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1 Introduction

An interesting phenomenon occurs when one attempts
to control systems with output nonlinearity growing faster
than linearity, where similarities of adaptive control between
continuous- and discrete-time cases will no longer exist. It is
generally known that a large class of continuous-time non-
linear parametric systems, regardless of how fast the growth
rate is, can be globally stabilized by the nonlinear damping
or back-stepping approach in adaptive control (e.g., [5, 6]).
However, fundamental difficulties arise for the discrete-time
case. These difficulties are caused by the inherent limitation-
s of the feedback principle in dealing with uncertainties (see
[3, 8–13, 15, 22]), which means that the discrete-time sys-
tems with the uncertainties beyond the feedback capability
cannot be stabilized by any feedback control law, no matter
how hard one may try.

Accordingly, a natural question is: within the capabili-
ty of the feedback mechanism, how can one design a sta-
bilizing feedback control in the presence of nonlinear pa-
rameterization? As traditional least squares and gradient-
estimation-based controllers will encounter essential diffi-
culties in implementation, nonlinear parametrization in dis-
crete time arouses a formidable obstacle in studying adaptive
stabilization of such uncertain systems. Indeed, there are on-
ly a few results dedicated to this topic [7, 10, 12, 17]. Specif-
ically, an approach based on the Implicit Function Theorem
is suggested in [12] to stabilize a class of nonlinearly pa-
rameterized uncertain systems, which are contaminated with
bounded disturbances. Notwithstanding the parallel result
developed in the deterministic case, the adaptive stabiliza-
tion under the stochastic framework is rather an intractable
issue. For instance, the problem of stabilizing a nonlinear
discrete-time uncertain system, whose parameters are lin-
early parameterized, is relatively easy under the determin-
istic framework. However, the adaptive stabilization of it-
s counterpart with random parameters and Gaussian noises
had been an open problem for more than a decade until it
was solved in [14]. When the linear parametrization extend-
s to the nonlinear parametrization, as one would expect, the
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problem will become much more complicated, especially for
the case where multiple parameters are involved.

Seeking an answer to the proposed question, we apply the
nonlinear least squares (NLS) algorithm in this paper to esti-
mate the unknown parameters of the nonlinearly parameter-
ized stochastic systems. The estimator can thus be applied
to a rich class of systems, where the nonlinear parametric
system functions could be in various forms, including non-
convex functions and functions with growth rates faster than
linearity. The parameters to be identified are either determin-
istic or stochastic, and their uncertain domains need not even
be bounded. It is worth pointing out that the NLS algorithm
degenerates to be the standard LS algorithm for the specif-
ic case where the model is linearly parameterized. With the
help of this estimator, one can set about tackling the pro-
posed problem.

As a starting point, we will investigate a class of nonlin-
early parameterized uncertain systems with a scalar-valued
parameter and Gaussian noise. For the multiple-parameter
case, the analysis will in general be extremely difficult. Now,
as indicated in [3] and [12], for any nonlinearly parameter-
ized system with its sensitivity function having a polyno-
mial growth rate, the feedback principle will be out of its
capability whenever the exponent of the growth rate is e-
qual to or faster than 4. Moreover, the global stabilization
of the nonlinearly parameterized system with the sensitiv-
ity function ([12], [13]) growing slower than linearity has
already been resolved in [10], where an adaptive switching
controller is employed. All these works suggest that the rest
of the work should be directed towards the case where the
exponent, which characterizes the growth rate of the sensi-
tivity function, is between 1 and 4. For such systems, we will
prove that there indeed exists a feedback control law, based
on the NLS estimator, such that the related closed-loop un-
certain system is globally stable under an appropriate con-
straint on the sensitivity function.

2 Stabilization of Nonlinear Feedback System

To tackle the problem proposed in Introduction, the non-
linearly parameterized uncertain system with a scalar-valued
parameter is studied in this paper as a starting point. Now,



consider

yt+1 = f(θ, ϕt) + h(ut, ϕt) + wt+1, (1)

where θ ∈ R is an unknown parameter, yt, ut, wt ∈ R
are the system output, input and noise signals, respectively.
ϕt = (yt, yt−1, . . . , yt−m+1) ∈ Rm is the output regressor
with the initial vector ϕ0 = (y0, y−1, . . . , y−m+1) being in-
dependent of noise {wt}. Furthermore, f : R × Rm → R
and h : R×Rm → R are two known smooth mappings with

∂h(u, x)

∂u
6= 0, u ∈ R, x ∈ Rm.

The global stabilization is guaranteed under the following
assumptions:
A1 The noise {wt} is an i.i.d sequence with a standard nor-

mal distribution N(0, 1).
A2 Parameter θ ∈ Rn is independent of noise {wt}, either

deterministic or stochastic.
A3 There are some constants C1, C2, C3, C4 > 0 such that

for any x ∈ Rm and ϑ ∈ R,

C1‖x‖ ≤
∣∣∣df(ϑ, x)

dϑ

∣∣∣ ≤ C2‖x‖b, (2)

sup
ϑ∈R

∣∣∣df(ϑ, x)

dϑ

∣∣∣ ≤ C3 inf
ϑ∈R

∣∣∣df(ϑ, x)

dϑ

∣∣∣, (3)∣∣∣d2f(ϑ, x)

dϑ2

∣∣∣ ≤ C4

∣∣∣df(ϑ, x)

dϑ

∣∣∣, (4)

where b ∈ [1, 4) is a real number.
To achieve our goal, let

ūt , h(ut, ϕt). (5)

By the Implicit Function Theorem, there is a differentiable
function d : R× Rm → R such that (5) holds whenever

ut = d(ūt, ϕt).

Now, design
ut = d(−f(θ̂t, ϕt), ϕt), (6)

where θ̂t is the NLS estimator to be studied in Section 3. By
(5), the outputs of system (1) satisfy the following:

yt+1 = f̃t(θ) + wt+1, t ≥ 0, (7)

where f̃t(θ) , f(θ, ϕt)− f(θ̂t, ϕt).
The main result is stated as below.

Theorem 2.1 Under Assumptions A1–A3, the closed-loop
system (1) and (6) is globally stable in the sense that

1

t

(
t∑
i=1

y2
i

)
= O(1), a.s.. (8)

Remark 2.1 In fact, Theorem 2.1 is also valid if the noise in
Assumption A1 is replaced by a bounded i.i.d sequence.

Remark 2.2 If taking into account of the case where∣∣∣df(ϑ, x)

dϑ

∣∣∣ = O(‖x‖),

we refer to [10], which demonstrates that the system is
globally adaptively stabilizable, provided that the sensitiv-
ity function of the unknown parameter has a linear growth
rate.

Remark 2.3 When b ≥ 4, the stability can no longer be
generally guaranteed for system (1) by [19]. If the nonlin-
ear system in [19] is considered under Assumption A1, then
for any feedback control law, there always exists some set
with a positive probability, on which the outputs diverge ex-
ponentially.

3 Asymptotic Properties of NLS Algorithm

A first step towards exploring the stabilization of nonlin-
early parameterized systems raised in previous section is to
analyze the asymptotic properties of the NLS algorithm (see
[16], [18]), which is applied to the parameter-estimation.
For this purpose, consider the general stochastic regression
discrete-time model

zt+1 = f(θ, xt) + wt+1, (9)

where θ ∈ Rn is an unknown parameter vector and wt ∈ R
are unobserved disturbances. Outputs zt ∈ R are the ob-
served responses to the design levels xt ∈ Rm and f :
Rn × Rm → R is a known smooth mapping. The objec-
tive in this section is to establish the strong consistency of
the NLS estimator for the unknown parameter θ of system
(9).

3.1 Nonlinear Least Square Estimation
The NLS estimate θ̂t that minimizes

St(θ) ,
t∑
i=1

(zi − f(θ, xi−1))2

is typically computed by solving the following equation:

∇St(θ) = −2

t∑
i=1

(zi − f(θ, xi−1))∇f(θ, xi−1) = 0. (10)

Such an estimate can be expressed by the Implicit Function
Theorem, and it turns out to be the standard LS algorithm for
the specific case where the model is linearly parameterized.
The expression of the estimator is elaborated as follows.

First, for any t ≥ 0, define Xt = (x0, . . . , xt)
T ,

Zt = (z1, . . . , zt)
T , Wt = (w1, . . . , wt)

T and Ft(θ) =
(f(θ, x0), f(θ, x1), . . . , f(θ, xt))

T . Up to time t ≥ 1, one
has the equation

Ft−1(θ) + (Wt − Zt) = 0. (11)

For each t ≥ 1, define function Gt : Rn × Rt → Rn as

Gt(θ,Wt) ,

(
∂Ft−1(θ)

∂θ

)T
Ft−1(θ)

+

(
∂Ft−1(θ)

∂θ

)T
(Wt − Zt), (12)

which is a smooth function with respect to variables θ and
Wt. Here, Xt−1 and Zt are viewed as constants. By multi-

plying
(
∂Ft−1(θ)

∂θ

)T
on both sides of (11), it yields

Gt(θ,Wt) = 0. (13)



Without loss of generality, assume(
∂Fn−1(θ)

∂θ

)T
∂Fn−1(θ)

∂θ
> 0, (14)

which, together with (11), yields that for any t ≥ n,

∂Gt(θ,Wt)

∂θ
=

(
∂Ft−1(θ)

∂θ

)T
∂Ft−1(θ)

∂θ
(15)

≥
(
∂Fn−1(θ)

∂θ

)T
∂Fn−1(θ)

∂θ
> 0.

Thus, by the Implicit Function Theorem, there is a smooth
function gt : Rt → Rn such that

Gt(gt(Wt),Wt) = 0 (16)

and

∂gt(Wt)

∂Wt
= −

(
∂Gt(θ,Wt)

∂θ

)−1(
∂Ft−1(θ)

∂θ

)T
. (17)

Now, define the estimate θ̂t at time t ≥ n for parameter θ
as

θ̂t = gt(0). (18)

Clearly, Equation (13) equals to (10) whenever Wt = 0, and
hence θ̂t defined by (18) is exactly the NLS estimate at time
t. Let θ̃t denote the error of estimate θ̂t, that is, θ̃t , θ − θ̂t.
From (15) and (17), for any t ≥ n, one has

θ̃t = gt(Wt)− gt(0) =
∂gt(Wt)

∂Wt

∣∣∣
Wt=W∗

t

Wt

= −

((
∂Ft−1(θ)

∂θ

)T
∂Ft−1(θ)

∂θ

)−1

×
(
∂Ft−1(θ)

∂θ

)T ∣∣∣
θ=θ∗t

Wt, (19)

where θ∗t , gt(W
∗
t ) and

W ∗t ∈
t∏
i=1

[−|wi|, |wi|]. (20)

3.2 Analysis of the NLS Algorithm
This subsection deals with the consistency analysis of the

NLS estimator. The estimation error of θ is going to be dis-
cussed when the model is corrupted with Gaussian noise un-
der Assumption A1.

To facilitate the analysis, we introduce some notation-
s. For any ϑ ∈ Rn, let P−1

t (ϑ) ,
∑t−1
i=0 φi(ϑ)φTi (ϑ),

where φi(ϑ) ,

(
∂f(ϑ, xi)

∂ϑ

)T
. Therefore, the trace of

P−1
t (ϑ), which is denoted as rt−1(ϑ), satisfies rt−1(ϑ) =∑t−1
i=0 ‖φi(ϑ)‖2, where ‖ · ‖ denotes the Euclidean norm.

Moreover, let (Ω,F , P ) denote the underlying probability
space. Define

Ft , σ{θ, x0, wi, 1 ≤ i ≤ t}, (21)

which is a series of non-decreasing σ-fields. Suppose

xt ∈ Ft, (22)

where the design vectors xt, t ≥ 0 in model (9) assume val-
ues either deterministic or stochastic. It is easy to verify that
{wt,Ft} is a martingale difference sequence, and

sup
t≥1

E(w2
t |Ft−1) <∞, a.s.. (23)

Due to the limited space, the following proposition is pro-
vided without proof.

Proposition 3.1 Under Assumptions A1 and A2, let

inf
ϑ∈Rn

λmin(P−1
n (ϑ)) ≥ 1

and (22) hold with x0 being independent of {wt}. If

lim inf
t→∞

infϑ∈Rn λmin(P−1
t (ϑ))

max{rt−1, t}
> 0, a.s., (24)∥∥∥∥φt(ϑ)

∂ϑ

∥∥∥∥ ≤M‖φt(ϑ)‖, ϑ ∈ Rn, t ≥ 0, (25)

where rt , supϑ∈Rn rt(ϑ) and M > 0 is some constant,
then

‖θ̃t‖ = O

 r
1
2
t−1 log rt−1 log3 t

infϑ∈Rn λmin(P−1
t (ϑ))

→ 0, a.s..

4 Proof of Theorem 2.1

The proof of this theorem is divided into a series of lem-

mas. Without loss of generality, assume ‖ϕ0‖ ≥
1

C1
. Now,

for any ϑ ∈ R, define a random sequence r̄k(ϑ) as{
r̄0(ϑ) = φ2

0(ϑ)
r̄k(ϑ) = r̄k−1(ϑ) + φ2

tk
(ϑ), k = 1, 2, . . . ,

where the monotone random subscript tk with t1 = 1 satis-
fies for k ≥ 1

φ2
tk+1

(ϑ)

r̄k(ϑ)
>

φ2
tk

(ϑ)

r̄k−1(ϑ)
φ2
t (ϑ)

r̄k(ϑ)
≤

φ2
tk

(ϑ)

r̄k−1(ϑ)
for any tk < t < tk+1.

(26)

Since

r̄tk+1
(ϑ)

r̄k(ϑ)
= 1 +

φ2
tk+1

(ϑ)

r̄k(ϑ)
,

it is easy to see from (26) that

r̄tk+1
(ϑ)

r̄k(ϑ)
≥ r̄k(ϑ)

r̄k−1(ϑ)
≥ 1, k = 1, 2, . . . (27)

and for any k ≥ 1,

inf
ϑ∈Rn

r̄k(ϑ) ≥ inf
ϑ∈Rn

r̄0(ϑ) ≥ C2
1‖ϕ0‖2 ≥ 1. (28)

Lemma 4.1 Given k ≥ 1, then for any t ∈ [1, tk+1),

rt(ϑ)

rt−1(ϑ)
≤ r̄k(ϑ)

r̄k−1(ϑ)
. (29)



Proof. If t ∈ (ti, ti+1), where 1 ≤ i ≤ k, then t− 1 ≥ ti.
According to (26), one has

rt(ϑ)

rt−1(ϑ)
≤ 1 +

φ2
t (ϑ)

r̄i(ϑ)
≤ 1 +

φ2
ti(ϑ)

r̄i−1(ϑ)
.

Furthermore, (27) leads to

r̄i(ϑ)

r̄i−1(ϑ)
≤ r̄k(ϑ)

r̄k−1(ϑ)
, (30)

which immediately implies (29).
As for t = ti, 1 ≤ i ≤ k, since t− 1 = ti − 1 ≥ ti−1,

rt(ϑ)

rt−1(ϑ)
≤ 1 +

φ2
t (ϑ)

r̄i−1(ϑ)
=

r̄ti(ϑ)

r̄i−1(ϑ)
.

Hence, (29) holds again by (30). �

Lemma 4.2 Let rt(ϑ) ,
∑t
i=0 φ

2
i (ϑ), where φi(ϑ) =

∂f(ϑ, ϕi)

∂ϑ
as defined before. Under Assumptions A1–A3,

the growth rate of rt(ϑ) satisfies

lim inf
t→∞

infϑ∈R rt(ϑ)

t
> 0, a.s. (31)

Proof : Observe that system (1) has the form of (9) if we
let zt = yt−h(ut, ϕt) and xt = ϕt, therefore estimator (18)
can be applied accordingly. Now, by (7), one has that for any
i ≥ 1,

y2
i = f̃2

i−1(θ) + w2
i + 2f̃i−1(θ)wi.

As a consequence,

t∑
i=1

y2
i =

t∑
i=1

(
f̃2
i−1(θ) + w2

i

)
+ 2

t∑
i=1

f̃i−1(θ)wi. (32)

Since θ and ϕ0 are independent of {wt}, it is easy to verify
that f̃i−1(θ) ∈ Fi−1, where Fi−1 is defined by (21) with
x0 = ϕ0, is independent of wi for all i ≥ 1. Thus, by [1,
Theorem 2.8], one has

t∑
i=1

f̃i−1(θ)wi = o

(
t∑
i=1

f̃2
i−1(θ)

)
+O(1), a.s.. (33)

Therefore, by (32) and (33), for any sufficiently large t,

1

t

t∑
i=1

y2
i =

1

t

(
(1 + o(1))

t∑
i=1

f̃2
i−1(θ)

+

t∑
i=1

w2
i +O(1)

)

≥ 1

t

t∑
i=1

w2
i → 1, a.s.,

which yields

lim inf
t→∞

1

t

t∑
i=1

y2
i ≥ 1, a.s.. (34)

Finally, by Assumption A3, one has

inf
ϑ∈R

rt(ϑ) ≥ C2
1

t∑
i=0

y2
i ,

and hence the desired result follows immediately by (34). �

Lemma 4.3 Let ϑ ∈ R be a constant such that tk → ∞
almost surely in (26). Then, under Assumptions A1–A3,

P

{
r̄k(ϑ) <

(
2log2 tkt−4

k

) 1
2b

, i.o.
}

= 1.

Proof. Fix ϑ ∈ R. First, given k ≥ 1, for any i ∈
[1, tk+1), Lemma 4.1 yields

ri(ϑ)

ri−1(ϑ)
≤ r̄k(ϑ)

r̄k−1(ϑ)
. (35)

Consequently, by (27) and (28), one has

ri−2(ϑ) = r0(ϑ)

i−2∏
j=1

rj(ϑ)

rj−1(ϑ)

≤ r̄0(ϑ)

(
r̄k(ϑ)

r̄k−1(ϑ)

)i−2

≤ r̄i−1
k (ϑ). (36)

Now, by Assumption A1, for any i that is sufficiently
large,

w2
i ≤ log2 i, a.s.. (37)

If furthermore i ∈ [1, tk+1), it can be derived from (37), (7),
(3) and Proposition 3.1 that for some θ′i−1,

y2
i ≤ 2f̃2

i−1(θ) + 2w2
i

= 2φ2
i−1(θ′i−1)θ̃2

i−1 + 2w2
i

= O

(
log6(i− 1) log2 ri−2(ϑ)

φ2
i−1(ϑ)

ri−2(ϑ)
+ log2 i

)
= O

(
log6(i− 1) log2 ri−2(ϑ)

ri−1(ϑ)

ri−2(ϑ)

)
, a.s.. (38)

Then, according to (35) and (36), one has

y2
i = O

(
t3k+1 log2 r̄k(ϑ)

r̄k(ϑ)

r̄k−1(ϑ)

)
, a.s.. (39)

Observe that by the definition of r̄k(ϑ) and Assumption
A3, one has

r̄k+1(ϑ) =

k+1∑
i=0

φ2
ti(ϑ) ≤ C2

2

k+1∑
i=0

‖ϕti‖2b

= O

(
k+1∑
i=0

y2b
ti

)
= O

(
tk+1∑
i=0

y2b
i

)
. (40)

Hence, with (39), one has

r̄k+1(ϑ) = O

(
t3b+1
k+1

(
log2 r̄k(ϑ)

r̄k(ϑ)

r̄k−1(ϑ)

)b
+ 1

)

= O

(
t3b+1
k+1

(
log2 r̄k(ϑ)

r̄k(ϑ)

r̄k−1(ϑ)

)b)
, (41)

where the last equality follows from Lemma 4.2 that
limk→∞ r̄k(ϑ) =∞.



As a result, by taking logarithm on both sides of (41), it
yields for k →∞,

(1− o(1)) log r̄k+1(ϑ)

≤ b (log r̄k(ϑ)− log r̄k−1(ϑ))

+(3b+ 1) log tk+1 +O(1), a.s.. (42)

Suppose that there is a set E ⊂ Ω with P (E) > 0 and a
positive random variable k′ such that for all k ≥ k′ that are
sufficiently large,

r̄k+1(ϑ) ≥
(

2log2 tk+1t−4
k+1

) 1
2b

on E.

Then, log tk+1 = o(log r̄k+1(ϑ)) as k → ∞, and hence by
(42), for any k ≥ k′,

(1− o(1)) log r̄k+1(ϑ) ≤ b (log r̄k(ϑ)− log r̄k−1(ϑ)) (43)

holds almost surely on the set E.
Now, let ζk = log r̄k(ϑ). Then, on set E, (43) becomes

(1− o(1))ζk+1 ≤ b(ζk − ζk−1), a.s., (44)

where ζk ↗ ∞ almost surely. Define zk ,
ζk
ζk−1

and de-

note random z , lim supk→∞ zk, which is clearly positive
(including positive infinity). Dividing (44) by ak+1, then for
a sufficiently large k,

(1− o(1)) +
b

zk+1zk
≤ b

zk+1
.

Taking limit inferior on both sides of the above inequality,
one obtains that on set E,

z2 − bz + b ≤ 0, a.s., (45)

which is impossible since the supremum limit z is finite by
(45), and z2 − bz + b > 0 for all z ∈ R whenever b < 4.
Thus, (43) cannot be true and the lemma is proved. �

One can arrive at the following conclusion based on Lem-
ma 4.3. The proof is omitted here for brevity.

Lemma 4.4 Under Assumptions A1–A3, if there is some ϑ̄ ∈
R such that the corresponding tk →∞ almost surely, then

P

{
sup
ϑ∈R

rt+i(ϑ)

rt+i−1(ϑ)
< 2C4

3 ,−m+ 1 ≤ i ≤ 0, i.o.

}
= 1.

Lemma 4.5 Let Assumptions A1–A3 be satisfied, then

sup
t≥1

sup
ϑ∈R

rt(ϑ)

rt−1(ϑ)
<∞, a.s.. (46)

Proof. Take a ϑ ∈ R. Observe that for this ϑ, if {tk}
is a finite subsequence on some set G ⊂ Ω with positive
probability, then by (26), there is a random k0 ≥ 0 such that
for all t ≥ tk0 on G,

φ2
t (ϑ)

r̄k0(ϑ)
≤

φ2
tk0

(ϑ)

r̄k0−1(ϑ)
.

This in fact leads to the boundness of φt(ϑ) on G. Further-
more, since rt(ϑ) ≥ r0(ϑ) ≥ 1, by (2) and Assumption A3,
for all t ≥ tk0 , one has on G that

rt(ϑ)

rt−1(ϑ)
≤ 1 + φ2

t (ϑ) ≤
C4

2

(∑k0
i=0 ‖ϕti‖2

)
‖ϕtk0

‖2

C2
1

∑k0−1
i=0 ‖ϕti‖2

.

Hence, (46) holds on G by (3).
Now, without loss of generality, we assume that {tk} is an

infinite random sequence almost everywhere for ϑ. This is
because the argument in the following can be viewed to be
discussed on a restriction probability space of (Ω,F , P ) on
Gc.

According to Lemmas 4.2 and 4.4, there is a sufficiently
large random integer t0 such that for some positive random
constant M ,

inf
ϑ∈R

rt(ϑ) ≥Mt, a.s., ∀ t ≥ t0 (47)

and for −m+ 1 ≤ i ≤ 0,

sup
ϑ∈R

rt0+i(ϑ)

rt0+i−1(ϑ)
< 2C4

3 , a.s..

We will use an induction method to prove that for all t ≥
t0,

sup
ϑ∈R

rt(ϑ)

rt−1(ϑ)
< 2C4

3 , a.s.. (48)

Assume for some integer k ≥ t0,

sup
ϑ∈R

rk+i(ϑ)

rk+i−1(ϑ)
< 2C4

3 , −m+ 1 ≤ i ≤ 0, a.s..

We proceed to check (48) for t = k + 1. First, similar to
(38), by Proposition 3.1, for k −m+ 1 ≤ i ≤ k, one has

y2
i+1 = O

(
log6 i log2 ri−1 sup

ϑ∈R

ri(ϑ)

ri−1(ϑ)

)
= O

(
log6 i log2 ri−1

)
, a.s., (49)

where ri−1 is defined by Proposition 3.1.
Furthermore, in virtue of (3) and (47),

inf
ϑ∈R

rk(ϑ) ≥ max

{
Mk,

ri−1

C2
3

, k −m+ 1 ≤ i ≤ k
}
, (50)

which together with (49) implies that as t→∞,

sup
ϑ∈R

rk+1(ϑ)

rk(ϑ)

= 1 + sup
ϑ∈R

φ2
k+1(ϑ)

rk(ϑ)

= 1 +O

∑k
i=k−m+1

(
log6b i log2b ri−1

)
infϑ∈R rk(ϑ)


= 1 +O

(
1√
k

)
< 2C4

3 , a.s., (51)

which shows that (48) holds for all t ≥ t0 by induction. The
lemma is thus proved. �



Lemma 4.6 For any ϑ ∈ R, define at(ϑ) ,
rt−1(ϑ)

rt(ϑ)
and

ρt(ϑ) ,
|φt(ϑ)|

(∑t
i=1 |φi−1(ϑ)wi|

)
rt−1(ϑ)

.

Then, under Assumption A1, as t→∞,

t∑
i=1

sup
ϑ∈R

ai(ϑ)ρ2
i (ϑ) = O

(
log3 rt + t

)
, a.s..

Proof: The proof is omitted. �
Proof of Theorem 2.1: First, we provide an estimation of

f̃t(θ) = f(θ, ϕt)− f(θ̂t, ϕt). Similar to (19), for any t ≥ 1,

f̃t(θ) = f(gt(Wt), ϕt)− f(gt(0), ϕt)

=
∂f(θ, ϕt)

∂θ

∂gt(Wt)

∂Wt

∣∣∣
Wt=W̄∗

t

Wt

= −
φt(θ̄

∗
t )
(∑t

i=1 φi−1(θ̄∗t )wi

)
rt−1(θ̄∗t )

, (52)

where W̄ ∗t is some random variable and θ̄∗t = gt(W̄
∗
t ).

Clearly, for any t ≥ 1, |f̃t(θ)| ≤ ρt(θ̄
∗
t ), where ρt(·) is

define by Lemma 4.6. Therefore, by (7) and Lemma 4.6, it
can be derived that
t∑
i=1

y2
i+1 = O

(
t∑
i=1

(
f̃2
i (θ) + w2

i+1

))

= O

(
t∑
i=1

ai(θ̄
∗
i )f̃2

i (θ) sup
k≥1

sup
ϑ∈R

rk(ϑ)

rk−1(ϑ)
+ t

)

= O

(
t∑
i=1

sup
ϑ∈R

ai(ϑ)ρ2
i (ϑ) + t

)
= O

(
log3 rt + t

)
, a.s.. (53)

Now, similar to (41), by using the Jensen inequality, one has

rt = O

(
t∑
i=1

y2b
i

)
= O

( t∑
i=1

y2
i

)b ,

which, with (53), leads to

t∑
i=1

y2
i+1 = O

(
log3

(
t∑
i=1

y2
i+1

)
+ t

)
, a.s.,

which can be rewritten as

(1 + o(1))

t∑
i=1

y2
i+1 = O (t) , a.s..

The proof of Theorem 2.1 is completed. �

5 Concluding Remarks

In this paper, we have studied a class of nonlinearly pa-
rameterized uncertain systems in discrete time. The strong
consistency of the NLS estimator for a general regression
model in the presence of nonlinear paramterization was es-
tablished under a certain excitation condition. Based on the
NLS estimator, the adaptive stabilization was also achieved
for the nonlinearly parameterized uncertain systems with a
scalar unknown parameter.
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[17] F. P. Skantze, A. Kojić, A. -P. Loh and A. M. Annaswamy.
“Adaptive estimation of discrete-time systems with nonlinear
parameterization”, Automatica, vol.36, pp. 1879–1887, 2000.

[18] T. L. Lai, “Asymptotic properties of nonlinear least squares
estimates in stochastic regression models”, The Annals of S-
tatistics, vol. 22, pp. 1917–1930, 1994.

[19] L.-L. Xie and L. Guo, “Fundamental limitations of discrete-
time adaptive nonlinear control”, IEEE Trans. Autom. Control,
vol. 44, 1777–1782, 1999.

[20] L.-L. Xie and L. Guo, “Adaptive control of discrete-time non-
linear systems with structural uncertainties”, In: Lectures on
Systems, Control, and Information, AMS/IP, pp. 49–90, 2000.

[21] L.-L. Xie and L. Guo, “How much uncertainty can be dealt
with by feedback?”, IEEE Trans. Autom. Control, vol. 45, pp.
2203–2217, 2000.

[22] F. Xue, L. Guo, and M. Y. Huang, “Towards understanding
the capability of adaptation for time-varying systems”, Auto-
matica, vol. 37, pp. 1551–1560, 2001.


