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Abstract: This paper is concerned with a kind of time-consistent solution of the time-inconsistent mean-field stochastic linear-
quadratic optimal control. Different from standard stochastic linear-quadratic problems, both the system matrices and the weight-
ing matrices are dependent on initial time, and the conditional expectations of the control and state enter quadratically into the
cost functional. Such features will ruin the Bellman optimality principle and result in the time-inconsistency of the optimal
control. Due to the dynamical nature of control problems, a kind of open-loop time-consistent equilibrium control is thoroughly
investigated in this paper. It is shown that the existence of an open-loop time-consistent equilibrium control for a fixed initial
pair is equivalent to the solvability of a set of forward-backward stochastic difference equations with stationary conditions and
convexity conditions. By decoupling the forward-backward stochastic difference equations, the existence of the open-loop e-
quilibrium control for all the initial pairs is shown to be equivalent to the solvability of a set of coupled constraint generalized
difference Riccati equations and a set of coupled constraint linear difference equations.
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1 Introduction

The Bellman optimality principle is an essential proper-
ty in optimal control theory, which provides the theoretical
foundation of the dynamic programming approach. From
the Bellman optimality principle, an optimal control for an
initial pair is also optimal along the optimal trajectory. Such
a phenomenon is referred as the time-consistency of the op-
timal control, which ensures that one needs only to solve
an optimal control problem for a given initial pair, and the
obtained optimal control is also optimal along the optimal
trajectory.

However, in reality, the time-consistency fails quite often.
For instance, when the initial time or initial state enters in-
to the system dynamics or cost functional explicitly, or even
more, the conditional expectations of the state or control en-
ters nonlinearly into the cost functional, the corresponding
problems are time-inconsistent. See examples in [13] and
[5] about the hyperbolic discounting and quasi-geometric
discounting. The problem with nonlinear term of the con-
ditional expectation in cost functional is called as mean-field
stochastic optimal control. In this case, the smoothing prop-
erty of the conditional expectation will not be in effect to
ensure the time-consistency of the optimal control. A partic-
ular example of this case is the known mean-variance utility
[3] and [5].

Due to the dynamical nature of the control problems, it
is reasonable to handle the time-inconsistency in a dynamic
manner. Instead of seeking an “optimal control”, some kind
of equilibrium controls are concerned with. This is mainly
motivated by practical applications such as in mathematical
finance and economics, and has recently attracted consider-
able interest and efforts. The mathematical formulation of
the time-inconsistency was first reported by [22], and a qual-
itative analysis was given in [21]. Following [22], the works
[10], [13], [14] and [19] are for discrete dynamic system-
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s or simple ordinary differential equations (ODEs). Subse-
quently, [6] and [7] studied the non-exponential discount-
ing problems both for simple ODEs and stochastic differen-
tial equations and introduced the notion of time-consistent
control. [5] discussed the problems of general Markovian
time-inconsistent stochastic optimal control. [24] and [25]
addressed the deterministic continuous-time linear-quadratic
(LQ) optimal control by an essentially cooperative game ap-
proach. [27] considered the stochastic LQ problem of mean-
field case, which is called the closed-loop formulation there.
Different from [24] and [25], [12] studied another kind of
time-consistent equilibrium control, which is an infinites-
imally open-loop optimal control. Roughly speaking, the
controller given by [12] can commit to the equilibrium con-
trol in an infinitesimal manner. [27] thoroughly investigated
both the open-loop and the closed-loop time-consistent so-
lutions for general mean-field stochastic LQ problems. It is
shown ([27]) that the existence of the open-loop equilibrium
control and the closed-loop equilibrium strategy is ensured
via the solvability of certain systems of Riccati-type differ-
ential equations. However, all these existing results focus on
the definite LQ problems.

In this paper, we shall investigate a time-inconsistent
mean-field stochastic LQ optimal control problem, whose
system dynamics and cost functional are also dependent on
the initial time. It is worth noting that the definiteness con-
straints are not posed on the state and control weighting
matrices. Here, we adopt a dynamic manner to attack the
time-inconsistency and intend seeking a kind of open-loop
equilibrium control of Problem (LQ). After giving the defi-
nition of open-loop equilibrium pair, its existence for a fixed
initial pair is shown to be equivalent to the solvability of
a set of forward-backward stochastic difference equations
(FBS∆Es) with stationary conditions and convexity condi-
tions. If for a fixed initial pair Problem (LQ) admits an open-
loop equilibrium pair, then a set of constrained linear differ-
ence equations (LDEs) is solvable, and the open-loop equi-
librium control admits a closed-loop representation. Here,
the closed-loop representation is a linear feedback of the cur-



rent value of equilibrium state, whose gains are computed
via the solutions of the constraint LDEs (11) and a set of
generalized difference Riccati equations (GDREs) (14). For
any initial pair, Problem (LQ) admitting an open-loop equi-
librium pair is shown to be equivalent to that the constraint
LDEs (15) and a set of constraint GDREs (16) are solvable.
Different from (14), (16) is of constrained GDREs. Inter-
estingly, if solvable, the set of GDREs (16) does not have
symmetric structure, i.e., its solution is not symmetric.

In [16], a simplified version of Problem (LQ) is consid-
ered, where the system dynamics and the cost functional do
not contain mean-field terms. Hence, this paper is a continu-
ation of [16]. If the system dynamics and cost functional are
independent of the initial time, the corresponding LQ prob-
lem is a dynamic version of that considered in [17], where a
static version is studied with the conditional expectation op-
erator being replaced by the expectation operator. For details
on mean-field stochastic optimal control and related mean-
field games, we refer to, for example, [8] [17] [18] [26] [4]
[11] [15] and the references therein.

The rest of the paper is organized as follows. Section 2
presents the results mentioned above, and Section 3 gives
some concluding remarks.

2 Open-loop time-consistent equilibrium control

Consider the following controlled stochastic difference e-
quation (S∆E)

Xt
k+1 =

(
At,kX

t
k + Āt,kEtX

t
k

+Bt,kuk + B̄t,kEtuk
)

+
(
Ct,kX

t
k + C̄t,kEtX

t
k

+Dt,kuk + D̄t,kEtuk
)
wk,

Xt
t = x, k ∈ Tt, t ∈ T,

(1)

where T = {0, . . . , N − 1}, Tt = {t, · · · , N − 1},
and At,k, Āt,k, Ct,k, C̄t,k ∈ Rn×n, Bt,k, B̄t,k, Dt,k, D̄t,k ∈
Rn×m are deterministic matrices; {Xt

k, k ∈ T̃t} , Xt and
{uk, k ∈ Tt} , u with T̃t being {0, . . . , N} are the state
process and control process, respectively. Here, the initial
time t is parameterized in the matrices and state to empha-
size that the matrices and state may change according to the
initial time t. Similar notations will be used throughout the
paper. In (1), Et is the conditional mathematical expectation
E[ · |Ft] with respect to Ft = {x0, wl, l = 0, 1, · · · , t − 1}
and F−1 is understood as {∅,Ω}. The noise {wk, k ∈ T} is
assumed to be a martingale difference sequence defined on a
probability space (Ω,F , P ) with

Ek+1[(wk+1)2] = 1, k ∈ T. (2)

The cost functional associated with system (1) is

J(t, x;u) =

N−1∑
k=t

Et

[
(Xt

k)TQt,kX
t
k + (EtX

t
k)T Q̄t,kEtX

t
k

+ uTkRt,kuk + (Etuk)T R̄t,kEtuk

+ Et

[
(Xt

N )TGtX
t
N

]
+ (EtX

t
N )T ḠtEtX

t
N , (3)

where Qt,k, Q̄t,k, Rt,k, R̄t,k, k ∈ Tt, Gt, Ḡt are determinis-
tic symmetric matrices of appropriate dimensions. In (1), x

is in L2
F (t;Rn), which is a set of random variables such that

any ξ ∈ L2
F (t;Rn) is Ft-measurable and E|ξ|2 < ∞. Let

L2
F (Tt;H) be a set of H-valued processes such that for any

ν = {νk, k ∈ Tt} ∈ L2
F (Tt;H), νk is Fk-measurable and∑N−1

k=t E|νk|2 < ∞. Then, we pose the following optimal
control problem.

Problem (LQ). Concerned with (1)(3) and the initial pair
(t, x), find a u∗ ∈ L2

F (Tt;Rm), such that

J(t, x;u∗) = inf
u∈L2

F (Tt;Rm)
J(t, x;u). (4)

Instead of solving Problem (LQ) for the static pre-
committed optimal control, we adopt the concept of dynam-
ic equilibrium control, which is optimal in an infinitesimal
sense and consistent with the dynamical nature of Problem
(LQ).

Definition 2.1 Given t ∈ T and x ∈ L2
F (t;Rn), a state-

control pair (Xt,x,∗, ut,x,∗) with ut,x,∗ ∈ L2
F (Tt;Rm) is

called an open-loop equilibrium pair of Problem (LQ) for
the initial pair (t, x) if Xt,x,∗

t = x, and

J(k,Xt,x,∗
k ;ut,x,∗|Tk

) ≤ J(k,Xt,x,∗
k ; (uk, u

t,x,∗|Tk+1
)) (5)

holds for any uk ∈ L2
F (k;Rm) and k ∈ Tt. Here, ut,x,∗|Tk

and ut,x,∗|Tk+1
are the restrictions of ut,x,∗ on Tk and Tk+1,

respectively. Furthermore, such a ut,x,∗ is called an open-
loop equilibrium control for the initial pair (t, x).

For a u ∈ L2
F (Tt;Rm), the requirement that uk is Fk−1-

measurable is parallel to the standard statement on the ad-
missible controls of continuous-time stochastic optimal con-
trol; see [9], [23] for details. In other words, uk is deter-
mined from {k, x0, w0, ..., wk−1} only, irrespective of how
the state process develops. From this and the standard ar-
guments about the open-loop control [2], u ∈ L2

F (Tt;Rm)
can be viewed as an open-loop control. Hence, we cal-
l ut,x,∗ an open-loop equilibrium control. Furthermore,
noting that ut,x,∗|Tk

= (ut,x,∗k , ut,x,∗|Tk+1
), the control

(uk, u
t,x,∗|Tk+1

) on the right hand of the inequality of (5)
differs from ut,x,∗|Tk

only at stage k. Therefore, (5) is
viewed as a local optimality condition. Similarly to [16],
we can show that {ut,x,∗t , ..., ut,x,∗N−1} is the Nash equilibrium
of a multi-person game with hierarchical structure. By its
definition, an open-loop equilibrium control ut,x,∗ is time-
consistent in the sense that for any k ∈ Tt, ut,x,∗|Tk

is an
open-loop equilibrium control for the initial pair (k,Xt,x,∗

k ).
In other words, ut,x,∗ is time-consistent along the trajectory
of the equilibrium state Xt,x,∗.

By a formula of the difference of cost functionals, we can
derive the following necessary and sufficient condition to the
existence of the open-loop equilibrium pair for a given initial
pair, whose proof is omitted due to space limitations.

Theorem 2.1 Given t ∈ T and x ∈ L2
F (t;Rn), the follow-

ing statements are equivalent.
(i) There exists an open-loop equilibrium pair of Problem

(LQ) for the initial pair (t, x).
(ii) There exists a ut,x,∗ ∈ L2

F (Tt;Rm) such that for
any k ∈ Tt, the following FBS∆E admits a solution



(Xk,t,x, Zk,t,x)

Xk,t,x
`+1 =

(
Ak,`X

k,t,x
` + Āk,`EkX

k,t,x
`

+Bk,`u
t,x,∗
` + B̄k,`Eku

t,x,∗
`

)
+
(
Ck,`X

k,t,x
` + C̄k,`EkX

k,t,x
`

+Dk,`u
t,x,∗
` + D̄k,`Eku

t,x,∗
`

)
w`,

Zk,t,x
` = AT

k,`E`Z
k,t,x
`+1 + ĀT

k,`EkZ
k,t,x
`+1

+ CT
k,`E`(Z

k,t,x
`+1 w`) + C̄T

k,`Ek(Zk,t,x
`+1 w`)

+Qk,`X
k,t,x
` + Q̄k,`EkX

k,t,x
` ,

Xk,t,x
k = Xt,x,∗

k ,

Zk,t,x
N = GkX

k,t,x
N + ḠkEkX

k,t,x
N ,

` ∈ Tk

(6)

with the stationary condition

0 = (Rk,k + R̄k,k)ut,x,∗k + (Bk,k + B̄k,k)TEkZ
k,t,x
k+1

+ (Dk,k + D̄k,k)TEk(Zk,t,x
k+1 wk) (7)

and the convexity condition

0 ≤ Ek

[
uTk (Rk,k + R̄k,k)uk

]
+

N−1∑
`=k

Ek

[
(Y k,ūk

` )TQk,`Y
k,ūk

`

+ (EkY
k,ūk

` )T Q̄k,`EkY
k,ūk

`

]
+ Ek

[
(Y k,ūk

N )TGkY
k,ūk

N

]
+ (EkY

k,ūk

N )T ḠkEkY
k,ūk

N .(8)

In the above, Y k,ūk and Xt,x,∗ are given, respectively, by
Y k,ūk

`+1 = Ak,`Y
k,ūk

` + Āk,`EkY
k,ūk

`

+
(
Ck,`Y

k,ūk

` + C̄k,`EkY
k,ūk

`

)
w`, ` ∈ Tk+1,

Y k,ūk

`+1 = (Bk,k + B̄k,k)ūk + (Dk,k + D̄k,k)ūkwk,

Y k,ūk

k = 0,

and
Xt,x,∗

k+1 = (Ak,k + Āk,k)Xt,x,∗
k + (Bk,k + B̄k,k)ut,x,∗k

+
[
(Ck,k + C̄k,k)Xt,x,∗

k + (Dk,k + D̄k,k)ut,x,∗k

]
wk,

Xt,x,∗
t = x, k ∈ Tt.

In this case, (Xt,x,∗, ut,x,∗) given in (ii) is an open-loop
equilibrium pair.

Though the means of the state and control appear in both
the system dynamics and the cost functional, the stationary
condition (7) does not contain the means. This is different
from the case of static mean-field LQ optimal control [17].
Here, the static mean-field LQ optimal control is a variant of
Problem (LQ) where the conditional expectation operator Et

is replaced by the expectation operator E and the matrices in
the system and cost functional are independent of the initial
time. Another interesting phenomenon is that the system (9)
for the equilibrium pair doesn’t contain the mean-field terms
too.

To simplify the notations, let
Ak,` = Ak,` + Āk,`, Bk,` = Bk,` + B̄k,`,
Ck,` = Ck,` + C̄k,`, Dk,` = Dk,` + D̄k,`,
Qk,` = Qk,` + Q̄k,`, Rk,` = Rk,` + R̄k,`,
Gk = Gk + Ḡk, k ∈ Tt, ` ∈ Tk.

(9)

Recall the pseudo-inverse of a matrix. By [20], for a given
matrix M ∈ Rn×m, there exists a unique matrix in Rm×n

denoted by M† such that{
MM†M = M, M†MM† = M†,
(MM†)T = MM†, (M†M)T = M†M.

(10)

This M† is called the Moore-Penrose inverse of M . The
following lemma is from [1].

Lemma 2.1 Let matrices L, M and N be given with appro-
priate size. Then, LXM = N has a solution X if and only
if LL†NMM† = N . Moreover, the solution of LXM = N
can be expressed as X = L†NM† + Y − L†LYMM†,
where Y is a matrix with appropriate size.

The following theorem is concerned with the necessary
condition on the existence of the open-loop equilibrium pair
for a fixed initial pair.

Theorem 2.2 Let Problem (LQ) for the initial pair (t, x) ad-
mit an open-loop equilibrium pair. Then, the following set of
LDEs



Pk,` = Qk,` +AT
k,`Pk,`+1Ak,`

+ CT
k,`Pk,`+1Ck,`,

Pk,` = Qk,` +AT
k,`Pk,`+1Ak,`

+ CTk,`Pk,`+1Ck,`,
Pk,N = Gk, Pk,N = Gk,
` ∈ Tk,

Rk,k + BTk,kPk,k+1Bk,k +DT
k,kPk,k+1Dk,k ≥ 0,

k ∈ Tt

(11)

is solvable in the sense that the following inequalities hold{
Rk,k + BTk,kPk,k+1Bk,k +DT

k,kPk,k+1Dk,k ≥ 0,

k ∈ Tt.
(12)

Furthermore, we have
Zk,t,x
` = Pk,`

(
Xk,t,∗

` − EkX
k,t,∗
`

)
+ Pk,`EkX

k,t,x
`

+ Tk,`
(
Xt,x,∗

` − EkX
t,x,∗
`

)
+ Tk,`EkX

t,x,∗
` ,

` ∈ Tk,

and an open-loop equilibrium control is given by

ut,x,∗k = −W†kHkX
t,x,∗
k , k ∈ Tt. (13)

Here, {Tk,`, ` ∈ Tk, k ∈ Tt}, {Tk,`, ` ∈ Tk, k ∈ Tt},
{Wk, k ∈ Tt} and {Hk, k ∈ Tt} are given, respectively,
by



Tk,` = AT
k,`Tk,`+1A`,` + CT

k,`Tk,`+1C`,`
−
(
AT

k,`Pk,`+1Bk,` +AT
k,`Tk,`+1B`,`

+ CT
k,`Pk,`+1Dk,` + CT

k,`Tk,`+1D`,`

)
W†`H`,

Tk,` = AT
k,`Tk,`+1A`,` + CTk,`Tk,`+1C`,`

−
(
AT

k,`Pk,`+1Bk,` +AT
k,`Tk,`+1B`,`

+ CTk,`Pk,`+1Dk,` + CTk,`Tk,`+1D`,`

)
W†`H`,

Tk,N = 0, Tk,N = 0,

` ∈ Tk,
k ∈ Tt,

(14)



and
Wk = Rk,k + BTk,k

(
Pk,k+1 + Tk,k+1

)
Bk,k

+DT
k,k

(
Pk,k+1 + Tk,k+1

)
Dk,k,

Hk = BTk,k
(
Pk,k+1 + Tk,k+1

)
Ak,k

+DT
k,k

(
Pk,k+1 + Tk,k+1

)
Ck,k.

Proof. Denote the righthand side of (8) by Ĵ(k, 0; ūk). We
then have

Ĵ(k, 0; ūk)

=

N−1∑
`=k

Ek

[
(Y k,ūk

` )TQk,`Y
k,ūk

` + (EkY
k,ūk

` )T Q̄k,`EkY
k,ūk

`

]
+ ūTkRk,kūk + Ek

[
(Y k,ūk

N )TGkY
k,ūk

N

]
+ (EkY

k,ūk

N )T ḠkEkY
k,ūk

N

=

N−1∑
`=k

Ek

[
(Y k,ūk

` )TQk,`Y
k,ūk

` + (EkY
k,ūk

` )T Q̄k,`EkY
k,ūk

`

+ (Y k,ūk

`+1 )TP`+1Y
k,ūk

`+1 − (Y k,ūk

` )TP`Y
k,ūk

`

+ (EkY
k,ūk

`+1 )T P̄`+1EkY
k,ūk

`+1 − (EkY
k,ūk

` )T P̄`EkY
k,ūk

`

]
+ ūTkRk,kūk

=

N−1∑
`=k+1

Ek

[
(EkY

k,ūk

` )T
(
Qk,` +AT

k,`Pk,`+1Ak,`

+ CTk,`Pk,`+1Ck,` − Pk,`

)
EkY

k,ūk

`

+ (Y k,ūk

` − EkY
k,ūk

` )T
(
Qk,` +AT

k,`Pk,`+1Ak,`

+ CT
k,`Pk,`+1Ck,` − Pk,`

)
(Y k,ūk

` − EkY
k,ūk

` )
]

+ ūTk
(
Rk,k + BTk,kPk,k+1Bk,k +DT

k,kPk,k+1Dk,k

)
ūk

= ūTk
(
Rk,k + BTk,kPk,k+1Bk,k +DT

k,kPk,k+1Dk,k

)
ūk.

By this and (8), we have the solvability of (11).
Let ut,x,∗ be an open-loop equilibrium control. Then,

from Theorem 2.1, for any k ∈ Tt, the FBS∆E (6) admits a
solution and (7) holds. As

ZN−1,t,x
N = GN−1X

N−1,t,x
N + ḠN−1EN−1X

N−1,t,x
N ,

we have by (7)

0 = RN−1,N−1u
t,x,∗
N−1

+ BTN−1,N−1

[
GN−1EN−1X

t,x,∗
N + gN−1

]
+DT

N−1,N−1GN−1EN−1(Xt,x,∗
N wN−1).

Substituting Xt,x,∗
N−1 and by Lemma 2.1, we have

ut,x,∗N−1 = −W†N−1HN−1X
t,x,∗
N−1 , ΨN−1X

t,x,∗
N−1,

where
WN−1 = RN−1,N−1 + BTN−1,N−1GN−1BN−1,N−1

+DT
N−1,N−1GN−1DN−1,N−1,

HN−1 = BTN−1,N−1GN−1AN−1,N−1

+DT
N−1,N−1GN−1CN−1,N−1.

Similarly, we have

ZN−2,t,x
N−1 =

(
PN−2,N−1 + TN−2,N−1

)
Xt,x,∗

N−1

+
(
P̄N−2,N−1 + T̄N−2,N−1

)
EN−2X

t,x,∗
N−1.

From (7), we have for k = N − 2

0 = RN−2,N−2u
t,x,∗
N−2

+ BTN−2,N−2

[(
PN−2,N−1 + TN−2,N−1

)
EN−2X

t,x,∗
N−1

]
+DT

N−2,N−2

(
PN−2,N−1 + TN−2,N−1

)
× EN−2

(
Xt,x,∗

N−1wN−2

)
.

Substituting Xt,x,∗
N−2 and by Lemma 2.1, we have

ut,x,∗N−2 = −W†N−2HN−2X
t,x,∗
N−2 , ΨN−2X

t,x,∗
N−2,

where

WN−2 = RN−2,N−2

+ BTN−2,N−2

(
PN−2,N−1 + TN−2,N−1

)
BN−2,N−2

+DT
N−2,N−2

(
PN−2,N−1 + TN−2,N−1

)
DN−2,N−2,

HN−2 = BTN−2,N−2

(
PN−2,N−1 + TN−2,N−1

)
×AN−2,N−2 +DT

N−2,N−2

×
(
PN−2,N−1 + TN−2,N−1

)
CN−2,N−2.

Backwardly repeating above procedure, we can get (14) and
(15). This completes the proof. �

Theorem 2.3 For any t ∈ T and any x ∈ L2
F (t;Rn), Prob-

lem (LQ) for the initial pair (t, x) admits an open-loop equi-
librium pair if and only if



Pk,` = Qk,` +AT
k,`Pk,`+1Ak,`

+ CT
k,`Pk,`+1Ck,`,

Pk,` = Qk,` +AT
k,`Pk,`+1Ak,`

+ CTk,`Pk,`+1Ck,`,
Pk,N = Gk, Pk,N = Gk,
` ∈ Tk,

Rk,k + BTk,kPk,k+1Bk,k +DT
k,kPk,k+1Dk,k ≥ 0,

k ∈ T

(15)

and the set of GDREs



Tk,` = AT
k,`Tk,`+1A`,` + CT

k,`Tk,`+1C`,`
−
(
AT

k,`Pk,`+1Bk,` +AT
k,`Tk,`+1B`,`

+ CT
k,`Pk,`+1Dk,` + CT

k,`Tk,`+1D`,`

)
W†`H`,

Tk,` = AT
k,`Tk,`+1A`,` + CTk,`Tk,`+1C`,`

−
(
AT

k,`Pk,`+1Bk,` +AT
k,`Tk,`+1B`,`

+ CTk,`Pk,`+1Dk,` + CTk,`Tk,`+1D`,`

)
W†`H`,

Tk,N = 0, Tk,N = 0,

` ∈ Tk,

WkW†kHk −Hk = 0,
k ∈ T

(16)

are solvable, where
Wk = Rk,k + BTk,k

(
Pk,k+1 + Tk,k+1

)
Bk,k

+DT
k,k

(
Pk,k+1 + Tk,k+1

)
Dk,k,

Hk = BTk,k
(
Pk,k+1 + Tk,k+1

)
Ak,k

+DT
k,k

(
Pk,k+1 + Tk,k+1

)
Ck,k.

(17)



In this case, an open-loop equilibrium control for the initial
pair (t, x) is given in

ut,x,∗k = −W†kHkX
t,x,∗
k , k ∈ Tt. (18)

Proof. Sufficiency. Introduce a dynamics
X̃t,x,∗

k+1 =
(
Ak,k − Bk,kW†kHk

)
X̃t,x,∗

k

+
(
Ak,k − Bk,kW†kHk

)
X̃t,x,∗

k wk,

X̃t,x,∗
t = x, k ∈ Tt,

(19)

and a control

ũt,x,∗k = −W†kHkX̃
t,x,∗
k , k ∈ Tt. (20)

Then, by reversing the first part of the proof of Theorem 2.2,
we can show that for any k ∈ Tt, the following FBS∆E
admits an adapted solution

X̃k,t,x
`+1 =

(
Ak,`X̃

k,t,x
` + Āk,`EkX̃

k,t,x
`

+Bk,`ũ
t,x,∗
` + B̄k,`Ekũ

t,x,∗
`

)
+
(
Ck,`X̃

k,t,x
` + C̄k,`EkX̃

k,t,x
`

+Dk,`ũ
t,x,∗
` + D̄k,`Ekũ

t,x,∗
`

)
w`,

Z̃k,t,x
` = AT

k,`E`Z̃
k,t,x
`+1 + ĀT

k,`EkZ̃
k,t,x
`+1

+ CT
k,`E`(Z̃

k,t,x
`+1 w`) + C̄T

k,`Ek(Z̃k,t,x
`+1 w`)

+Qk,`X̃
k,t,x
` + Q̄k,`EkX̃

k,t,x
` ,

X̃k,t,x
k = X̃t,x,∗

k , Z̃k,t,x
N = GkX̃

k,t,x
N + ḠkEkX̃

k,t,x
N ,

` ∈ Tk

with property

Z̃k,t,x
` = Pk,`(X̃

k,t,x
` − EkX̃

k,t,x
` ) + Pk,`EkX̃

k,t,x
`

+ Tk,`(X̃
t,x,∗
` − EkX̃

t,x,∗
` ) + Tk,`EkX̃

t,x,∗
` ,

and

0 = Rk,kũ
t,x,∗
k + BTk,kEkZ̃

k,t,x
k+1 +DT

k,kEk(Z̃k,t,x
k+1 wk).

Furthermore, by (12) and (15) we have (8). From Theorem
2.1, Problem (LQ) for the initial pair (t, x) admits an open-
loop equilibrium pair, and (X̃t,x,∗, ũt,x,∗) is an equilibrium
pair.

Necessity. By Theorem 2.2 we need only to prove

WkW†kHk −Hk = 0, k ∈ T. (21)

Consider Problem (LQ) for the initial pair (N − 1, x) with
x ∈ L2

F (N − 1;Rn). By the proof of Theorem 2.2, we have

0 =WN−1u
N−1,x,∗
N−1 +HN−1X

N−1,x,∗
N−1 . (22)

Let ei be a Rn-valued vector with the i-th entry being 1 and
other entries 0. Then, we have

0 =WN−1

(
uN−1,e1,∗
N−1 , ..., uN−1,en,∗

N−1

)
+HN−1

(
e1, ..., en

)
.

Noting that
(
e1, ..., en

)
is the identity matrix and by Lemma

2.1, we haveWN−1W†N−1HN−1 −HN−1 = 0.

Considering Problem (LQ) for the initial pair (N − 2, x)
with x ∈ L2

F (N − 2;Rn), we can similarly prove

WN−2W†N−2HN−2 −HN−2 = 0.

Continuing above procedure, we then achieve the conclu-
sion. �

Note that Pk,`,Pk,`, k ∈ T, ` ∈ Tk+1, are symmetric. If
Qk,`, Q̄k,`, Rk,`, R̄k,` are selected such that

Qk,`, Qk,` + Q̄k,`, Rk,`, Rk,` + R̄k,` ≥ 0, k ∈ T, ` ∈ Tk,

then (15) is solvable. Furthermore, Θk,` =

{Pk,`,Pk,`, Tk,`, Tk,`, πk,`} are used to express Zk,t,x
` .

{Pk,`,Pk,`} is then called the symmetric part of Θk,`, and
{Tk,`, Tk,`} are viewed as the nonsymmetric part.

3 Conclusion

In this paper, the open-loop time-consistent equilibrium
control is investigated for a kind of mean-field stochastic LQ
problem. Necessary sufficient conditions are presented for
the cases with a fixed initial pair and all the initial pairs. Fur-
thermore, the GDREs and LDEs are introduced to character-
ize the open-loop equilibrium control. For future research,
the closed-loop time-consistent solution should be studied.
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