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Control Systems Analysis
Unravels Biological Circuits
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Network module expression S - !)

identifies biomarkers for PTSD Vetword - i Population
[Yang et al., BMC Bioinform., 2012]
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Stochastic PDE model sheds light on
circadian timing and spawning synchrony
at the eco-scale
[Boch et al., Biol. Bull., 2011]

Ultra-sensitivity reveals potential targets for

Tau misfolding in Alzheimers
[Yuraszeck et al., Plos Comp Biol., 2010]




Control Systems Analysis
Unravels Biological Circuits

Coupled oscillator control
reveals SCN neuron
synchrony

[Liu et al., Cell, 2007;
Bagheri et al., Interface, 2008]

LONG
PERIOD

Systems approach identifies novel
small molecule that targets
circadian period

[Hirota et al., Science, 2012
St. John et al., PNAS, 2014]

Hypotheses

Literature Omics

Experimental Databases

Computational Models

Systems Analysis I
=

oteins Natworks

High Throughput Biology
Biophysical Networks

Targets
Therapies

Robust control strategy for
multi-target drug design in
type 2 diabetes

[Luni et al., IJRNC, 2011;
Luni et al., PLoS One, 2012]
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Clinical testing of
artificial pancreas for
type 1 diabetes
[Dassau et al., Diabetes Care, 2012]




Diabetes: A Worldwide Problem

-

SOUTH AND CENTRAL
AMERICA SACA

http://www.idf.org/diabetesatlas




Diabetes Incidence in China

The NEW ENGLAND JOURNAL of MEDICINE

N ENGLJ MED 362;12 NEJM.ORG MARCH 25, 2010

Prevalence of Diabetes among Men
and Women in China

A nationally representative sample of 46,239 adults, 20 years of age or
older, from 14 provinces and municipalities participated in the study

Prevalence of total diabetes = 9.7% (92.4 million) and prediabetes was
15.5% (148.2 million)

“These results indicate that diabetes has become a major public
health problem in China and that strategies aimed at the prevention
and treatment of diabetes are needed.”




Natural Glucose Regulation
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Glucose Dysregulation

Normal situation

PANCREAS

Type 1 diabetes

PANCREAS

CELLS

Type 2 diabetes )2
e\«‘)c

gestational diabetes PANCREAS

http://www.idf.org/diabetesatlas




Manual Glucose Control

Hyperglycemia

Retinopathy

Higher Blood Nephropathy
Glucose Neuropathy

Carbohydrates
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Cardiovascular disease

Diabetic ketoacidosis
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Production Liver Pancreas
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Automated Glucose Control
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Control Actuation: Insulin Pumps

End-user interactions

Cost

Design flexibility
Constituencies
Nominal lifespan

Consequence of device failure

Implantable cardiac defibrillator

+

£555

+

FDA, HCPs

ot
Arrhythmia

136 11:47
nyg/dL 24hy

== T

Insulin pump

++
%%

-

FDA, HCPs, end-users
o+

Dysglycemia

Mobile phone

+++
$5

-

FCC, end-users
++
Inconvenience

FCC, Federal Communications Commission; FDA, Food and Drug Administration; HCP, healthcare professional.

MP3 player

bt
$
—

End-users

+
Peace and quiet

[Welsh et al., 2010]




Control Sensor:
Continuous Glucose Measurement (CGM)

- day 1|day 2
| day2|day3
-] day3|day4

day 4 |day5

i day 5| day 6
e T e

day 6 | day 7

[Pleus et al., 2013]
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Control Feedback Loop
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Artificial Pancreas circa 1960s/1970s

Static control law
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FIG. 2. Coniror uiguimmima reruimmy srswin wies wvan € infusion
rates lo propded blood glucose concentration. Curve
parameters M, S, B are as follows: (1) 300, 0.04, 150; (2)
600, 0.04, 140 (3) 600, 0.04, 130; (4) 150 005 70; (5)
150, 0.05, 60.

[Albisser et al., 1974]




MEDICINE

Artificial Pancreas Today

A Pancreas in a Box

Sophisticated sensors, insulin pumps, and algorithms may help give type 1 diabetics
a more normal life while researchers work on a cure

One morning last April, a woman named
Jane checked out after an overnight stay in
Addenbrooke’s Hospital in Cambridge, UK.
She had spent 24 hours connected by tubes
to several medical devices—mostly bored,
she says, but also “mildly apprehensive.”
Now, she was taking them home to do some-
thing she hadn’t done for 3 decades, some-
thing that she and the rest of the world’s
30 million type 1 diabetics are never able
to do: forget about her diabetes.

The dev —an insulin pump, a blood
glucose sensor, and a computer about
the size of a paperback book—make up a
prototype of what researchers call an arti-
ficial pancreas. Together, they replicate the
function of the pancreas that is lacking in
diabetics: producing insulin in response
to rises in blood glucose level. Groups in
Europe, the United States, and elsewhere are
now testing such systems in small groups of
patients, hoping to show that the technology
can work efficiently and safely. If so, i
transform the lives of diabetics, improving
their health and allowing them something
closer to an ordinary life. After controlling
her diabetes with blood tests and injecti
for most of her life, having an artificial pan-
creas “would be magical,” Jane says.

With its tubes and needles and gadgets,
an artificial pancreas is not an elegant solu-
tiontotheproblemof diabetes. Butresearch-

ers say it could provide a valuable stopgap
until effective biological treatments—or
even cures—come along. The principle is
simple: Connect a commercially available
glucose sensor to a commercially available
insulin pump via a computer programmed
to interpret the sensor readings and decide
how much of the drug is needed. But imple-
menting it has turned out to be far from
straightforward. Controlling the level of
sugar in the blood from outside the body is
fiendishly difficult because sensors are slow
and error-prone, while injected insulin can
take hours to have an effect and overdoses
can be fatal. For a person with diabetes,
used to calculating insulin doses multiple
times every day and dealing with the conse-
quences, handing over that

NEWSFOCU

Rest easy. An artificial
pancreas will protect diabetics
from low blood sugar

while sleeping.

can’t consume it, and liver
and fat tissue can’t store
it for later use. Type 1
diabetics, whose condi-
tion develops early in
life, lack insulin because
their own immune sys-
tem has attacked insulin-
producing cells in their
pancreas known as
cells. (Another form of
diabetes, type 2, usually

older people and
results from insensitiv-
ity to insulin rather than a
lack of'it.)

Before the discovery of insulin in the
early 1920s, type 1 diabetics would sim-
ply wither away, fall into a coma, and die
within months or years. In the developed
world at least, today’s diabetics (including
the writer of this article) can live arelatively
normal life—although one dominated by a
never-ending round of blood sugar tests,
usually achieved with a finger prick to
draw blood and an electronic meter, insulin
injections, and meals carefully weighed
to estimate how much carbohydrate is
being eaten.

The consequences of getting it wrong
can be severe. Give slightly too much
insulin and glucose in the blood drops to low

s. Starved of fuel, the brain first shows
milar to drunkenness, followed

) nd even death. Allow
sugar levels to get too high and the syr-
upy blood can damage delicate blood ves-
sels, leading to long-term complications
that include heart disease, blindness, kidney
failure, and limb amputation. Completely
uncontrolled blood sugar leads to a coma
and a trip to the hospital

responsibility to a com- by ambulance, which is
puter is daunting. Patients how many type 1 diabetics

may be clamoring for such
a solution, but researchers
will have to convince them
that it is safe.

Glucose, ingested in
the form of sugar and
other carbohydrates, is the
body’s energy source. But
without the hormone insu-
lin to help glucose out of
the bloodstream and into
cells, muscle and brain

find out that they have the
disease. So living with
diabet continual bal-
ancing act: trying to keep
blood sugar levels close to
those of a normal person
using sporadic and erratic
information (finger-prick
tests) and inadequate tools
(injected insulin).
Researchers worldwide
are working on biological

Science, January 2014
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News & Analysis

Medical News & Perspectives

Fully Automated Artificial Pancreas Finally Within Reach

Tracy Hampton, PhD

venwithincreasingly effective treat-

E ments and glucose monitors, most

individuals with type 1diabetes still

cannot achieve recommended glucose con-

trol goals. Many experts believe that the best

near-termsolution for patients will be asys-

tem that can independently restore insulin
and glucose balance.

“Artificial pancreas systems will be the
most revolutionary advancein diabetes care
since the discovery of insulin,” said Aaron
Kowalski, PhD, a vice president at the Juve-
nile Diabetes Research Foundation (JDRF),
a global organization that funds type 1dia-
betes research.

An artificial pancreas is based on a
simple concept: an automated system todis-
pense insulin and other pancreatic hor-
mones based on real-time changes in blood
sugar levels. But researchers face numer-
ouschallengesin turning the conceptintore-
ality.

“Some of us have been working in this
field for more than 20 years, and these days
most of us would say that a true automated
device is maybe 3 to 5 years in the future,”
said Frank Doyle, PhD, chair of the chemical
engineeringdepartment at the University of
California, Santa Barbara. “But there will be
evolution and continual improvement, as
with any piece of technology.”

Stages of Development

According to the US Food and Drug Admin-
istration (FDA), an artificial pancreas can be
entirely mechanical, entirely biological (such
as islet transplantation), or a mechanical-
biological hybrid. “I don't think there is only
one definition of an artificial pancreas—and
furthermore, parts of the artificial pancreas
arealready showingupin devicesin the mar-
ket,” said Doyle.

A first-generation model of an artifi-
cial pancreas system is now available
in many countries. Last fall, the FDA
approved an insulin delivery system made
by Medtronic that can automatically stop
insulin release when sensor glucose values
reach a preset level and when the patient
does not respond to a low-glucose alarm.
The company says that the device's sensor

detects up to 93% of hypoglycemia epi-
sodes when predictive and threshold
alerts are on. Still, the system does not
mimic the full biological function of the
pancreas, and it requires the patient to
take actions such as eating or drinking to
correct low glucose levels.

Based on a road map created by JDRF,
the Medtronic device is at step 10of a 6-step
process toward generating an artificial
pancreas (http://bit.ly/1jYiknJ). Each step
represents incremental advances, begin-
ning with devices that shut off insulin deliv-
ery to prevent low blood sugar and pro-
gressing ultimately to a fully automated
system that maintains blood glucose at a
target level without the need to manually
take insulin for meals or adjust for exercise.
First-generation products focus on prevent-
ing unsafe blood sugar levels and aim to
maintain blood sugar between approxi-
mately 70 and 180 mg/dL.

While a step 1 product like Medtronic's
continuously monitors glucose levels and
suspends insulin delivery when such levels
become low, a step 2 product can predict
when a user will reach the bottom thresh-
old and automatically suspend or reducein-
sulin delivery before reaching that point.

Such a device, called a predictive low glu-
cose suspend system, can be created by add-
ing controlling software to currently mar-
keted pumps and sensors. Medtronic has
developed a version that is expected to be
approved in Europe first. “Device makers
have to go through a different review pro-
cess for each country where they plan to of-
fer their products,” said Kowalski. “The tim-
ing of each [review] for a single product is
different, so there are oftenlagsin availabil-
ity from one country to the next.”

Astep 3 product, called ahypoglycemia/
hyperglycemia minimizer, prevents unsafe
high blood sugar levels as well as low ones.
Step 4, a hybrid closed-loop product, ad-
justs for both upper and lower thresholds
and targets a specific blood sugar level in-
stead of a range, while step 5 eliminates
manual administration of insulin before
meals. Finally, astep 6 product adds the abil-
ity todispense additional hormonal drugs to
more closely mimic the way the body main-
tains blood sugar levels. For example, glu-
cagon may be administered to counter the
effects of insulin and increase blood glu-
cose levels if they become too low. This is
crucial because hypoglycemia can cause
seizures, coma, or death, and it can strike at

Howard Zisser, MD, and Frank Doyle, PhD, of the department of chemical engineering at the University of
California, Santa Barbara, monitor the performance of an artificial pancreas system during a dinical tral.

JAMA, May 2014




Control Design
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Challenges for Feedback Control

CGM sensors lag blood glucose by 5-15 mins

CGM systems have an average absolute error of 10-15%
(95% confidence limit of £ 30-40%)

Insulin (rapid acting analogs) have a lag of 60-90 mins in their peak
action after subcutaneous administration

Natural response exploits neurally mediated cephalic phase

Time-varying nature of human body (stress, activity, etc.)

— Insulin absorption from subcutaneous sites has a variability of 20-35%
(95% confidence limit of £+ 50-87%)

— Insulin sensitivity may vary as much as 50% during the day




Regulatory Process

Artificial Pancreas

FDA is playing an active role in supporting the Regulatory Guidance
development of the artificial pancreas R
— Critical Path Initiative ST TIormmee

— Convened multiple workshops [July 2008, Nov. 2010]

Clinical studies (incl. academic) require
Investigational Device Exemption

— Clinical studies using investigational devices, that
have the potential for significant risk |

— Elements
Protocol
Risk analysis

Monitoring procedures

IRB review




Modular Control Architecture
[Dassau et al., 2008; Kovatchev et al., 2009; Patek et al., 2012]

System Observer 2 Coordinator 24 b Layer

Supervisor

i

Control Coordinator Real-Time
A Observer 1
Action Layer

1
I ‘ (5 min)

Data Continuous

| Observer 0 Coordinateh Time

Layer




Core Algorithm Summary

Reference
Trajectory
Calculation

Model Predictive Controller

Cost Prediction
Function Model

Dynamic

Optimizer Constraints

18th Annual International Conference of the JEEE Engineering in Medicine and Biology Socicty, Amsterdam 1996
6.3.4: Physiological Modelling - Glucose

MODEL PREDICTIVE CONTROL FOR
INFUSION PUMP INSULIN DELIVERY

R.S. Parker, I'.J. Doyle III, J.E. Harting, and N.A. Peppas
School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-1283

Meals
Exercise
Stress Calibration

| |
-1




Core Algorithm Summary

Reference
Trajectory
Calculation

Future

Predicted future output
= Past control action
== Future contr

Control horizon, M

| | |
k-1 k k+1k+2 k+M-1
Sampling instant

18th Annual International Conference of the JEE! gineering in Medicine and Biology Society, Amsterdam 1996

6.3.4: Ph cal Modelling - Glucose

MODEL PREDICTIVE CONTROL FOR
INFUSION PUMP INSULIN DELIVERY

R.S. Parker, I'.J. Doyle III, J.E. Harting, and N.A. Peppas
School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-1283

Insulin
Pump

Meals
Exercise
Stress Calibration

=




System (Patient) lIdentification

Wide variety of models employed in theoretical studies:

Pharmacokinetic/pharmacodynamic [Bergman et al., 1981; Cobelli et al., 1995; Kovatchev et al., 2008]

Subspace identification [Stahl and Johansson, 2008; Lee et al., 2009]
Time series (ARX, ARMA, etc.) [Parker et al., 1999; Desai et al., 2002; Finan et al., 2006; Eren-Oruklu et al., 2009]

Transfer functions [Percival et al., 2010]
Volterra models [Florian and Parker, 2002: Mitsis et al., 2009]

Artificial neural networks [Trajanoski et al., 1997]

Limitations for clinical testing:

— Short patient records
— Limited excitation for inputs (incl. cancellation/identifiability)

— Sensor accu racy

Current work:
— Personalized a priori patient models




Personalized a priori Patient Models

[van Heusden et al., IEEE Trans. Biomed. Eng., 2012]

G.(z) _rK Cz™
I,(z) © '(1-0.98z7")(1-0.965z")(1-0.965z"")"

A parametric model is estimated using the
output-error approach from the UVa/Padova FDA
accepted metabolic simulator

The safety factor leads to (further)
underestimation of the system phase and
overestimation of system gain




Designing MPC Constraints for Patient Safety

[Ellingsen et al., JDST, 2009; Gondhalekar, et al., DTM, 2012]

Hard constraints on Insulin “Soft” constraints on Glucose

* Insulin on Board (IOB) Curves « Zone MPC
» Periodic (diurnal) Pump Constraints » Periodic (diurnal) Zones

02-29106C

Time [hr]

X5 (k) = 2 f-u(k—=1i)

U = max((}. Kooy, (k)+K, *d (k)-x,,(k ))

u(k) = u™® = F, (u(k =1) K ,u(k - h))

6 8 10 12 14 16 18
Time of day [h]




Multi-Parametric Programming Implementation

[Bemporad et al., Aut., 2002; Pistikopoulos et al., Comp. Chem. Eng., 2002; Dua et al., IEEE TBME, 2006]

* Motivation:
— Early studies focused on computational limitations
— Current research motivated by regulatory review

e Transform QP-MPC into mpMPC
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 Formulation for Artificial Pancreas
— ARX model (past measurements)

— Low dimensional model+constraints
« ~200-300 regions




Summary — Core Algorithm

@ LTI model: Xit+1 = Ax; + Bu; , yi=Cx;
@ Zone boundaries: Zi . Zi (want y; € [Z;,Zi])

@ Input constraints: u; € U;

Zone MPC problem: Determine

. N
{u>67 e u;:fu—l} : arg min Zkil Z%

subject to X0

Yk

. - 2 s s
zx = argming { & |y — @ € [ Zigk, Zits |
u; Uitr

u;, 0

MPC law: up = K (x;,0) :




Adaptation: Iterative Learning Control

[Doyle Ill et al., 2001; Zisser et al., 2005; Owens et al., 2006; Wang et al., 2009; Wang et al., 2010]

« Common in robotics and semiconductor processing problems where
“repetition” is key
— emphasis on measurement-based framework

— batch-to-batch optimization = iteratively converge to optimal input profile in
fewest number of (sub-optimal) runs

terminal constraints (end-conditions) are a critical element of the
optimization problem

« Concept: Exploit recurrent cycles (meals, basal profiles, etc.)

« variable meal time

T'(k+1)=T(k)+ K, min(0,G,  -G__(k))
Q(k +1) = O(k) + K, max(0,G,,,, -G varable measurement me

¢ meal start ||

min (k )) * noise on measurement
« incorrect meal estimate

Insulin (U/h)

Glucose (mg/dl)

a
o
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A h Ml " bl “’n‘ At | .“l AL

15 20
Time (day)




Clinical Testing

33 Chinese Control Conference, Nanjing, July 29, 2014




33 Chinese Control Conference, Nanjing, July 29, 2014
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Control to Target Trial [/srael & Santa Barbara]
mpMPC, IOB constraints, Tailored ARX Model

Outpatient CGM Data 7/// Closed-Loop CGM Data - Closed-Loop YSI Data
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Control to Zone Clinical Trial
zone MPC, HMS, IOB constraints, a priori Model
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Getting Outside the Clinic




JDRF: First Outpatient Closed-Loop
Control Study in Europe

Padova and Montpellier, October 24-26, 2011

(n=1)

(n=1)

12h OUTPATIEN'R
Open-Loop
System Connectivity
Testing
(Dinner, Overnight)

18h OUTPATIENT

10h INPATIENT\

Closed-Loop
System Connectivity

> (Restaurant Dinner,
Overnight, Breakfast)

[Cobelli et al., Diabetes Care, 2012]




JDRF: First Outpatient Closed-Loop
Control Study in Europe

Home CTR 1 - subject 301 - 24 Oct 2011
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JDRF: Feasibility Study for
Outpatient Control in US and Europe

UVA Center for Diabetes Technology

CELWVERLENY)

Montpellier (France)

Sansum Diabetes Research Institute / UC Santa Barbara

n =5 per site
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[Kovatchev et al., Diabetes Care, 2013]
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JDRF: Feasibility Study for
Outpatient Control in US and Europe
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Additional Developments for Outpatient Studies

* Modular APS™ iDevice Framework * Health Monitoring Systems (HMS™)

 Reduced measurement requirements
(IDE approved for Tl protocol using new Bayer BG meter)

Figure 1. Parkes-Consensus Error Grid analysis of subject-obtained results.

[Bailey et al., ADA, 2012]




Clinical Trial Summary

Progression and Translation of Artificial Pancreas Clinical
Evaluations in Humans with Type 1 Diabetes
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Global Clinical Testing of the Artificial Pancreas

Around the Globe
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Summary

« Control engineering has put the artificial pancreas within reach

The 1Pancreas
« Enabling technologies:

— (zone) Model Predictive Control
— Tailored patient models
— Safety constraints

« Many challenges still remain:

— Technical
» State estimation
« Patient customization
» Reliable (long-term) sensors (Google lens?)

— Medical

* Transport and site issues
« Patient variability (incl. stress, activity, etc.)

— Regulatory
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