

Feedback and Control in Biological Circuit Design (Synthetic Biology)

Richard M. Murray

Control & Dynamical Systems / Bioengineering California Institute of Technology

34th Chinese Control Conference and SICE Annual Conference 2015 30 July 2015

Emzo de los Santos (BE) Victoria Hsiao (BE) Yutaka Hori (CMS) Zach Sun (MD/PhD) Enoch Yeung (CDS)

Henrike Niederholtmeyer, Sebastian Maerkl (EPFL)

Feedback Systems in Biology

Outline

Goal for the talk: explain what synthetic biology is about and the role that systems and control theory might plan

- 1. Brief tutorial on biology and synthetic biology
- 2. Some recent results on design of biomolecular feedback circuits
 - Concentration tracking (Hsiao, de los Santos et al, ACS Syn Bio, 2014)
 - Biomolecular event detectors (Hsiao, Hori et al, work in progress)
 - Biomolecular oscillators (Niederholtmeyer, Sun et al, submitted)
- 3. Opportunities for the systems and control community

Central Dogma: DNA to Proteins

Transcription: DNA to mRNA

- Double stranded DNA contains nucleotide sequence (A, C, T, G) on a sugar (deoxyribose) backbone
- Watson-Crick pairing: A:T, C:G
- RNA polymerase transcribes DNA sequence to RNA sequence (A, C, U, G sequence on a ribose backbond)

Translation: mRNA to protein

- mRNA is translated by ribosomes into a chain of amino acids using the genetic code (3 bp code for 1 aa)
- Amino acid chain (polypeptide chain) folds into a protein

Regulation: control of gene expression

- Proteins bind to DNA, RNA and proteins to modulate gene expression
- Repression: X turns off expression of Y
- Activation: X turns on expression of Z

Biological Circuit Design (Synthetic Biology)

Repressilator (Elowitz & Leibler; 2000)

- Ring oscillator with three repressors in a cycle
- Provides oscillations at frequency comparable to cell cycle

Synchronized oscillators (Danino, Mondragon-Palomino et al, 2010)

- Coupled oscillators by using cell-cell signaling
- Used relaxation style oscilator built on coupled +/- feedback loops + delay

How Synthetic Biology Works

Synthetic Biology Applications

Materials Synthesis

 Conversion of input resources to output products in modular way

Event Detectors

 Detection of environmental signals at the molecular scale

Artificial Cells

 Self-contained nanoscale biomolecular *machines* (circuits, subsystems, etc)

Potential Markets for Synthetic Biology Products

- Bio-based chemicals ("green" chemistry): \$4B
- Bio-defense (molecular detection): \$7B
- Therapeutics (health/medicine): \$140B
- Nanoscale robotics: \$0 (today...)

Materials Synthesis Example: 1,4-BDO

Industrial solvent used in manufacture plastics, elastic fibers and polyurethanes

- World production: one million metric tons per year
- Market price is about \$2,000 USD per ton (2005)
- Sample usage: Spandex

Chemical production:

 Propylene oxide → allyl alcohol → 4-hydroxybutyraldehyde \rightarrow 1,4-butanediol

Concentration Regulation via Scaffold Proteins

 R_p

 RR_{n}

э

12

: RR

Biomolecular Event Detectors

Interconnection of modules to detect more complex events

Approach

- Component technologies: signal detection, event memory, species comparison, logic functions
- Primitives: A > B, A followed by B, A > thresh, etc
- Interconnection framework: modular techniques for interconnecting components & detectors

Deployment: paper, hydrogels, cells...

Event Ordering Detection (A then B)

5 Node Oscillator Design Cycle

Richard M. Murray, Caltech CDS/BE

Timeline:

- 20 Jul: design start
- 24 Jul (4d): *in vitro* demo
- 23 Sep (2m): initial *in vivo*
- 30 Mar (6m): final *in vivo*
- 20 Apr (9m): submit/post

CCC/SICE, Jul 2015

Control Theory for Biological Systems

What's different about biomolecular feedback systems

- Complexity
- Stochasticity
- Communications (and crosstalk)
- Resource limits
- Uncertainty (components and context)
- Evolvability

Potential application areas for tools from feedback control theory

- System identification
- Analysis (performance, robustness)
- Design (robustness, dynamics, interconnection, modularity)
- Fundamental limits

Many ways to get started!

- iGEM (undergraduate competition)
- CSHL Syn Bio course (2 wks, summer)

CCC/SICE, Jul 2015