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Consider the following Ordinary Differential Equation (ODE) that describes a
typical control system
x=f(x)+bx)u

where commonly, x € R™,u € R™,m < n. In here, f(x) and b(x) are smooth,
and the control u(x) is smooth as well.

AND

The term f(x) + b(x)u(x) satisfies the Lipschitz condition to ensure the
existence and uniqueness of the solutions.

For discontinuous control, it is of the form (simplest form)

_(ut s(x)>0
u_{u‘ s(x) <0

where ut #=u~.
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» Discontinuous control is everywhere ...typical types are
— Sliding mode control
— Switching control
— Fuzzy control
— Optimal control
— State vector control
— Impulsive control
— Control in event-triggered systems



Vector control
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Fuzzy control

A typical fuzzy control system

Forx = f(x) + b(x)u(x)

Rule 1: IF x4 is A;; and x, is A1 ... ... Xp 1S A1y THEN u = uy
Rule 2: IF x, is Ay and x5 is Ay ... ... Xp 1S Aoy THEN u = u,
Rule m: IF x, is A1 and x5 is Ay oo oo Xpn 1S Apn THEN u = u,,

where A4;; is fuzzy value



Optimal control

Consider the 2" order dynamical system

B = ¥9.r do = U |u| < |

The time optimal control is
= sen =(a)]

{ Cla) = o A E.I'2|.I'g|: () #=0

€ ) =10

Nanjing Normal University, 27 December 2011



Impulsive control

A typical Impulsive control system

x=fx)+b(xt) te€ (ty_q,tyl
Ax = cu(ty), t=t,, k=0,12,...

The impulsive control occurs at t = ty.

Nanjing Normal University, 27 December 2011




Control in event-triggered systems

A typical event triggered system

Forx = Ax + bu, x € R*,u € R™

u = kx(ty), t € [ty, txs1)

The event time t = t;, is determined by an event-trigger e(t) = x(t;) — x(t).

If y2|lel|? = l|x||?, then x(t;*) = x(¢) such that e(t,*) = 0.

Nanjing Normal University, 27 December 2011




Switching control

A\ 4

Controller 1

A 4

Controller 2 —

Controller 3 —

A

A 4

Controller 4 —

Switching
Decisions

A

A

A 4

Process

Forx = f(x) + b(x)u(x)

u = u;(x) if condition i is satisfied




Sliding mode control

Consider single-input control system

x=f(x)+b(x)u
1. Define a switching manifold which prescribe the desirable properties s(x)

2. Design a discontinuous control u(x)
u" s(x)>0
u =
u  s(x)<0
such that

Iims <0, and lims>0

s—0" s—0~

Note: This is not the same as ss <0  which is often wrongly used!



Robustness in SMC systems

» Consider a single input single output (SISO) system

x = f(x)+g(x)u+S(x,1)

* where x is the state, u is the control and ¢ represents uncertainties and
disturbance, fand g are smooth functions.

* When an ideal sliding mode is created, we have
s=0,5=0

* There exists a virtual control, called equivalent control,

-1
Ugy = —% g(x)j % (f(x) +€&(x, t))j

* When the matching condition is satisfied

1
X = {I — g(x)(?g(x)j ag]f(x)

X Ox

No uncertainty nor disturbance is involved!
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* The benefits of switching are enormous ... for example,

y+ay+ay,;y=0  system 1
y+ay+ayy=0 system?2

—a, > 0the systems are both asymptotically stable.

—a, = 0 the systems are both marginally stable.
—a, < 0 the systems are both unstable.
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We)(t)=0 system1
$(t)v(r) <0  system 2

0< Ay < Tg,

Switched unstable dynamics

20

=0.1

Both dynamics are
asymptotically stable

Phase plane

dy(t)/dt
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* The relationship between these various discontinuous controls is ambiguous

Consider a double integrator given by

y=u(t)
Consider the feedback control

u = —ky(r)
where £>0. If we take the Lyapunov function

1. .

V(y)= E(y2 +ky*)
Then

V=0 = V=c¢ ¢c>0



u(t)=—kyy(t) u(t)=—koy(t)

(b) (a) 1) i, (a)

N

(a) (b) @ N_ (b)

For 0<k,<I<k,



, 19
However, if we choose /_l\
o\

o f Ny
_ —ky if yy<0 1'& i \i/J
—k,y otherwise |
|
and a new Lyapunov function \

1. .
Then V()’)=§(y2 +3%)

W(l_kl) lf yJ./<O

V=yy'+y'y=y'(y+u)={. L
wl=k,) if yy>0

It is a switching control!

1

8
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However, if we choose a switching line ~ s=y+c¢y

The control is chosen as
-1 if s>0

Then, when CM <1

s$ =s(cy+y) =s(cy —sgn(s)) = s | (c| [ -1) <O

>

\

\\\\/




When s=0 is reached,

That is,

y=—cy, ¢c>0 y(t)=exp(—ct)y(0) >0, for t—>

Control Action

It is a local sliding mode control inside a global switching control!



Relation between discontinuous control and finite time control ...

Consider the 2"d dynamical system

B = ¥9.r do = U |u| < |

Time optimal control

= sen =(a)]

—(y = 4 Ea) =21 Saglaals ) £ 0

Y o ) =10
Take very large odd integer g and p, we have

ay E.r! C g A E.:'2|.r2| = ).

Switching control can approximate finite time control!

Nanjing Normal University, 27 December 2011



Finite control versus linear control (asymptotical convergence)

* For the 1%t order dynamics
.i'] = (v ji]1
* The Jacobian is

i i
'J‘ — —] — €l .'iJr 7
i o

JH.i"] '

J — —n~c when x; — 0

Exact reaching time

— %f]]IIZ:(I.I‘]l::D::I["' DP9y In 3
alp g U . _

With a=1, B=1, at * = 1.03969999999990,
For p=3, g=1, 0y I:f'? ) = 0.00000009178540 finjte control!

For p=1, q=1, 1 {17) = 0.12500519231775 Jinear control!

Nanjing Normal University, 27 December 2011




Finite time stability versus asymptotical time stability

* Continuous-Time ODE based

* Many new methods: e.g. Hinf,

- Fundamentally the Liptschiz condition must be satisfied
» Asymptotical stability

» The problem with asymptotical stability ...
—It requires ‘enormous’ control efforts to improve precision
—Lets take a very simple example:

X = U, u={_;if/3, A>0



. Asymetotical stability
0

5 A A>0 t) = e At
a7 , x(t)=e

x(t) —y(t) = e_;{t(xo = yo) — 0 whent - o

* Finite-time Stability t = 400
X0 5
y i /1% 1>0 %t D
0 e xS, 2,x()—xo——?t
Wh -y 0!
E ii— —a § ]I
en 2/1x0, x(t)
t = 400



Precision and robustness properties - 1

o If there is a disturbance, |¢| < € > 0, such that

—A

-5c=u+f,u={
—Ax

X
Y5 1> 0

* Then

For u = —Ax, |x(0)| < %

3
For u=—Ax'/3, |x()| < (%)

3
So, for A > ¢, /51 1G4 (/51) . Less steady state error if using a non-smooth
control!

Nanjing Normal University, 27 December 2011




Precision and robustness properties - 2

« Ifimplemented digitally with a sample period h, and assuming we use Euler
approximation, then

—Ax(k)

i1 ,A>0
—Ax3(k)

ex(k+1) =x(k)+ hu(k), u(k) = {
* Then
For u=—Ax, |[x(0)| < h.
Ah

3/2
For u=—Ax'3, |x(0)| < max((?) ,h) so to maintain the required

fast convergence speed while retaining the required accuracy, A < 2h~1/2



Some typical finite-time control systems

* (Bhat & Bernstein, 2001)

g 3 15
X1 = Xo, X, = U, u= —xg - (xl +§x§/3)
* (Levant, 2001)
: : 1
Xy = X3, Ko = U, u=—asgn(x, + |x1|2sgn(xq))
* (Yu & Man, 1996; Feng, Yu & Man, 2002) i
2__
X1 = Xo, Xy = U, u=—asgn(s) — cyx, r
1 1
_ Y
S—x1+zx2, O0<y<l1
* (Hong, Xu & Huang, 2002)
X1 = Xp, Xp = —C1Sgn xq|xq|*1-—cysgn x;|x,|%2



The terminal sliding mode concept

» The dynamical performance of a SMC system is determined by
the prescribed switching manifolds. The most commonly used

switching manifolds are linear hyperplanes which guarantee only
asymptotic stability.

* Nonlinear switching manifolds can be created purposefully to
Improve performance. Terminal sliding mode (TSM) is a
nonlinear dynamics that provides finite time mechanism (Man &
Yu 1994, Yu and Man, 1996, Feng et al, 2001).



Singularity problem ...

Consider s=Ax"7(t)+x,(t), >0 Take V=0.5s2. Then

V=55 = s(¥, +-L Bt %)
p

Since ¢/ p <1, singularity occurs before sliding mode

ised! .
realised! %,(£) = — ,Bxf”’ (t)
V =ss=s(¥ +1,8xf/p_15c1) = s(X, —iﬂzqu/p_l)
P P
During the sliding mode,

No singularity during the sliding mode if 72<q/p<1




Nonsingular TSM

In order to overcome the singularity problem during the
reaching phase, a nonsingular TSM is proposed

s(t)=x ixp/q
(¢) 1(t)+ﬁ (1)

Take V=0.5s2. Then

V= ss = s(x, + 2508

q

Since p/g>1, there is NO singularity.
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* Typical discontinuities are

— Switching between different dynamics
— Sliding mode control
—Fuzzy control
— Time optimal control
—Bang-bang control

—Jumping in systems states

—Impulsive control
— Control in event-triggered systems
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e Zeno Phenomena

» The Zeno phenomenon appears when the execution of the discontinuous
control system is such that

(0 0]
lim 7; = Z(THl —Tj) =T < ®
i=0

1—>00

* where 7, (the Zeno time) is a right accumulation point for the time constants
sequence
(Tisr — T1) —20
» The switching frequency tends to be infinite!
* Definitions
—Chattering Zeno: 3] > 0,Vj > J, (141 —1;) =0
—Genuinely Zeno: 3] > 0,Vj > ], (tj41 —1;) > 0



Bouncing ball ...

Zeno behavior occurs when there are an infinite number of discrete
transitions in a finite amount of time.

Bouncing Ball ......

v

(Liberzon, 2003)

\elocity



Impact of switching frequency ...

The frequency influences significantly the behaviour of dynamics — even
methodology may differ significantly due to frequency range

* Low frequency - many existing methodologies can be used by ‘piecing-
together’ various ‘smooth’ subsystems — in time or in state.

« Medium frequency — same as Low frequency though presents challenges of
using Lyapunov theory, e.g. piece-wise Lyapunov function. Various causes:
deliberate medium frequency such as switched control systems; time-delay
due to digitization, etc.

» High frequency — tends to violate usual ‘smooth’ dynamics based
approaches, may need to use drastically different method such as Fillipov
theory!



Low/Medium frequency — impact on discontinuous control systems

Consider a second order system

. +
X, =X, Lo )a x5 >0
X, =—bx,+u ax x:5<0
where
b>0,c>0, s=cx,+x,
Equivalently,

i+bx+atx=0
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Phase plane portrait

Near continuous-time behavior ...
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Is it true that a ‘small enough’ sampling period will not cause
chaotic motions in control systems?

0.4 T T T T T T 0.8
sl 0B
0.4
0
0z
021 ol
N N
04t L2
-0.4
0B
0B
SRR asl
_1 1 1 1 1 L 1 _"] 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 08 06 04 02 0 0.2 0.4 0.6 0s 1 1.2
1 1
h=0.00158 h=0.00165

With b=-4.1, a=4.1, c=1, according to the upper bound formulae (Potts &
Yu, 1991), the maximum A is 0.0016!




Another example
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Some interesting behaviors

L5 A L
1
-3 3
1 1
0if--q-- -
1 1
1 1
OE--a-_ a .
1 1
1 1
a5 f-- i 1
1 1
1 1
]---1-- b B
1 1
1
L

Fig. 4 Effects of discretization with different time steps, &1 = 3, (8) h =
0.1, trajectory converges to a period—4 orbit, (b) h = 0.2, trajectory converges
to a peniod—-10 orlat, (c) h = 0.3, trajectory converges to a complex perniod—28
orhat, (c) h = 0.3, penod-24 orbat of type (19), (#1, x2) = (0.1, —1.5)
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Event triggered systems also have complex behaviors ...
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Phase-plane portraits of an event triggered system (@) y=10.2;(b) »=09;(c) y=0.82.



Low frequency - Stability of switching control systems

For x = f(x) + b(x)u(x), If there exist Lyapunov function V,,p € P, two
class K, functions a; and a,, and a positive number p,, such that
ar(lx) <V < ay(|x|)
v,
22 (F () + b()u)< —2pg Vp (x)
W (x) < uly(x), vp,q € P

Then switched control system is globally asymptotically stable for every
switching signal with average dwell time

log u
2pg

T >

[Daniel Liberzon, Switching in Systems and Control, 2003]



High frequency — impact on discontinuous control systems

4

6

%= f(x,¢t) isequivalentto  ;_ folx, 1)
Trajectory P=aof ™+(1- a)f, 0<a<l

.................. (In Fillipov sense)

Switching manifold s=0
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Gaps between methodologies dealing with discontinuous control systems

—How to analyze and design discontinuous control systems using a unified
theoretical framework which can deal with switching frequencies ranging
from low to very high?

Impact of time delay type element on dynamics

— Lack of effective tools to study rich dynamics of ‘periodical’ nature of
Steady states (e.qg. limit cycle and finite state cycle)

— The gap between continuous-time and digitized time-delayed
discontinuous control systems ...

Multiple time scales: Inherent response speeds at different levels

Chattering is still a problem especially for sliding mode control types
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The scale and complexity of the industrial systems are growing exponentially
— Big data environments
— Network environments
— Ever increasing complexity

— Time-scale issues: Inherent response speeds at different levels
— The impact of scale and complexity on control theories

—Human and machine interactions

— Switching in complex systems may result in much richer behaviors
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Dynamic (temporal/real-time) nature

U Different data/model platforms
Uinfluenced by resources and demands
Uinteractions between machines and people
L Continuous-time and discrete-time
UEmbedded, semi-automation

U Different kinds of decisions (non-structured, semi-structured, structured )
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Generation, Storage
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Figure courtesy of Petr Stluka, Honeywell
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* High complexity: large-scale, nonlinear, switched, uncertain, networked,
multi-agent, multi-objective, inertial versus non-inertial mechanisms

* Bidirectional electricity flows

* Intermittent availability

* Randomness (e.g. Electric Vehicle charging behaviours)

* Massive nodes (e.g. renewable energy sources, smart meters)
« Smart metering data stream mining applications

« Different time scales in operations

« Power guality monitoring and control

« Security and safety issues

* Integration within the Cyber-Physical mega-system framework

» Social behaviours (flocking, swarming, human psychological behaviors)
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Control issues

Information Retrieval « Milti-level monitoring and
diagnosis — self
awareness

» Distributed adaptive

Intelligent Smaﬁ Grid Information “ control — self-organising

Control Processing

» Reconfigurability — self-
healing

» Big Data Intelligence
Information
Intelligence

The key question is how to handle the sheer size and complexity of
smart grids effectively in real time?



Thank you!



