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Abstract: A novel approach, switched system approach, is proposed for iterative learning control problem of networked control
systems with random data dropouts. The random data dropout is described as three different forms, namely, a random sequence,
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1 Introduction

Along with the developments of telecommunication and
network technologies, the structure of control system has
changed greatly. In many practical applications, the conven-
tional centralized control structure, where the controller and
system are integrated together, is replaced by the networked
control system (NCS), where the system and the controller
are separated in the local and remote. Due to relaxation of
position restriction, the networked control system possesses
more flexibility for design, and thus has been an importan-
t topic of control research field [1–3]. However, because
of network congestion, linkage interrupt, transmission er-
ror, and etc., the data packets are probably lost during the
transmission, which could further reduce the system perfor-
mance. Since the data dropout happens randomly, i.e., the
data dropout is hard to predict. Thus the research on data
dropout for networked control system is one of the research
hot-spots [1–3].

On the other hand, many practical systems execute the op-
eration procedure in a limited interval, termed as iteration
in this paper, and then repeat. For instance, batches reac-
tors, hard disk drives, and robotics are such kind of typical
systems. For these systems, iterative learning control (IL-
C) could achieve precise tracking performance for a given
trajectory. The key idea of this control strategy is using the
input and output information generated in the previous iter-
ations when designing the control signal for the current it-
eration, and thus the tracking performance can be improved
from iteration to iteration. Since proposed, ILC has attracted
much attention from both scholars and engineers [4–7].

Although random packet losses have been discussed nu-
merously in conventional networked control systems, the
publications related to iterative learning control are very rare.
We have tried our best to search the literature, but the out-
comes are limited, which is a side-reflection that this topic
is on the initial step. In most related papers, the packet loss
is modeled as a Bernoulli random variable, whose value is 1
when the packet is successfully transmitted and 0 otherwise.

Bu and his co-workers considered iterative learning con-
trol for networked control systems from the statistics point
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of view [8–13]. In [8], the linear time-invariant discrete sys-
tem was lifted into the so-called super-vector form, conse-
quently the iteration equation of tracking errors was direct-
ly obtained. Based on the equation and exponential stabil-
ity for asynchronous dynamical systems [14], the stability
analysis was given in [8]. Another stability result was giv-
en in [9] for SISO linear time-invariant system under data
dropouts. Unlike [8], the latter took mathematical expecta-
tions to both sides of the iteration equation of tracking er-
rors directly, and then gave the stability condition according
to the mathematical expectation of tracking error. Further
results were given in [10], where the relationship between
data loss rate and convergence speed was studied accord-
ing to the expectations of tracking errors similar to the one
in [9]. Both [11] and [12] considered the nonlinear system
case. Because of the nonlinearity, the techniques used in [9]
are no longer suitable. Instead, the regression equation was
first established, and then regression inequality was given
by taking expectations, whence the effect of stochastic data
dropout was eliminated so that the convergence condition
was provided based on contract mapping method. More-
over, [13] provided an H∞ iterative learning controller for
a class of discrete-time systems with data dropouts. With
help of the super-vector formulation, the original system is
formulated as a linear discrete-time stochastic system in the
iteration domain and the H∞ performance problem in the it-
eration domain is defined and discussed. In short, the main
idea of Bu’s series publications is transforming the stochas-
tic equation/equality into deterministic equation/equality by
taking mathematical expectations and then showing the sta-
bility/convergence conditions.

Ahn and his co-workers studied this topic for MIMO time-
invariant systems and proved the mean-square stability un-
der data dropouts for iterative learning control [15–17]. The
major differences among these papers are the packet loss lo-
cations. In particular, in [15] only the measurement output
was assumed to be randomly lost when transmitting back to
control center. Besides, the output vector was assumed to
be completely lost if packet loss occurs. In practical system,
maybe only part of the multi-dimensional output is lost but
the other part is transmitted back. The analysis of this case
was considered in [16]. [17] further discussed the case that
packet loss happened to the control signals as well as out-
put signals. The main technique used in these papers is the



Kalman filtering based technique proposed in [18], thus all
the convergence results are in mean-square sense.

Shen and Wang also investigated the ILC problem for NC-
S in the random packet loss environment [19, 20]. Unlike
the above reported studies, the data dropout is modeled as
an arbitrary stochastic sequence with a bounded length re-
quirement, and the almost sure convergence is achieved for
stochastic NCS in these two papers. In [19], a simple P-type
ILC algorithm was proposed for SISO linear time-varying
stochastic system and proved that almost sure convergence
based on stochastic approximation algorithm. Then the sys-
tem is extended to affine nonlinear case. The unknown con-
trol direction issue was also taken into account under the ran-
dom packet loss environment in [20], and an algorithm with
a novel regulating approach was introduced and analyzed.

To sum up, the existing publications mainly consider data
dropout in the Bernoulli random variable form, and prove
convergence in mean-square sense or expectation sense.
This motivates this study. Specifically, the contributions of
this study are listed as follows.

• Taking the practical engineering into consideration,
three different mathematical models describing random
data dropouts are handled in this paper, namely, ran-
dom sequence model with length requirement, Bernoul-
li distributed random variable model, and Markov chain
model.

• A unified framework, the so-called switched system ap-
proach, is proposed to deal with the three kinds of data
dropouts. The spectral radius condition for the learning
gain matrix is obtained to ensure the convergence of the
proposed ILC algorithm.

• The convergence in expectation sense, mean square
sense, and almost sure sense is strictly proved. To this
end, the first and second moments of random variables
and random matrices are carefully calculated.

The rest parts of the paper are arranged as follows: Section
2 provides the system formulation and the novel switched
system approach; Section 3 presents the detailed conver-
gence analysis in expectation sense, mean square sense, and
almost sure senses, respectively; and some concluding re-
marks are summarized in Section 4.

Notations: E denotes the mathematical expectation. λ(A)
is the eigenvalue of a matrix A, and ρ(A) is the spectral ra-
dius. ∥A∥ is an induced norm of a matrix A. The subscript
T denotes the transpose. ⊗ denotes the Kronecker product.

2 Problem Formulation

2.1 System Description
Consider the following SISO lifted linear system

yk = Huk + y0 (1)

where k denotes the iteration number, yk and uk are the out-
put and input vector, respectively. H is the Toeplitz transfer
matrix defined as

H =


h1 0 · · · 0

h2 h1 · · ·
...

...
...

. . .
...

hn hn−1 · · · h1



where h1, · · · , hn are the Markov parameters. Here n de-
notes the time interval length in an iteration. y0 denotes the
initial value. For expression clarity and without loss of any
generality, in this paper it is simply assumed that y0 = 0.

Remark 1. It is worth pointing out that the model (1) is
assumed time-invariant only to make our idea clearly elab-
orated, and all the following derivations are valid for the
time-varying case.

The reference trajectory is yd, such that there exists a u-
nique ud satisfying the following relationship

yd = Hud (2)

Denote ek , yd − yk as the tracking error of the k-th iter-
ation. Then the control input for the (k + 1)-th iteration is
designed by

uk+1 = uk +Qek (3)

The setup of the control system is illustrated in Fig. 1. For
expressions clear, only measurement data dropouts are con-
sidered in this short paper. That is, only the measurement
of the output may be lost during the transmission. The re-
sults can be directly extended to the more general case, such
as data dropout happening on both the input and the output
sides.

Fig. 1: Block diagram of networked control system with
measurement data dropouts

Then the update law (3) under random data dropouts is
rewritten as

uk+1 = uk + γQek (4)

where γ is a random variable to denote random data dropout.

2.2 Data Dropouts Models
In this paper, the outputs of an iteration are assumed to be

dropped out or not together. Roughly speaking, this assump-
tion seems restrictive. However, the assumption here is only
to make our approach easy to understand. That is, the data
dropouts do not have to be lost entirely. The techniques and
results of this paper could be extended to the asynchronous
multiple data dropouts, for example, see [21].

Considering the data dropouts happening in the practical
engineering, it is observed that the data dropout is random
and unpredictable in advance. Thus in order to model the
randomness of data dropout, a random variable γ, which is
valued as 1 or 0, is introduced, as shown in (4). Specifical-
ly, γ = 1 denotes that data dropout does not happen, while
γ = 0 means data dropout happens. Here it is assumed that



the controller center could detect whether the data dropout
happens or not. If data dropout happens, the control signal
would not update itself.

There are three principle mathematical models of γ are
considered in the research of NCS, which are all studied in
this paper as follows.

• RSM: Random sequence model. The measurement data
dropout is random without obeying any certain proba-
bility distribution, but there is a number K such that
during successive K iterations, at least in one iteration
the measurement is successfully sent back [22].

• BVM: Bernoulli variable model. The random variable
γ satisfies that

P{γ = 1} = γ, P{γ = 0} = 1− γ, (5)

where γ = Eγ with 0 < γ < 1 [23].
• MCM: Markov chain model. The random variable γ is

valued 1 or 0 according to a two-state Markov chain.
The probability transition matrix P is defined as

P =

[
p00 p01
p10 p11

]
=

[
µ 1− µ

1− ν ν

]
(6)

where 0 < µ < 1 and 0 < ν < 1 [24].

Remark 2. In the RSM case, The number K is not neces-
sary to be known prior, in other words, only the existence of
such number is required. Thus this condition means that the
measurements should not be lost too much to guarantee the
convergence in almost sure sense.

Remark 3. The difference between the BVM case and the M-
CM case lies in that the data dropout happens independently
along iteration axis when it is modeled by BVM, while hap-
pens dependently along iteration axis when it is modeled by
MCM.

2.3 Switched System Approach
Define δuk , ud − uk, then from (1), (2), and (4) one has

δuk+1 =δuk − γQek

=δuk − γQHδuk

=(I − γQH)δuk

Notice that if γ = 1, i.e., the data is not lost, then the update
law actually is

δuk+1 = (I −QH)δuk (7)

while if γ = 0, i.e., the data is lost, then the update law
actually is

δuk+1 = δuk (8)

Thus one could reformulate the update law into a switched
system form

δuk+1 = [γ(I −QH) + (1− γ)I] δuk (9)

Therefore, the convergence of the original update law (4)
could be achieved by analyzing the stability and conver-
gence of the switched system (9). This is the novel approach

introduced in this paper. For the sake of expression con-
cise, stochastic matrix Γγ is introduced, which is valued as
Γ1 = I −QH and Γ0 = I . Then (9) could be formulated as

δuk+1 = Γγk
δuk (10)

where γk indicates the value of γ in the k-th iteration.
The following Borel-Cantelli lemma [25] is needed in the

convergence analysis for system (9).

Lemma 1 (Borel-Cantelli Lemma). If {Kn, n ≥ 1} is
a sequence of events with

∑∞
n=1 P{Kn} < ∞, then

P{Kn, i.o.} = 0, where i.o. is the abbreviation of “infinitely
often”.

3 Convergence Analysis of the Algorithm

Noticing (9), one can observe that if data dropout does not
happen, then the input signal would be updated, while if data
dropout happens, then the input signal remains unchanged.
Thus the convergence would depends on the case that data
dropout does not happen, and then on the design of Q. In or-
der to ensure the convergence of the iterative learning control
algorithm, the following design condition is required.

Design condition: Q is designed to satisfy that all eigen-
values of I −QH lie interior to the unit circle.

Note that this condition implies that ρ(I − QH) < 1,
where ρ(A) denotes the spectral radius of a matrix A. Be-
sides, there is a large degree of freedom on the design of
learning gain Q. Sometimes one can directly design Q such
that

0 < I −QH < I (11)

Remark 4. The above condition (11) on Q seems restric-
tive for the designing. On one hand, (11) is a linear matrix
inequality of Q, thus the solution could be obtained simply
by using LMI toolbox. For example, taking the non-causal
learning gain, i.e., letting Q = sHT with s being a small
coefficient, the condition (11) is satisfied. On the other hand,
the simple form of Q in (11) would help us to make a neat
proof of the convergence analysis. Actually, the design con-
dition of Q is sufficient enough.

3.1 The RSM Case
The convergence analysis for the RSM case could be done

in a deterministic way as there is a length requirement on the
consecutive data dropouts. Thus the tracking errors generat-
ed by random mode switching could be bounded by a con-
vergent sequence generated by an associated deterministic
algorithm, as shown in the following.

For this purpose, let us divide the iteration axis into seg-
ments with length K, where K is defined in the RSM.
In other words, the iteration indices k = 0, 1, 2, · · · are
split into [0, 1, 2, · · · ,K − 1], [K,K + 1, · · · , 2K − 1],
· · · , [jK, · · · , (j + 1)K − 1], · · · . In the sequel of this sub-
section, the j-th segment means [(j − 1)K, (j − 1)K +
1, · · · , jK − 1]. According to the length requirement of
RSM, one has that during each segment, say the i-th seg-
ment, there exist at least one iteration, say (i − 1)K + j0,
such that Γγ(i−1)K+j0

= I −QH .
Let us first express the input error δuk at the first itera-

tion of every segment, i.e., δu(j−1)K , j = 1, 2, · · · . Denote
θj as the cumulative total of successful transmission from



the plant to the controller during the j-th segment. In other
words, θj =

∑K−1
i=0 γ(j−1)K+i, then it is clear that θj is a

random variable. According to the formulation of RSM, one
has that 1 ≤ θj ≤ K, j = 1, 2, · · · . Then

δujK = ΓγjK−1
· · ·Γγ(j−1)K

δu(j−1)K

= Γ
θj
1 δu(j−1)K (12)

Then the following convergence theorems could be con-
structed based on (12)

Theorem 1. System (10) with data dropouts variable γ
obeying RSM converges to zero in the sense of Eδuk −−−−→

k→∞
0, if ρ(I −QH) < 1.

Proof. By (12) it follows that

EδujK =E
(
Γ
θj
1 Γ

θj−1

1 · · ·Γθ1
1 δu0

)
=E

(
Γ
∑j

i=1 θi
1 δu0

)
Since 1 ≤ θj ≤ K, j = 1, 2, · · · , it is obvious that∑j
i=1 θi −−−→j→∞

∞. Noticing that ρ(I −QH) = ρ(Γ1) < 1,

it is obtained that

Γ
∑j

i=1 θi
1 −−−→

j→∞
0

Thus EδujK −−−→
j→∞

0.

Next consider the other iterations of the j-th segment ex-
cept the first one, i.e., (j − 1)K + i, i = 1, 2, · · · ,K − 1.
One could find that

δu(j−1)K+i = Γγ(j−1)K+i−1
· · ·Γγ(j−1)K

δu(j−1)K

which further implies that

∥Eδu(j−1)K+i∥ ≤ ∥Eδu(j−1)K∥, ∀1 ≤ i ≤ K − 1 (13)

Thus Eδuk −−−−→
k→∞

0 and the proof is completed.

Theorem 2. System (10) with data dropouts variable γ
obeying RSM converges to zero almost surely, if ρ(I −
QH) < 1.

Proof. Based on similar steps in the proof of Theorem 1, one
can have

E∥δujK∥ ≤ E∥Γ
∑j

i=1 θi
1 δu0∥ ≤ ∥Γ1∥jE∥δu0∥

and

E∥δu(j−1)K+i∥ ≤ E∥δu(j−1)K∥, ∀1 ≤ i ≤ K − 1

Then it follows

∞∑
k=1

E∥δuk∥ =
∞∑
j=1

K−1∑
i=0

E∥δu(j−1)K+i∥

≤
∞∑
j=1

K−1∑
i=0

E∥δu(j−1)K∥

≤K
∞∑
j=1

E∥δu(j−1)K∥ <∞

Then using Markov inequality, for any ϵ > 0 one has

∞∑
k=1

P{∥δuk∥ > ϵ} ≤
∞∑
k=1

E∥δuk∥
ϵ

<∞

Therefore, δuk → 0 almost surely according to Lemma 1.
The proof thus is completed.

To show the mean square convergence of δuk, it only
needs to show that EδukδuTk → 0. The following theorem
shows the convergence.

Theorem 3. The system (10) with data dropouts variable γ
obeying RSM converges to zero in the mean square sense, if
ρ(I −QH) < 1.

Proof. We first consider the initial iteration of every segmen-
t. Following similar steps of Theorem 1, there is a suitable
constant 0 < σ < 1 such that ∥I −QH∥ < σ. Then by (12)∥∥E (

δujKδu
T
jK

)∥∥ =
∥∥∥E(

Γ
θj
1 δu(j−1)Kδu

T
(j−1)K(Γ

θj
1 )T

)∥∥∥
≤σ2

∥∥∥E(
δu(j−1)Kδu

T
(j−1)K

)∥∥∥
Thus E

(
δujKδu

T
jK

)
−−−→
j→∞

0.

Next consider the other iterations of the j-th segment ex-
cept the first one, i.e., (j − 1)K + i, i = 1, 2, · · · ,K − 1.
Using similar steps in the proof of Theorem 1, it is clear that∥∥∥E(

δu(j−1)K+iδu
T
(j−1)K+i

)∥∥∥ ≤
∥∥∥E(

δu(j−1)Kδu
T
(j−1)K

)∥∥∥
which completes the proof.

3.2 The BVM Case
Notice that in the BVM case, the data dropout is mutu-

ally independent along the iteration axis. Thus there may
be a quite long length of consecutive data dropout iterations.
Therefore, deterministic analysis techniques in last subsec-
tion is no longer workable. As a matter of fact, the conver-
gence analysis for the BVM case could be done by calcu-
lating the first and second moments of the switching path,
which actually is product of random matrices.

Taking (10) into account, let

Zk = Γγk
Γγk−1

· · ·Γγ1 (14)

where Γγk
is a random matrix taking values in {Γ0,Γ1} with

the following probabilities

P{Γγk
= Γ1} = P{γk = 1} = γ

P{Γγk
= Γ0} = P{γk = 0} = 1− γ

for all iteration index k.
Then the switched system (10) leads

δuk+1 = Zkδu0 (15)

Remind that {γk} is mutually independent. We first cal-
culate the mean and covariance of the sample path Zk.

Lemma 2. Let Sk = {Zk : taken over all sample paths},
then the mean of Sk, denoted as Mk, is given recursively by

Mk = (γΓ1 + (1− γ)Γ0)Mk−1 (16)



Proof. Let Sk
i = {Zk ∈ Sk : Γγk

= Γi}, i = 0, 1. It is
obvious that Sk is the disjoint union of Sk

0 and Sk
1 . From the

definition of the mean, one has

Mk =
∑

Zk∈Sk

P{Zk}Zk

=

1∑
j=0

∑
Zk−1∈Sk−1

P{Γγk
= Γj}P{Zk−1}ΓjZk−1

=
1∑

j=0

P{Γγk
= Γj}Γj

∑
Zk−1∈Sk−1

P{Zk−1}Zk−1

=(γΓ1 + (1− γ)Γ0)
∑

Zk−1∈Sk−1

P{Zk−1}Zk−1

=(γΓ1 + (1− γ)Γ0)Mk−1

Thus the proof is completed.

Lemma 3. Let Sk = {Zk : taken over all sample paths},
then the covariance of the Sk, denoted as Vk, is given by

Vk = Ck −MkM
T
k (17)

where Ck is generated recursively as

Ck = γΓ1Ck−1Γ
T
1 + (1− γ)Γ0Ck−1Γ

T
0 (18)

Proof. The covariance is calculated as

Vk =
∑

Zk∈Sk

P{Zk}(Zk −Mk)(Zk −Mk)
T

Then by decomposition it leads to the following derivation

Vk =
1∑

j=0

∑
Zk−1∈Sk−1

[
P{Γγk

= Γj}P{Zk−1}

× (ΓjZk−1 −Mk)(ΓjZk−1 −Mk)
T
]

=
1∑

j=0

P{Γγk
= Γj}

×
[ ∑
Zk−1∈Sk−1

P{Zk−1}ΓjZk−1Z
T
k−1Γ

T
j

−
∑

Zk−1∈Sk−1

P{Zk−1}MkZ
T
k−1Γ

T
j

−
∑

Zk−1∈Sk−1

P{Zk−1}ΓjZk−1M
T
k

+
∑

Zk−1∈Sk−1

P{Zk−1}MkM
T
k

]

=

1∑
j=0

P{Γγk
= Γj}

×
[ ∑
Zk−1∈Sk−1

P{Zk−1}ΓjZk−1Z
T
j−1Γ

T
j

−MkM
T
k−1Γ

T
j − ΓjMk−1M

T
k +MkM

T
k

]
=γ

∑
Zk−1∈Sk−1

P{Zk−1}Γ1Zk−1Z
T
k−1Γ

T
1

(1− γ)
∑

Zk−1∈Sk−1

P{Zk−1}Γ0Zk−1Z
T
k−1Γ

T
0

−MkM
T
k

On the other hand

Vk =
∑

Zk∈Sk

P{Zk}(ZkZ
T
k −MkM

T
k )

Let
Ck =

∑
Zk∈Sk

P{Zk}ZkZ
T
k

then it is obvious that

Ck = γΓ1Ck−1Γ
T
1 + (1− γ)Γ0Ck−1Γ

T
0

by combing the last two expressions of Vk. This completes
the proof.

The following theorems prove the convergence of
switched system (10) for the BVM case.

Theorem 4. System (10) with data dropouts variable γ
obeying BVM converges to zero in the sense of Eδuk −−−−→

k→∞
0, if ρ(I −QH) < 1.

Proof. From (15), one has

Eδuk =Mk−1Eδu0

Then from the recurrence of Mk, i.e., (16), it is obvious to
have

Eδuk = (γΓ1 + (1− γ)Γ0)
k−1 Eδu0

If ρ(I − QH) < 1, i.e., all eigenvalues of Γ1 lie interior to
the unit circle, it is effortless to reach that all eigenvalues of
γΓ1 + (1 − γ)Γ0 lie interior to the unit circle by noticing
that Γ0 = I , whose every eigenvalue is 1. Thus the proof is
completed.

Theorem 5. System (10) with data dropouts variable γ
obeying BVM converges to zero almost surely, if ρ(I −
QH) < 1.

Proof. Based on the condition ρ(I −QH) < 1 and noticing
that Γ0 = I , it follows that

|ρ(γΓ1 + (1− γ)Γ0)| < 1

Further, one could have

γ∥Γ1∥+ (1− γ)∥Γ0∥ < 1

where ∥ · ∥ is the induced norm.
Notice that the data dropouts happen independently along

the iteration axis, thus directly calculating the expectation by
similar steps of Lemma 2, one has

E∥δuk∥ =(γ∥Γ1∥+ (1− γ)∥Γ0∥)E∥δuk−1∥

=(γ∥Γ1∥+ (1− γ)∥Γ0∥)k E∥δu0∥

Thus it is obvious that
∞∑
k=1

E∥δuk∥ <∞



Then by Markov inequality, for any ϵ > 0 one has

∞∑
k=1

P{∥δuk∥ > ϵ} ≤
∞∑
k=1

E∥δuk∥
ϵ

<∞

Therefore, δuk → 0 almost surely by Lemma 1. The proof
thus is completed.

To prove the mean square convergence of δuk, it only
needs to show that EδukδuTk → 0, which corresponds to
Cm in Lemma 3. Let us first give the following lemma.

Lemma 4. Matrix Ck defined by (18) is positive definite.

Proof. First note that C0 = I . Assume that Ck−1 is positive
definite, then one has that xTCkx = γxTΓ1Ck−1Γ

T
1 x+(1−

γ)xTΓ0Ck−1Γ
T
0 x > 0, ∀x ̸= 0. Thus the lemma is valid by

mathematical induction.

Then by the recurrence of Ck defined in (18), we can have
the following mean square convergence result.

Theorem 6. The system (10) with data dropouts variable γ
obeying BVM converges to zero in the mean square sense, if
ρ(I −QH) < 1.

Proof. Our target is to show EδukδuTk → 0 as k → ∞,
which is sufficient to prove the exponentially stable of Ck.

Following similar steps of the proof of Theorem 5, there
is a suitable constant 0 < η < 1 such that

γ∥Γ1∥2 + (1− γ)∥Γ0∥2 < η

Then from the recurrence of Ck one has

∥Ck∥ =∥γΓ1Ck−1Γ
T
1 + (1− γ)Γ0Ck−1Γ

T
0 ∥

≤∥γΓ1Ck−1Γ
T
1 ∥+ ∥(1− γ)Γ0Ck−1Γ

T
0 ∥

≤γ∥Γ1∥2∥Ck−1∥+ (1− γ)∥Γ0∥2∥Ck−1∥
=
(
γ∥Γ1∥2 + (1− γ)∥Γ0∥2

)
∥Ck−1∥

<η∥Ck−1∥

Thus the exponential stability of Ck is established and hence
Ck → 0. The proof is completed.

3.3 The MCM Case
Now revisit the switch regression (10). It is easily seen

that {δuk, k = 0, 1, 2, · · · } is not a Markov process when
γk is modeled by a Markov chain. Thus the techniques used
for the BVM case in last subsection can not be applied in
the MCM case. However, the joint process {δuk, γk} is a
Markov process, thus we could handle this case by consid-
ering δuk and γk simultaneously. To this end, define the
indicator function I{event} as

I{event} =

{
1, if the event indicated is fulfilled
0, otherwise

With the help of this indicator function, we could work with
δukI{γk=i} and δukδuTk I{γk=i} instead of δuk and δukδuTk
themselves, respectively, i = 0, 1. Using the techniques in
[28], one can to obtain the difference equation like Mk and
Ck in the BVM case.

Notice that

Eδuk =
1∑

i=0

E
(
δukI{γk=i}

)
(19)

and

EδukδuTk =
1∑

i=0

E
(
δukδu

T
k I{γk=i}

)
(20)

The following notations are introduced for further analysis,
i = 0, 1,

ϕk(i) = E
(
δukI{γk=i}

)
Φk =

(
ϕk(0)
ϕk(1)

)
ψk(i) = E

(
δukδu

T
k I{γk=i}

)
Ψk = (ψk(0), ψk(1))

Then it follows that Eδuk = ϕk(0)+ϕk(1) and EδukδuTk =
ψk(0) + ψk(1). Now we give the recursive difference equa-
tions for ϕk(i) and ψk(i).

Lemma 5. Consider system (10) where γk is modeled by
MCM, then

1) ϕk+1(j) =
∑1

i=0 pijΓiϕk(i);
2) ψk+1(j) =

∑1
i=0 pijΓiψk(i)Γ

T
i .

where pij , i, j = 0, 1 is defined in (6).

Proof. For 1), it comes from

ϕk+1(j) =
1∑

i=0

E
(
ΓiδukI{γk+1=j}I{γk=i}

)
=

1∑
i=0

ΓiE
(
δukI{γk=i}P{γk+1 = j|γk = i}

)
=

1∑
i=0

pijΓiϕk(i)

For 2), notice that

ψk+1(j) =

1∑
i=0

E
(
Γiδuk(Γiδuk)

T I{γk+1=j}I{γk=i}
)

=

1∑
i=0

ΓiE
(
δukδu

T
k I{γk=i}P{γk+1 = j|γk = i}

)
ΓT
i

=

1∑
i=0

pijΓiψk(i)Γ
T
i

The proof is thus completed.

In denotes an n×n identity matrix, where n is the length
of an iteration defined in (1) or H matrix. Then define

M = (PT ⊗ In)

[
Γ0 0
0 Γ1

]
where P is the probability transition matrix defined in MCM.

From Lemma 5, one obtains the following relationship

Φk+1 = MΦk (21)



Thus it is easy to declare that if the spectral radius of
M is less than 1, then Φk −−−−→

k→∞
0, which means that

Eδuk −−−−→
k→∞

0. We formulate it in the following theorem

without a proof.

Theorem 7. System (10) with data dropouts variable γ
obeying MCM converges to zero in the sense of Eδuk −−−−→

k→∞
0, if ρ(M) < 1.

For Ψk, it is unable to construct a difference equation sim-
ilar to (21). Instead, let us introduce the operator T accord-
ing to Lemma 5 in order to give a compact formulation of
Ψk,

T (·) = (T0(·), T1(·))

where

Tj(Ψk) =
1∑

i=0

pijΓiψk(i)Γ
T
i , j = 0, 1

Then by Lemma 5 one has

Ψk+1 = T (Ψk) (22)

Then it is seen that the convergence analysis should be
given on the operator T rather than some specific difference
equation, which involves additional difficulties. To make this
paper neat, some complicated proofs are omitted here and
will be provided in another paper.

It is evident that if ρ(T ) < 1, then Ψk tends to zero as
k → ∞. This is formulated in the following theorem.

Theorem 8. System (10) with data dropouts variable γ
obeying BVM converges to zero in the mean square sense,
if ρ(T ) < 1.

Proof. Recalling from (22), one has Ψk = T k(Ψ0) and

EδukδuTk = ψk(0) + ψk(1) = T k
0 (Ψ0) + T k

1 (Ψ0)

Therefore, it follows from ρ(T ) < 1 that EδukδuTk −−−−→
k→∞

0.

However, the condition ρ(T ) < 1 is not convenient to
check for application. As have been studied in many publi-
cations related to Markov jump systems, the above condition
is equivalent to the following one

ρ
(
(PT ⊗ In2)diag(Γi ⊗ Γi)

)
< 1, (23)

Or, one can check the following Riccati-like conditions: for
any positive matrices E0 > and E1 > 0, there exist positive
matrices F0 > 0 and F1 > 0 such that

p00Γ0F0Γ
T
0 + p10Γ1F1Γ

T
1 − F0 = −E0

p01Γ0F0Γ
T
0 + p11Γ1F1Γ

T
1 − F1 = −E1

If the Markov model degenerates to the BVM case, i.e.,
pij = pj for every i, j. Then the condition reduces to that
every eigenvalue of p0Γ0 ⊗ Γ0 + p1Γ1 ⊗ Γ1 lies interior to
the unit circle. Noticing that ρ(A⊗ B) = ρ(A)ρ(B), it fol-
lows that this condition coincides with the BVM case, which
actually is a special case of MCM.

Theorem 9. System (10) with data dropouts variable γ
obeying MCM converges to zero almost surely, if ρ(T ) < 1.

Proof. If ρ(T ) < 1, then for some α > 0 and 0 < β < 1,
one has ∥T k∥ ≤ αβk. Therefore, recalling (22), it follows

E∥δuk∥2 =E
(
tr(δukδuTk )

)
=trE

(
δukδu

T
k I{γk=0}

)
+ trE

(
δukδu

T
k I{γk=0}

)
=tr(ψk(0)) + tr(ψk(1)) ≤ n(∥ψk(0)∥+ ∥ψk(1)∥)
=n∥Ψk∥ ≤ n∥T k∥∥Ψ0∥ ≤ nαβk∥δu0∥2

Therefore,
∞∑
k=0

E∥δuk∥2 <∞

The proof is completed by using Lemma 1.

Remark 5. How to link the design condition and conver-
gence condition in the MCM case is somewhat a difficult
problem, which needs further efforts. There have been quite
a large amount of studies on stability of Markov jump/switch
system that would help us a lot to deal this issue. Besides, the
design condition would be enough if some practical situation
is considered, such as the stochastic τ -stability in [29].

3.4 Further Remarks
Remark 6. Generally speaking, convergence in mean
square sense and in almost sure sense cannot be implicit by
each other. The underling reason that we could established
the two convergence properties meanwhile is that the conver-
gence in mean square sense is stronger than the native one.
As we could see, the convergence in mean square sense ac-
tually is exponential, which hits that

∑∞
k=1 V ar(δuk) <∞,

whence by Chebyshev’s inequality and Borel-Cantelli lem-
ma, the almost sure convergence of δuk to zero is also estab-
lished.

Remark 7. In [15] it is remarked that as long as the mea-
surements are not totally lost, the convergence is always
guaranteed. As one could see above, it is only required that
0 < γ < 1, for the data dropout rate, to show the conver-
gence in both almost sure and mean square senses. Thus our
study also confirms this conclusion.

Remark 8. The more general case of (9) with n alterna-
tive models has been studied in some previous publications
[26, 27], where the distribution of random switch parame-
ters are assumed as uniformly distribution [26] and poisson
distribution [27]. But the techniques used there help us to
deal with the convergence analysis for the BVM case.

4 Concluding Remarks

In this paper, the iterative learning control for networked
discrete-time systems with random data dropouts is consid-
ered. The data dropout is described by three different kind-
s of mathematical models, namely, an arbitrary random se-
quence, a binary Bernoulli random variable, and a Markov
chain, respectively. The Bernoulli random variable model
has been studied a lot in many previous publications, while
the other two have attracted little attention. In this paper,
not only the three models are considered, but also we pro-
vide a novel approach, called switched system approach, to



guarantee the convergence of the iterative learning control
algorithm under random data dropouts. To this end, the o-
riginal iterative learning control model is first reformulated
into a switched system form. Then the convergence analy-
sis for different data dropouts models is detailed in the ex-
pectation sense, mean square sense, and almost sure sense,
respectively. For the random sequence model, the determin-
istic analysis techniques are used; for the Bernoulli random
variable model, the first and second moments of the random
path are calculated to show the convergence; while for the
Markov chain model, some operators are introduced to give
a convergence condition. Due to limited space, the illustra-
tive simulations are omitted in this paper.
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