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IntroductionIntroduction
� Developments in quantum technology and quantum information

provide an important motivation for research in the area of quantum
feedback control systems.

A linear quantum optics experiment at UNSW Canberra Photo
courtesy of Elanor Huntington.
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� The most recent Nobel prize for Physics was awarded for work in
experimental (open loop) quantum control:
Serge Haroche and David J. Wineland
”for ground-breaking experimental methods that enable measuring
and manipulation of individual quantum systems”

� The stage will soon be reached where the development of quantum
technologies will require advances in engineering rather than
physics and quantum control theory is expected to play an important
role here.

� Quantum physics places fundamental limits on accuracy in
estimation and control. These will be the dominant issues in
quantum technology.

� New control theories will be needed to deal with models of systems
described by the laws of quantum physics rather than classical
physics.
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� Feedback control of quantum optical systems has potential
applications in areas such as quantum communications, quantum
teleportation, quantum computing, quantum error correction and
gravity wave detection.

� Feedback control of quantum systems aims to achieve closed loop
properties such as stability, robustness and entanglement.

� We consider models of quantum systems as quantum stochastic
differential equations (QSDEs)

� These stochastic models can be used to describe quantum optical
devices such as optical cavities, linear quantum amplifiers, and finite
bandwidth squeezers.
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� Recent papers on the feedback control of linear quantum systems
have considered the case in which the feedback controller itself is
also a quantum system. Such feedback control is often referred to
as coherent quantum control.

Quantum System

Coherent Quantum Controller

Coherent quantum feedback control.
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� One motivation for considering such coherent quantum control
problems is that coherent controllers have the potential to achieve
improved performance since quantum measurements inherently
involve the destruction of quantum information.

� Also, coherent optical controllers may be much more practical to
implement than measurement feedback based controllers.

� In a paper (James, Nurdin, Petersen, 2008), the coherent quantum
H∞ control problem was addressed.

� This paper obtained a solution to this problem in terms of a pair of
algebraic Riccati equations.

� Also, in a paper (Nurdin, James, Petersen, 2009) the coherent
quantum LQG problem was addressed.

� An example of a coherent quantum H∞ system considered in
(Nurdin, James, Petersen, 2008), (Maalouf Petersen 2011) is
described by the following diagram:
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� The coherent quantum H∞ control approach of James Nurdin and
Petersen (2008) was subsequently implemented experimentally by
Hideo Mabuchi of Stanford University:
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� We formulate quantum system models in the Heisenberg Picture of
quantum mechanics which describes the time evolution of operators
representing system variables such as position and momentum.

� This is as opposed to the Schrödinger picture which describes
quantum systems in terms of the time evolution of the quantum
state.

Werner Heisenberg



CCC 2013 10

Linear Quantum System ModelsLinear Quantum System Models

� We formulate a class of linear quantum system models described by
quantum stochastic differential equations (QSDEs) derived from the
quantum harmonic oscillator (an infinite level quantum system).

� We begin by considering a collection of n independent quantum
harmonic oscillators which are defined on a Hilbert space H.

� Corresponding to this is a vector of annihilation operators a:

a =









a1

a2

...
an









.

� Each annihilation operator ai is an unbounded linear operator on H.
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� The adjoint of the operator ai is denoted a∗
i and is referred to as a

creation operator. We use a# to denote the vector of a∗
i s:

a# =









a∗
1

a∗
2
...

a∗
n









.

� Physically, these operators correspond to the annihilation and
creation of a photon respectively.

� Also, we use the notation aT =
[

a1 a2 . . . an

]

, and

a† =
(

a#
)T

=
[

a∗
1 a∗

2 . . . a∗
n

]

.
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Canonical Commutation RelationsCanonical Commutation Relations

� The operators ai and a∗
i are such that the following canonical

commutation relations are satisfied

[ai, a
∗
j ] := aia

∗
j − a∗

jai = δij

where δij denotes the Kronecker delta multiplied by the identity
operator on the Hilbert space H.

� We also have the commutation relations

[ai, aj ] = 0, [a∗
i , a

∗
j ] = 0.

� These relations encapsulate Heisenberg’s uncertainty relation.
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� Using the above operator vector notation, the commutation relations
can be written as
[

[

a
a#

]

,

[

a
a#

]†
]

=

[

a
a#

] [

a
a#

]†
−
(

[

a
a#

]# [
a
a#

]T
)T

= Θ

where Θ =

[

I 0
0 −I

]

is the commutation matrix.
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Quantum Wiener ProcessesQuantum Wiener Processes

� The quantum harmonic oscillators described above are assumed to
be coupled to m external independent quantum fields modeled by a
vector of bosonic annihilation field operators A(t).

� For each annihilation field operator Aj(t), there is a corresponding
creation field operator A∗

j (t).

� These quantum fields may be electromagnetic fields such as a light
beam produced by a laser.
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Hamiltonian, Coupling and Scattering OperatorsHamiltonian, Coupling and Scattering Operators

� In order to describe the joint evolution of the quantum harmonic
oscillators and quantum fields, we first specify the Hamiltonian
operator for the quantum system which is a self adjoint operator on
H of the form

H =
1

2

[

a† aT
]

M

[

a
a#

]

where M ∈ C
2n×2n is a Hermitian matrix of the form

M =

[

M1 M2

M#
2 M#

1

]

and M1 = M†
1 , M2 = MT

2 .

� Here, M† denotes the complex conjugate transpose of the complex
matrix M , MT denotes the transpose of the complex matrix M ,
and M# denotes the complex conjugate of the complex matrix M .
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� Also, we specify the coupling operator for the quantum system to be
a vector of operators of the form

L =
[

N1 N2

]

[

a
a#

]

where N1 ∈ C
m×n and N2 ∈ C

m×n. This describes the
interaction between the quantum fields and the quantum system.

� Also, we write
[

L
L#

]

= N

[

a
a#

]

=

[

N1 N2

N#
2 N#

1

] [

a
a#

]

.

� In addition, we define a scattering matrix which is a unitary matrix
S ∈ C

m×m. This describes the interactions between the different
quantum fields.
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Quantum Stochastic Differential EquationsQuantum Stochastic Differential Equations

� The quantities (S,L,H) define the joint evolution of the quantum
harmonic oscillators and the quantum fields.

� A set of QSDEs describing the quantum system can be obtained.

� The QSDEs for the linear quantum system can be written as
[

da(t)
da(t)#

]

= F

[

a(t)
a(t)#

]

dt + G

[

dA(t)
dA(t)#

]

;

[

dAout(t)
dAout(t)#

]

= H

[

a(t)
a(t)#

]

dt + K

[

dA(t)
dA(t)#

]

.

� In many ways these systems behave like classical (complex) linear
stochastic systems except that the variables ai(t) and a∗

i (t) are
non-commutative.

� Also, there are restrictions on the structure of the matrices
F,G,H,K (physical realizability).
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� We can derive the following formulas for the matrices in the QSDE
model, in terms of the Hamiltonian and coupling matrices.

F = −iΘM − 1

2
ΘN †JN ;

G = −ΘN †
[

S 0
0 −S#

]

;

H = N ;

K =

[

S 0
0 S#

]

.

� Here

J =

[

I 0
0 −I

]

.
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ExampleExample
Optical Parametric Amplifier: Squeezer

� An optical parametric amplifier (OPA) can be used to produce
squeezed light in which the quantum noise in one quadrature is
squeezed relative to the noise in the other quadrature and yet
Heisenberg’s uncertainty relation still holds.

Schematic diagram of a squeezer.

3MgO:LiNb O

nonlinear optical material
second harmonic
generator

output beam

partially reflective mirror fully reflective mirror

Laser and

optical isolator

Optical Cavity
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� A simplified model of such a squeezer has (S,L,H) parameters

� S = I ;

� L =
√

2κa;

� H = i
2χ
(

a2 − a†2
)

.

� Here κ is a parameter depending on the reflectivity of the partially
reflecting mirror and χ is a complex parameter depending on the
strength of the nonlinear optical material.

� Using the above formulas, this leads to an approximate linearized
QSDE model of a squeezer as follows:

da = − (κa + χa∗) dt +
√

2κdA;

da∗ = − (κa∗ + χ∗a) dt +
√

2κdA∗.

� This model is a QSDE quantum linear system model of the form
considered above.
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Physical RealizabilityPhysical Realizability

� Not all QSDEs of the form considered above correspond to physical
quantum systems which satisfy all of the laws of quantum
mechanics.

� For physical systems, the laws of quantum mechanics require that
the commutation relations be satisfied for all times.

� This motivates a notion of physical realizability.

� This notion is of particular importance in the problem of coherent
quantum feedback control in which the controller itself is a quantum
system.

� In this case, if a controller is synthesized using a method such as
quantum H∞ control or quantum LQG control, it important that the
controller can be implemented as a physical quantum system.



CCC 2013 22

Definition. QSDEs of the form considered above are physically real-
izable if there exist suitably structured complex matrices Θ = Θ†,
M = M†, N , S such that S†S = I , and

F = −iΘM − 1

2
ΘN †JN ; G = −ΘN †

[

S 0
0 −S#

]

;

H = N ; K =

[

S 0
0 S#

]

;

� The conditions in the above definition require that the QSDEs
correspond to a collection of quantum harmonic oscillators with
dynamics defined by the operators

(

S,L = N

[

a
a#

]

,H =
1

2

[

a† aT
]

M

[

a
a#

])

.
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Theorem. The above QSDEs are physically realizable if and only if there
exist complex matrices Θ = Θ† and S such that S†S = I , and

FΘ + ΘF † + GJG† = 0;

G = −ΘH†
[

S 0
0 −S#

]

;

K =

[

S 0
0 S#

]

; where J =

[

I 0
0 −I

]

� Note that the first of these conditions is equivalent to the
preservation of the commutation relations for all times.
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� We can also characterize physical realizability in terms of the

transfer function matrix Γ(s) = H (sI − F )
−1

G + K of a linear
quantum system.

Theorem. (See Shaiju and Petersen, 2012) The linear quantum system
defined by the above QSDEs is physically realizable if and only if the
system transfer function matrix Γ(s) satisfies

Γ(−s∗)†JΓ(s) = J

(i.e., the system is (J, J)-unitary) and the matrix K is of the form K =
[

S 0
0 S#

]

where S†S = I .
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RecapRecap

� Coherent feedback controllers for linear quantum systems can be
synthesized in a variety of ways to ensure that the controller is
physically realizable.

� These include quantum H∞ control

M. R. James, H. I. Nurdin, and I. R. Petersen, “H∞ control of linear
quantum stochastic systems,” IEEE Transactions on Automatic Control,
vol. 53, no. 8, pp. 1787–1803, 2008.

� Another approach is quantum LQG control

H. I. Nurdin, M. R. James, and I. R. Petersen, “Coherent quantum LQG
control,” Automatica, vol. 45, no. 8, pp. 1837–1846, 2009.

� However, so far this quantum LQG problem has only been solved by
brute force optimization methods and there do not as yet general
methods to solve large scale quantum LQG control problems.
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ExampleExample

� We consider a problem of stabilization via coherent feedback control.

� In this example, an unstable linear quantum optical system is to be
controlled via a coherent quantum feedback controller in which the
controller itself is a quantum system. This requires that the controller
is physically realizable.

� The quantum system to be controlled consists of the cascade
connection of an optical parametric oscillator (OPO) and two optical
cavities.
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CCC 2013 28

� The following linear quantum system model is constructed for the
quantum plant.















da1(t)
da1(t)

∗

da2(t)
da2(t)

∗

da3(t)
da3(t)

∗















= F















a1(t)
a1(t)

∗

a2(t)
a2(t)

∗

a3(t)
a3(t)

∗















dt + G

[

du(t)
du(t)∗

]

+ D







dn1(t)
dn1(t)

∗

dn2(t)
dn2(t)

∗






;

[

dy(t)
dy(t)∗

]

= H















a1(t)
a1(t)

∗

a2(t)
a2(t)

∗

a3(t)
a3(t)

∗















dt + K







dn1(t)
dn1(t)

∗

dn2(t)
dn2(t)

∗






.
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� Here

F =

2

6

6

6

6

6

4

−0.5007 0 −0.0374 0 −0.0410 0

0 −0.5007 0 −0.0374 0 −0.0410

0 0 −1.0000 −1.0500 −1.0954 0

0 0 −1.0500 −1.0000 0 −1.0954

0 0 0 0 −0.6000 0

0 0 0 0 0 −0.6000

3

7

7

7

7

7

5

;

G =

2

6

6

6

6

6

4

−0.0374 0

0 −0.0374

−1.0000 0

0 −1.0000

−1.0954 0

0 −1.0954

3

7

7

7

7

7

5

;

H =

»

1 0 0 0 0 0

0 1 0 0 0 0

–

; K =

»

1 0 0 0

0 1 0 0

–

.

� The eigenvalues of the matrix F in this quantum plant model are
calculated to be
λ = −0.5007, − 0.5007, 0.05, − 2.05, − 0.6, − 0.6, and
thus the plant is unstable.

� We propose to control this quantum plant using a coherent feedback
controller designed using the pole-placement and reduced order
observer method.
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� The reduced order observer based controller is defined as follows:

dz = Fczdt + Gc

[

dy
dy∗

]

;

[

du
du∗

]

= Hczdt + Kc

[

dy
dy∗

]

where

Fc = F22 − HoF12 − (G2 − H0G1)K2;

Gc = F21 + F22Ho − HoF12Ho − HoF11

+(G2 − HoG1) (K1 + K2Ho) ;

Hc = K2; Kc = K1 + K2Ho.
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� The observer gain matrix Ho is chosen as

Ho = 103 ×







1.5928 3.7229
3.7229 1.5928

−1.9274 −3.3729
−3.3729 −1.9274






,

which leads to observer poles λ = −11, − 11, − 10, − 10.

� Also, the state feedback controller matrix is chosen as

Ksf =

[

1.2376 −0.0008 0.0201 0.0043 0.0238 0.0007
−0.0008 1.2376 0.0043 0.0201 0.0007 0.0238

]

,

which leads to the state feedback closed loop poles λ =
−2.1498, −0.9618, −0.6882, −0.0882±0.0368ı, −0.4102.
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� Then, the poles of the closed loop system corresponding to the
quantum plant and the controller are calculated to be
λ = −2.1498, − 0.0882± 0.0368ı, − 0.9618, − 0.4102, −
0.6882, − 11.0000, − 11.0000, − 10.0000, − 10.0000,
and thus this controller stabilizes the given quantum plant.

� Now, we wish to implement this controller as a coherent quantum
controller.

� This requires that the controller is physically realizable. However, the
above state space realization of the quantum controller does not
satisfy the canonical physical realizability conditions.

� We will apply the above result to determine if the controller transfer

function matrix Γc(s) = Hc (sI − Fc)
−1

Gc + Kc is physically
realizable.

� Indeed, we calculate Kc = Γc(∞) = I and

Γ∼
c (s)JΓc(s) = J,

and hence the controller transfer function matrix is (J, J)-unitary.
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� Also, the poles of the controller transfer function matrix are
calculated to be at s = −10.5301 ± 1.3545ı and
s = −10.5251 ± 1.3385ı.

� Hence, it follows that the conditions of the theorem are satisfied and
therefore, the controller transfer function matrix Γc(s) is physically
realizable and can be implemented as a quantum system.

� We can implement the controller transfer function as in
interconnection of optical devices using the algorithm in

H. Nurdin, “Synthesis of linear quantum stochastic systems via quantum
feedback networks,” IEEE Transactions on Automatic Control, vol. 55,
no. 4, pp. 1008 –1013, April 2010.
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Robust Stability of Nonlinear Quantum SystemsRobust Stability of Nonlinear Quantum Systems

� Most interesting quantum phenomena such as entanglement and
squeezing for continuous variable (infinite level) quantum systems
occur when we have a nonlinear quantum system rather than a
linear one.

� We would like to extend our existing linear quantum systems theory
to the nonlinear case.

� Also, the issue of robustness to nonlinear perturbations in the
dynamics is important in any linear feedback control system.

� We now consider the problem of robust stability for a quantum
system defined in terms of a triple (S,L,H) in which the quantum
system Hamiltonian is decomposed as H = H1 + H2 where H1
is a known nominal (quadratic) Hamiltonian and H2 is a
perturbation (non-quadratic) Hamiltonian, which is contained in a
specified set of Hamiltonians W .



CCC 2013 35

� Our solution to this problem is a quantum version of the small gain
theorem for quantum systems which are nominally linear but are
subject to sector bounded nonlinearities.

� This result can be applied to the stability analysis of perturbed
quantum linear systems.

� Alternatively, it can be applied to closed loop quantum systems
obtained when we apply a coherent quantum H∞ controller to a
linear quantum system subject to nonlinear sector bounded
perturbations.
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� Consider an open quantum system defined by parameters
(S,L,H) where H = H1 + H2.

� We let
H2 = f(ζ, ζ∗)

� Here ζ is a scalar operator on the underlying Hilbert space.
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� Also, we consider the sector bound condition

∂f(ζ, ζ∗)

∂ζ

∗ ∂f(ζ, ζ∗)

∂ζ
≤ 1

γ2
ζζ∗ + δ1

and the smoothness condition

∂2f(ζ, ζ∗)

∂ζ2

∗
∂2f(ζ, ζ∗)

∂ζ2
≤ δ2.
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� Representation of the sector bound condition:

∂f(ζ,ζ∗)
∂ζ

ζ
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� Then we define the set of allowable perturbations W as follows:

Definition.

W =











H2 = f(ζ, ζ∗) such that
∂f(ζ,ζ∗)

∂ζ

∗ ∂f(ζ,ζ∗)
∂ζ

≤ 1
γ2 ζζ∗ + δ1 and

∂2f(ζ,ζ∗)
∂ζ2

∂2f(ζ,ζ∗)
∂ζ2

∗
≤ δ2











.
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� Also as previously in the case of linear quantum systems, H1 is of
the form

H1 =
1

2

[

a† aT
]

M

[

a
a#

]

where M ∈ C
2n×2n is a Hermitian matrix of the form

M =

[

M1 M2

M#
2 M#

1

]

and M1 = M†
1 , M2 = MT

2 .

� In addition, we assume L is of the form

L =
[

N1 N2

]

[

a
a#

]

where N1 ∈ C
m×n and N2 ∈ C

m×n. Also, S = I .
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Definition. An uncertain open quantum system defined by (S,L,H)
where H = H1 + H2 with quadratic H1 as above, H2 ∈ W , and
linear L as above, is said to be robustly mean square stable if there
exist constants c1 > 0, c2 > 0 and c3 ≥ 0 such that for any H2 ∈ W ,

〈

[

a(t)
a(t)#

]† [
a(t)

a(t)#

]

〉

≤ c1e
−c2t

〈

[

a
a#

]† [
a

a#

]

〉

+ c3 ∀t ≥ 0.
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� We define

ζ = E1a + E2a
#

=
[

E1 E2

]

[

a
a#

]

= Ẽ

[

a
a#

]

where ζ is assumed to be a scalar operator.

� The following frequency domain small gain condition provides a
sufficient condition for robust mean square stability when H2 ∈ W :
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1. The matrix

F = −iJM − 1

2
JN †JN is Hurwitz;

2.
∥

∥

∥
Ẽ (sI − F )

−1
JẼ†

∥

∥

∥

∞
<

γ

2
.

Theorem. Consider an uncertain open quantum system defined by
(S,L,H) such that H = H1 + H2 where H1 is quadratic as above,
L is linear as above and H2 ∈ W . Furthermore, assume that the
above frequency domain small conditions are satisfied. Then the uncer-
tain quantum system is robustly mean square stable.
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A Josephson Junction in a Resonant Cavity SystemA Josephson Junction in a Resonant Cavity System
� A Josephson junction consists of a thin insulating material between

two superconducting layers as illustrated below:

SuperconductorSuperconductor I

Electromagnetic Resonant Cavity

Insulator
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� The following Hamiltonian can be obtained for this quantum system

H =
1

2

[

a† aT
]

M

[

a
a#

]

− µ cos(
a2 + a∗

2√
2

)

where a =

[

a1

a2

]

, M is a Hermitian matrix and µ > 0.

� This leads to the perturbation Hamiltonian

H2 = f(ζ, ζ∗) = −µ cos(
ζ + ζ∗√

2
)

where ζ = a2.

� The derivative of a cosine function is a sine function which is sector
bounded with γ = µ√

2
.
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� We assume that the cavity and Josephson modes are coupled to
fields corresponding to coupling operators of the form

L =

[√
κ1a1√
κ2a2

]

.

� We choose physically reasonable values for the parameters in this
system except for the parameter κ2 which we allow to vary.

� For various values of κ2 we form the transfer function

Gκ2
(s) = Ẽ (sI − F )

−1
JẼ† and calculate its H∞ norm.
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� A plot of ‖Gκ2
(s)‖∞ versus κ2 is shown below:

1 1.5 2 2.5 3 3.5 4

x 10
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2
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x 10

−13
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κ
2
(s

)‖
∞

κ2

γ
2
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� From this plot we can see that stability can be guaranteed for
κ2 > 2.2 × 1012.

� Hence, choosing a value of κ2 = 2.5× 1012, it follows that stability
of Josephson junction system can be guaranteed.

� Indeed, with this value of κ2, we calculate the matrix
F = −iJM − 1

2JN †JN and find its eigenvalues to be

−5.0000 × 1010 ± 3.3507 × 103i and
−1.2500 × 1012 ± 1.4842 × 103i which implies that the matrix
F is Hurwitz.

� Also, a magnitude Bode plot of the corresponding transfer function
Gκ2

(s) is shown below which implies that
‖Gκ1,κ2

(s)‖∞ = 5.5554 × 10−13 < γ/2 = 6.8209 × 10−13

and hence, we conclude that the quantum system is robustly mean
square stable.
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ConclusionsConclusions

� The control of linear quantum systems is an emerging field with
important applications in quantum optics.

� The theory of linear quantum systems has close connections to
standard linear systems theory but with the important distinction that
the variables of interest are non-commutative.

� Central to the theory of quantum linear systems is the notion of
physical realizability which characterizes when a linear system
model is really quantum.

� It is also possible to extend the theory to allow for nonlinear quantum
systems using classical ideas from robust control theory.

� The study of nonlinear quantum systems is needed to capture truly
quantum phenomenon such as entanglement, squeezing and
quantum superpositions.
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� We are also extending our theory to the theory of finite level
quantum systems (e.g. atoms) interacting with quantum fields:

L. A. D. Espinosa, Z. Miao, I. R. Petersen, V. Ugrinovskii, and M. R.
James, “On the preservation of commutation and anticommutation
relations of n-level quantum systems,” in Proceedings of the 2013
American Control Conference, Washington, DC, June 2013.

� In this case, the QSDEs are bilinear systems rather than linear
systems.

� All of these areas are rich with theoretical challenges which seem
very ameniable to the tools of control theory.


