems. In particular, we consider the case in which whether
or not the sampling event is triggered at step k is determined
by state x(k − 1), which together with the external distur-
bance causes one of the major difficulties. Moreover, in case
of state-independent disturbance, the standard tool of input-
to-state stability cannot be directly used to guarantee the
input-to-state stabilization of the closed-loop event-triggered
system. Following this line of research, further directions
may include the study of event-triggered control of the sys-
tems with partial-state feedback, for which not only external
disturbances but also dynamic uncertainties should be taken
into consideration.
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