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Big Data?

Deriving meaning from, and acting upon data sets that are large,

high dimensional, heterogeneous, incomplete, contradictory, noisy,

fast varying,..., with many different forms and formats.
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Big 
Data

Fundamentals:
Infrastructure

CPS architecture
Cloud, Grid, Distributive platforms

Models
Uncertainties

Storage
Software tools…

Data 
Management:
Database and web

Distributed management
Stream management

Data integration

Decision making …

Applications:
Science, engineering, 
healthcare, business,

Education, transportation, 
finance, law …

Security/Privacy:
Cryptography

Threat detection/protection
Privacy preserving

Social-economical impact …

Many other 
Issues…

Data search 
and mining:

Data mining/extraction
Social network
Data cleaning
Visualization

Models …

Algorithms:
Computing
Data fusion

Machine learning
Dimension reduction

Data streaming
Scalable algorithms …
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What we are interested: for identification purpose

y(·) = f(x(·)) + noise

To estimate the unknown nonlinear non-parametric f(·)
when the dimension is high.
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y=f(x)

Pattern recognition
x data

y pattern
f classifier

Imaging
x input grey scale

y output grey scale
f deformation

Other areas

Statistics
x current/past 

values
y trend

Machine learning
x input
y target

Data mining
x feature

y label
f inducer
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Non-parametric nonlinear system identification is pat-

tern recognition or data mining or ...

Given x∗ and want to estimate y∗ = f(x∗).

Step 1: Similar patterns or neighborhoods ‖x∗ − x(k)‖ ≤ h. ⇒
k1, ..., kl with y(ki) = f(x(ki)).

Step 2: y∗ is a convex combination of y(ki) with the weights
K(x∗−x(ki)

h
)∑

j
K(

x∗−x(kj)

h
)
,

y∗ =
∑
i

K(x
∗−x(ki)
h

)∑
jK(x

∗−x(kj)
h

)
y(ki)

Supervised learning with infinitely many patterns y(ki).
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“Parametric” or basis approaches: polynomial (Volterra), splines,
neural networks, RKHS, ...

Local or Point by point: DWO, local polynomial, kernel,...

f is estimated point by point. If f(x0) is of interests, only the data

{x : ‖x− x0‖ ≤ h} is used for some h > 0 and data far away from

x0 are not very useful.

x
0

f(x)

f(x
0
)

x
0
+hx

0
−h
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Curse of Dimensionality: Empty space. x ∈ Rn, x0 =

(0, ...,0)T and C = {x : |xk| ≤ 0.1}.

Randomly sample a point x, Prob{x ∈ C} = 0.1n.

On average, the number of points in C is N · 0.1n.

To have one point in C

N ≥ 10n ⇒ 1 billion when n = 9.
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The curse of dimensionality The colorful phrase the

“curse of dimensionality” was coined by Richard Bell-

man in 1961.

High Dimensional Data Analysis: the curse and blessing

of dimensionality, D. Donoho, 2000

The Curse of Dimensionality: A Blessing to Personal-

ized Medicine, J of Clinical Oncology, Vol 28, 2010
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The diagonal is almost orthogonal to all coordinate

axes.

A unit cube [−1,1]n centered at the origin. The angel

between its diagonal v = (±1, ...,±1)T . and any axis ei
is

cos(θ) =<
v

‖v‖
, ei >=

±1
√
n
→ 0
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High dimensional Gaussian. Let p(x) = 1√
(2π)n

e−
‖x‖2

2 .

Calculate Prob{‖x‖ ≥ 2}

n 1 2 5 10 20 100
Prob 0.04550 0.13534 0.54942 0.94734 0.99995 1.0000

For a high dimensional Gaussian, the entire samples are

almost in the tails.
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Concentration. x = (x1, ..., xn)T and xk’s iid Gaussian

of zero mean. Then,

Prob{‖x‖2 ≥ (1 + ε)µ‖x‖2} ≤ e
−ε2n/6,

P rob{‖x‖2 ≤ (1− ε)µ‖x‖2} ≤ e
−ε2n/4,

High dimensional iid vectors are distributed close to the

surface of a sphere of radius µ‖x‖2.
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Volumes of cubes and balls.

Vball =
πn/2rn

Γ(n/2 + 1)
, Vcube = (2r)n

lim
n→∞Vball/Vcube = 0

The volume of a cube concentrates more on its corners

as n increases.
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Extreme dimension reduction is possible, Science 2006

804,414 Reuters newswire stories, each article is represented as

a vector containing the counts of the most frequently used 2000

words and further dimensionality reduction to R2 (Boltzmann neu-

ral network). Text to a 2-dimensional code
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What we do in high dimensional nonlinear nonparamet-

ric system identification:

Underlying models: Additive model, Block oriented nonlinear sys-
tems...

Dimension asymptotic: The limit distributions...

Variable selection and dimension reduction

Global (nonlinear nonparametric) models

...
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Dimension reduction and variable selection: a well stud-
ied topic in the linear setting, e.g.,

Principal component analysis, Low rank matrix approximation, Factor analy-

sis, Independent component analysis, Fisher discriminator, Forward/backward

stepwise(stage),...

Penalized (regularized) optimization and its variants

min ‖Y −Xβ̂‖2 + λ
∑
|β̂i|α, 0 ≤ α <∞

or min ‖Y −Xβ̂‖2, s.t,
∑
|β̂i|α ≤ t

Nonlinear(support vector regression): (Model Fits) + λ (Model

Complexity)

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal

of the Royal Statistical Society. Series B., Zhao, P. and Yu, B. (2006). On

model selection consistency of Lasso, Journal of Machine Learning Research,

irrepresentable condition.
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Geometric interpretation

argmin
β̂
‖Y −Xβ̂‖2 = argmin

β̂
(β̂ − β0)TXTX(β̂ − β0)

s.t,
∑
|β̂i|α ≤ t

ridge Lasso bridge

α = 1(Lasso), α = 2(ridge), α < 1(bridge)
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Compressive sensing

Y = Xβ, β is sparse.

min
β̂
‖Y −Xβ̂‖1 ⇒ β̂ = β

provided that X satisfies the restricted isometry prop-

erty.

E. Candes and T. Tao, “Near optimal signal recovery from random projections:

Universal encoding strategies?”, IEEE Trans. Inform. Theory, Dec. 2006.
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In a (FIR) system identification setting

Y =

 u1 . . . u−n+2
... . . . ...

uN . . . u−n+N+1

β + e+ w

e outliers and w random noise.

β̂ = argmin
ξ
‖Y −Xξ‖1

Under some weak assumptions, iid on w and e has
k ≤ βN non-zero elements for some β < 1, then in
probability as N →∞,

‖β̂ − β‖2 → 0

W. Xu, EW Bai and M Cho (2014) Automatica, “System Identification in the

Presence of Outliers and Random Noises: a Compressed Sensing Approach”.
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Big difference between linear and nonlinear settings

Local vs global dimension.

y(k) = f(u(k − 1), u(k − 2), u(k − 3), u(k − 4))

=


u(k − 4) u(k − 1) ≥ 0
u(k − 4)u(k − 2) u(k − 4) < 0, u(k − 2) ≥ 0
u(k − 4)u(k − 3) u(k − 4) < 0, u(k − 2) < 0
u(k − 1) otherwise

Linear (global) PCA may not work.
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Methods work in a linear setting may not work in a

nonlinear setting, e.g., correlation methods

y = x, ρ(x, y) = 1

y = x
2
, ρ(x, y) = 0

x uniformly in [−1, 1]

Linear: y(k) = x(k) · 1⇒ cov(y,x)√
cov(y)

√
cov(x)

= 1.

Nonlinear: y(k) = x(k)2 · 1

cov(y, x) = E(yx)− E(y)E(x) =

∫ 1

−1
a3 ·

1

2
da = 0

y depends on x nonlinearly and the correlation is zero.
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For a high dimensional nonlinear problem, approxima-

tion is a key. The ambient dimension is very high, yet

its desired property is embedded in a low dimensional

structure. The goal is to design efficient algorithms

that reveal dominate variables for which one can have

some theoretical guarantees.
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Manifold Embedding (Nonlinear PCA): Eliminate redun-
dant/dependent variables.

• If x = (x1, x2) and x1 = g(x2),

=⇒ y = f(x) = f(g(x2), x2) = h(x2).

• If x = (x1, x2) = (g1(z), g2(z))

=⇒ y = f(x) = f(g1(z), g2(z)) = h(z).

More realistically, y ≈ h(x2) (h(z)).
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One dimensional: principal curve: Let x = (x1, ..., xn)T and
f(t) = (f1(t), ..., fn(t)) be a curve in Rn. Define sf(x) to be the
value of t corresponding to the point of f(t) that is closest to x.
The principal curve is

f(t) = E(x | sf(x) = t)

f(t) is a curve that passes through the middle of the distribution
of x.

Principle surface is not easy and computationally prohibitive!
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Local (linear/nonlinear) embedding: Find a set of lower

dimensional data that resembles the local structure of

the original high dimensional data. The key is “distance

preservation” or “topology preservation”.
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Multidimensional scaling, Science, 2000

Given high dimensional ~xi’s, define

dij = ‖~xi − ~xj‖

Find lower dimensional ~zi’s that minimizes the pairwise

distance

min
~zi

∑
i<j

(‖~zi − ~zj‖ − dij)2

In a linear setting, ‖ · ‖ is the Euclidean norm and in a

nonlinear setting, ‖·‖ is usually the distance along some

manifold (Isomap).
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Euclidean norm embedding: (Johnson-Lindenstrauss).

Theorem: Let x1, ..., xn ∈ Rn, ε ∈ (0,1/2) and d ≥ O(ε−2 logn).
There exists a matrix Q : Rn → Rd and with a high probability,

(1− ε)‖xi − xj‖2 ≤ ‖Q(xi)−Q(xj)‖2 ≤ (1 + ε)‖xi − xj‖2

00

1

0

1

Q(xj)

xj

‖xi − xj‖

‖Q(xi)−Q(xj)‖

xi ∈ Rn

Q(xi) ∈ Rd

The space is “approximately” d dimensional not n dimensional if

pairwise distance is an interest. What if on a manifold?
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Isomap distance:

C

A

B

Euclidean: |A−B| < |A−C|, Along the surface: |A−B| > |A−C|
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Local Linear Embedding

Find the local structure of the data

min
wij

∑
i

‖~xi −
∑
j

wij~xj‖2

Find a lower dimensional data z that resembles the local

structure of x, under some regularization

min
zi

∑
i

‖~zi −
∑
j

wij~zi‖2

Estimation is carried out in a lower dimensional space

y = f(z)
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Example: Science, 2000
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Unsupervised: dimension reduction is based on x alone
without considering output y:

y(x1, x2)

x
1

x
2

y(x1, x2) = x2

By PCA,

(

x1

x2

)

→ x1

ŷ(x1, x2) = x1

ŷ(x1, x2)

Add a penalty term,

min
zi
λ
∑
i

‖~zi −
∑
j

wij~zi‖2 + (1− λ)(output error term)

An active research area. Henrik Ohlsson, Jacob Roll and Lennart Ljung,

“Manifold-Constrained Regressors in System Identification”, 2008
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Global Model The problem of the curse of dimensionality is the

lack of a global model. As a consequence, only data in (x0−h, x0+

h) can be used and the majority of data is discarded. As in a linear

case, every data is used min ‖

(
y1...
yN

)
−

(
x1 1
... ...
xN 1

)(
k
b

)
‖2.

x
0

f(x)

f(x
0
)

x
0
+hx

0
−h

x
0

y=kx+b

Bayesian in particular Gaussian process model is one of the global

models. Rasmussen CE and C. Williams (2006) Gaussian Pro- cess for

Machine Learning, The MIT Press, Cambridge, MA
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Gaussian process regression model

Consider a scalar nonlinear system

y(k) = f(x(k)) + v(k)

where v(·) is an iid radome sequence of zero mean and

finite variance σ2
v .

In a Gaussian Process setting, f(x0), f(x(1)), ..., f(x(N))

are assumed to follow a joint Gaussian distribution with

zero mean (not necessary though) and a covariance ma-

trix Σp.
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Example:

Let y0 = f(x0), Y = (y(1), y(2), ..., y(N))′. Since (y0, Y )′

follows a joint Gaussian(
y0

Y

)
∼ N (0,

(
c B

B′ A

)
)

Given x0, what is y0?. The conditional density of y0

conditioned on Y is also Gaussian

y0 ∼ N (BA−1Y, c−BA−1B′)

The minimum variance estimate ŷ0 = f̂(x0) of f(x0) is

the conditional mean given by

f̂(x0) = BA−1Y
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Huntington Disease Example: Neurological cognitive

test

Totally 60 patients. A cognitive test data for 21 pa-

tients were missing.
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Modified Gaussian Model: The first row are predicted
and the second ”true but missing” data.(

43.9 43.9 44.6 44.6 45.2 45.2 45.5 45.6 46.0 46.3 46.6
45 45 45 45 46 46 46 46 46 46 46

)
(

46.6 46.6 46.8 46.8 47.2 47.6 48.0 48.0 48.0 48.2
47 48 48 48 48 49 49 49 49 49

)

Bai et al, 2014
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Some discussions:

• Hard vs soft approaches.

• Top down vs bottom up approaches.

• Simplified but reasonable models.

• ...
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Top down approach:

y(k) = f(x1(k), ..., xn(k)) + noise

xi(·) is irrelevant ⇒ ∂f
∂xi

= 0. Local linear estimator

f(x(k)) = f(x0) + (x(k)− x0)T
∂f

∂x
|x0 + h.o.t

min
f̂(x0),β̂

N∑
k=1

{y(k)− [1, (x(k)− x0)T ]

( ̂f(x0)
β̂

)
}2 ·KQ(x(k)− x0)

where

β∗ =


β∗1...
β∗d
0
...
0

 , |β∗1| > 0, ..., |β∗d| > 0, β∗d+1 = ... = β∗n = 0

A∗ = {j : |β∗j | > 0} = {1,2,3, ..., d}

Goal is both parameter and set convergence.
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Parameter and set convergence: Example:

x1(k) = 0.8 + 0.5k

x1 = 0.8

x2(k) = 0.5k

x2 = 0

x̂jk → xj, j = 1,2

A = {j : |xj| > 0} = {1}.

Âk = {j : |xjk| > 0} = {1,2} 6→ A
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Top down approach: The approach is an adaptive con-
vex penalized optimization,

J(β) = min
β
‖Z −Φβ‖2 + λ

n∑
j=1

wj|βj|,

wj = 1
|β̂j|

calculated from the local linear estimator. Then under

some technical conditions, in probability as N →∞,

∂̂f
∂xi
|x0 → ∂f

∂xi
|x0 if | ∂f

∂xi
|x0 > 0 parameter convergence

Prob{ ∂̂f
∂xi
|x0 = 0} = 1, if | ∂f

∂xi
|x0 = 0 set convergence

The approach works if the the available data is long.

E Bai et al, “Kernel based approaches to local nonlinear non-parametric variable

selection”, Automatica, 2014, K Bertin, “Selection of variables and dimension

reduction in high-dimensional non-parametric regression”, EJS, 2008
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Bottom up approach:Forward/Backward

First proposed by Billings, 1989, “Identification of MIMO

non-linear systems using a forward-regression orthogo-

nal estimator”. Extremely popular in statistics and in

practice. For a long time was considered to be Ad Hoc

but recent research showed otherwise,

T Zhang, “Adaptive Forward-Backward Greedy Algorithm for Learning Sparse

Representations”, IEEE TIT,2011, “On the Consistency of Feature Selection

using Greedy Least Squares Regression”, J of Machine learning Res. 2009,

Tropp, “Greed is Good: Algorithmic Results for Sparse Approximation”, IEEE

TIT, 2004...
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Forward selection What if the dimension is high and the

available data set is limited.

To illustrate, consider a linear case

Y = (x1, x2, ..., xn )

(
a1...
an

)

First step: i∗1 = arg min
i∈[1,...,n]

‖Y − aixi‖2

kth step: i∗k = arg min
i∈[1,...,n]/[i∗1,...,i

∗
k−1]
‖Y − (xi∗1, ..., xi∗k−1

)

 a∗1...
a∗k−1

− aixi‖2
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Bottom up approach: Backward selection

Start with the chosen (i1, ..., ip) and a1, ..., ap.

i∗1 = arg min
i∈n/[i2,...,ip]

‖Y − (xi2, ..., xip)

 a2
...

ap

− aixi‖2,
Repeated for every ij.
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Forward/Backward for nonlinear system:

The minimum set of unfalsified variables

|f(x1, ..., xn)− g(xi1, ..., xip)| ≈ 0

Low dimensional neighborhood

One dimensional neighborhood of xi(k),

{x(j) ∈ Rn | (x(k)− x(j))i =
√

(xi(k)− xi(k))2 ≤ h}

p-dimensional neighborhood of (xi1(k), ..., xip(k)),

{x(j) ∈ Rn | (x(k)− x(j))i1,...,ip

=
√

(xi1(k)− xi1(k))2 + ...+ (xip(k)− xip(j))2 ≤ h}
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Algorithm:

Step 1: Determine the bandwidth.

Step 2: The number of variables are determined by the

modified Box-Pierce test.

Step 3: Forward selection.

Step 4: Backward selection.

Step 5: Terminate.
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Example: the actual system lies approximately on a

unknown dimensional manifold:

x2(k) ≈ g(x1(k))⇒ y(k) ≈ f(x1(k), g(x1(k))) = f1(x1(k))

which is lower dimensional.

y(k) = 10sin(x1(k)x2(k))+20(x3(k)−0.5)2+10x4(k)+5x5(k)

+x6(k)x7(k)+x7(k)2+5cos(x6(k)x8(k))+exp(−|x8(k)|)

+0.5η(k), k = 1,2, ...,500

η(k) is i.i.d. Gaussian noise of zero mean and unit

variance.
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x3(k), x5(k) are independent and uniformly in [−1,1]
and

x4(k) = x3(k) · x5(k) + 0.1 · η(k)
x1(k) = x3(k)2 · x5(k) + 0.1 · η(k)
x2(k) = x3(k) · x5(k)2 + 0.1 · η(k)
x6(k) = x1(k)− x4(k) + 0.1 · η(k)
x7(k) = x3(k)3 · x5(k) + 0.1 · η(k)
x8(k) = x2(k) · x5(k) + 0.1 · η(k)

x1(·), ..., x8(·) are not exactly but approximately on an
two dimensional manifold. h = 0.2 was chosen by the
5-fold cross validation. Test signal

x3(k) = 0.9 ∗ sin(
2πk

20
), x5(k) = 0.9 ∗ cos(

2πk

20
), k = 1, ...,40
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Results:

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

number n of variables chosen

R
S

S

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50
Gof=0.9205(2−dim),0.6940(8−dim)

Bai et al, 2013, “On Variable Selection of a Nonlinear Non-parametric System

with a Limited Data Set”
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Nonlinear systems with short term memory and low de-

gree of interactions: Additive systems

y(k) = f(x1(k), ..., xn(k)) + noise

=
n∑
i=1

fi(xi(k)) +
∑
j>i

fij(xi(k), xj(k)) + noise

An n-dimensional system becomes a number of 1 and

2-dimensional systems. Under some technical condi-

tions, e.g., iid or Galois on the inputs, fi and fij can be

identified independently...

Bai et al TAC(2008), Automatica(2009), Automatica(2010), TAC(2010)...
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Why? Consider a household expense tree:

The most widely used nonlinear model in practice (and

also in the statistics literature.)
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A simple example:

y(k) = c̄+f̄1(x1(k))+f̄2(x2(k))+f̄12(x1(k), x2(k))+v(k)

= c+ f1(x1(k)) + f2(x2(k)) + f12(x1(k), x2(k)) + v(k)

Each term can be identified separately and low dimen-

sion.

c = Ey(k)
f1(x0

1) = E(y(k) | x1(k) = x0
1)− c

f2(x0
2) = E(y(k) | x2(k) = x0

2)− c
f12(x0

1, x
0
2) = E(y(k) | x1(k) = x0

1, x2(k) = x0
2)− c
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Quick boring derivation:

g1,12(x0
1) = E(f̄12(x1(k), x2(k)) | x1(k) = x0

1)
g2,12(x0

2) = E(f̄12(x1(k), x2(k)) | x2(k) = x0
2)

c12 = E(f̄12(x1(k), x2(k)))
c1 = E(f̄1(x1(k)) + g1,12(x1(k)))
c2 = E(f̄2(x2(k)) + g2,12(x2(k)))
f12(x1(k), x2(k)) = f̄12(x1(k), x2(k))− g2,12(x2(k))− g1,12(x1(k)) + c12

f1(x1(k)) = f̄1(x1(k)) + g1,12(x1(k))− c1

f2(x2(k)) = f̄2(x2(k)) + g2,12(x2(k))− c2

c = c̄− c12 = c1 + c2

⇒

Ef1(x1(k)) = Ef2(x2(k)) = Ef12(x1(k), x2(k)) = 0
Ef1(x1(k)) · f2(x2(k)) = Efi(xi(k)) · f12(x1(k), x2(k)) = 0, i = 1,2,
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Convergence and sparsity

Consider

J = ‖Y −(
∑
i

fi+
∑
j<k

fjk)‖2+λ1

∑
i

(‖fi‖2+
∑
j 6=k

‖fjk‖2)1/2+λ2

∑
j<k

‖fjk‖

Then, under some technical conditions, the true fi, fjk’s

can be identified and sparse.

Rachenko and James, J of ASA, 2012
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Thanks!
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