Model-Based Optimization and Control of Subsurface Flow in Oil Reservoirs

Paul Van den Hof Eindhoven University of Technology, The Netherlands

with: Jan Dirk Jansen and Arnold Heemink, Delft Univ. Techn.

Plenary lecture, 32nd Chinese Control Conference, 26–28 July 2013, Xi'an, China

THE VALUE

Upstream oil industry

seismic imaging

reservoir modeling

geological modeling

Upstream oil industry characteristics

- Capital intensive: well: 1-100.10⁶ US\$, field: 0.1-10.10⁹ US\$
- Uncertainty: geology, oil price, limited data
- Stretched in time scales:
 - production operations: day weeks
 - field development years
 - reservoir management: 10s of years
- Slow in response
- Many disciplines involved: geology, geophysics, reservoir engineering, production, drilling
- Remote
- New technology: horizontal drilling, multi-laterals, time lapse seismics, smart fields

Oil Production

- Production from Oil Reservoirs
 - Porous rock with oil in pores
 - Geological structure heterogeneous
 - Very different rock properties within reservoir
 - 10¹ 10⁴ km² in size
 - 10³m 10⁴m underground
 - Difficult locations

Oil production mechanisms

- Primary recovery natural flow (depletion drive, 5-15% recovery)
- Secondary recovery injection of water or gas to maintain reservoir pressure and displace oil actively (water flooding, gas flooding, 20-70% recovery)
- Tertiary recovery injection of steam or chemicals (polymers, surfactants) to change the in-situ physical properties (e.g. viscosity, surface tension)
 (steam flooding, polymer flooding, 20-90% recovery)

Waterflooding

- Involves the injection of water through the use of injection wells
- Goal is to increase reservoir pressure and displace oil by water
- Production is terminated when ratio between produced oil and water is no longer economically viable

Waterflooding (WF)

Essentially a batch process

- Life time in the order of decades
- Potential to recover 20-70% of the oil

Limited in practice by lack of operational strategy

Reservoir characteristics

(Gijs van Essen et al., CAA 2006)

- 3D
- heterogenity of reservoir
- flow dynamics determined by geological structure (permeability)

Smart well with inflow control valves

• Smart wells allow control over (distributed) local value settings in injectors and producers, and local measurements.

The Objective

- Inputs: control valve settings of the wells (injectors and producers)
 - Smart wells: multiple (subsurface) valves
- Outputs: (fractional) flow rates and/or bottomhole pressures
 - Smart wells: multiple (subsurface) measurement devices

Objective: Economic operational strategy that optimizes performance (life cycle)

Contents

- Introduction
- Closed-loop reservoir management
- Current limitations and challenges
- Robust optimization
- Balancing long-term and short-term objectives (hierarchical)
- Parameter estimation
- Time-scale separation 2-level approach
- Control-relevant models
- Discussion

The models

Mass balance:

$$\nabla \cdot (\rho_i u_i) + \frac{\partial}{\partial t} (\phi \rho_i S_i) = 0 \qquad i = \{o, w\}$$

Momentum (Darcy's law):

$$u_i = -k \frac{k_{ri}}{\mu_i} \nabla p_i \qquad i = \{o, w\}$$

Variables: p_o, p_w, S_o, S_w

Saturations satisfy: $S_o + S_w = 1$

Simplifying assumptions, a.o.: $p_o = p_w$

After discretization in space (and time):

$$g(x_{k+1}, x_k, u_k, \theta) = 0 \qquad dim(x) \approx 10^4 - 10^6$$
$$y_k = h(x_k) \qquad \qquad y_k^T = [p_{well}^T q_{well,o}^T q_{well,w}^T]$$
$$x_k^T = [p_o^T S_w^T]$$

and θ typically the permeabilities in each grid block

- Models are large-scale
- Nonlinear
- Long simulation time
- Typically used off-line
- Actually a batch-type process

Net present value (NPV):

$$J_K = \sum_{k=1}^{K} \left[\frac{r_o \cdot q_{o,k}(y_k) - r_w \cdot q_{w,k}(y_k) - r_{inj} \cdot q_{inj,k}(u_k)}{(1+b)^{\frac{t_k}{\tau_t}}} \cdot \Delta t_k \right]$$

Optimization problem:

subject to
$$g(\mathbf{u}, \mathbf{x}) = 0, \quad x_0 = \overline{x}_0,$$

and $\mathbf{c}(\mathbf{x}, \mathbf{u}) \le 0, \quad \mathbf{d}(\mathbf{x}, \mathbf{u}) = 0$

`

Non-convex optimization, solved by gradient-based method: Adjoint-variables calculation through backward integration of the related (Hamiltonian based adjoint) equation. (feasible for systems of this size)

[Ramirez, 1987; Brouwer & Jansen, SPE J, 2004]

12-well example

- 3D reservoir
- 8 injection / 4 production wells
- Period of 10 years
- High-permeability channels
- 18.553 grid blocks
- Minimum rate of 0.1 stb/d
- Maximum rate of 400 stb/d
- No discount factor
- $r_o = 20 \ \text{/stb}, r_w = 3 \ \text{/stb} \text{ and } r_i = 1 \ \text{/stb}$
- Optimization of economic revenues (NPV)
- Model-based optimal control with a known model

(Gijs van Essen et al., CAA 2006)

Reactive versus optimal control

Reactive versus optimal control

- Moving from (batch-wise) open-loop optimization to on-line closed-loop control
 - State estimator
 - Optimized plant input through NMPC in receding/shrinking horizon
 - No trajectory following but dynamic RTO

But how about the model?

Obtaining a model

- First-principle models (geology) are highly uncertain
- Opportunities for identification are limited (nonlinear behaviour dependent on front-location, single batch process, experimental limitations)
- Option: estimate physical parameters (permeabilities) in first principles model; starting with initial guess

Several options for nonlinear state and parameter estimation:

Available from oceanographic domain: Ensemble Kalman filter (EnKF) (Evensen, 2006)

- Kalman type estimator, with analytical error propagation replaced by Monte Carlo approach (error cov. matrix determined by processing ensemble of model realizations)
- Ability to handle model uncertainty (in some sense)
- In reservoir engineering used for estimation of states and parameters (history matching)

Note: # parameters = # states

Ensemble Kalman Filter

- As prior information an ensemble of initial states $\{\hat{x}_{k|k}\}$ is generated from a given distribution
- By simulating every ensemble member, corresponding ensembles {\$\hat{x}_{k+1|k}\$}\$ and {\$\hat{y}_{k+1|k}\$}\$ are generated, and stored as columns of matrices \$\hat{X}\$ and \$\hat{Y}\$ respectively
- The measurement update of a EKF is applied to every element of the ensemble, where the covariance matrices are replaced by sampled estimates on the basis of \hat{X} and \hat{Y} .
- The update becomes: $\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1}[y_{k+1} \hat{y}_{k+1|k}]$, where K_{k+1} is given by:

$$K_{k+1} = \hat{X}\hat{Y}^T \cdot [\hat{Y}\hat{Y}^T + R]^{-1} \quad (\mathsf{BLUE})$$

• The result is a new ensemble $\{\hat{x}_{k+1|k+1}\}$

Closed-loop simulation example

 3 study cases: reactive control, optimal open-loop control based on perfect ('reality') model, optimal closed-loop control

Closed-loop simulation example

Parameter updates at different times

Relatively poor looking models may work quite well!

- Model uncertainty
- Model complexity
- Measurement data
- Nonlinearity
- Process configuration

uncertain geology geological vs control models limited knowledge dynamics change over lifetime (dynamic) well placement

Contents

- Introduction
- Closed-loop reservoir management
- Current limitations and challenges
- Robust optimization
- Balancing long-term and short-term objectives (hierarchical)
- Parameter estimation
- Time-scale separation 2-level approach
- Control-relevant models
- Discussion

Robust optimization

• Reservoir models / permeability structure are highly uncertain

• Use 100 realizations in a max-mean approach:

$$\max_{\mathbf{u}} \left(\frac{\mathbf{1}}{M} \sum_{i=1}^{M} J_K(\mathbf{u}, \theta_i) \right)$$

[Gijs van Essen et al., Proc. CCA, 2006]

Robust optimization example

- 3 control strategies applied to set of 100 realizations:
- reactive control, nominal optimization (100 strategies), robust optimization

[Van Essen et al, SPE J, 2009]

hnische Universiteit dhoven iversity of Technology

(each strategy is applied to 100 "systems")

Page 29

Hierarchical optimization

- Focussing on life-time (long-term) NPV has limitations:
 - Compromise in short-term production
 - Erratic operational strategy

University of Technology

Page 30

Hierarchical optimization

Distinguish two different objective functions:

$$\mathbf{u}^* = \arg \max_{\mathbf{u}} J_K^{(1)}(\mathbf{u}, x_0)$$

with $J_K^{(1)}$ the long-term NPV

Additionally optimize for short-term production:

$$\tilde{\mathbf{u}}^* = \arg \max_{\mathbf{u}} J_K^{(2)}(\mathbf{u}, x_0)$$

such that $J_K^{(1)}(\mathbf{u}, x_0) \ge J_K^{(1)}(\mathbf{u}^*, x_0) - \varepsilon$

with
$$J_K^{(2)}$$
 the short-term NPV

Utilize degrees of freedom in the input to optimize short-term production

[Van Essen et al, SPE J, 2011]

Objective function with ridges

Hierarchical optimization example

Optimization of secondary objective function - constrained to null-space of primary objective

Optimization of secondary objective function unconstrained

Hierarchical optimization example

Hierarchical optimization example

Long-term optimized

Short-term constrained optimized

Contents

- Introduction
- Closed-loop Reservoir Management
- Current limitations and challenges
- Robust Optimization
- Balancing long-term and short-term objectives (hierarchical)
- Parameter estimation
- Time-scale separation 2-level approach
- Control-relevant models
- Discussion

Typical approach in geological models:

- Use EnKF to estimate states
- Consider parameters (grid-block permeabilities) as extended states
- Estimate parameters and states, based on an initial ensemble
 - Data not sufficiently informative to estimate all parameters
 - Parameters are updated only in directions where data contains information

Result and reliability is crucially dependent on initial state/model

Parameter Estimation

Lack of identifiability: Hessian of V is poorly conditioned

• The Bayesian estimate becomes heavily determined by priors

Parametrization can be reduced by projecting unto the (locally) identifiable subspace [Van Doren et al, IFAC 2008,2011]

Several alternatives for reduction of parameter space [Durlovsky et al., 1996; Zhang et al. 2008; Van Doren, 2010; Jafarpour & McLaughlin, 2008,2009; Tavakoli & Reynolds, 2010] Capturing long-term behaviour (nonlinear) is the challenge

Testing local identifiability in model estimation

Consider quadratic identification criterion based on prediction errors

$$V(\boldsymbol{\theta}) := \frac{1}{2} \boldsymbol{\epsilon}(\boldsymbol{\theta})^T \mathbf{P}_v^{-1} \boldsymbol{\epsilon}(\boldsymbol{\theta}), \quad \boldsymbol{\epsilon}(\boldsymbol{\theta}) = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{h}(\boldsymbol{\theta}, \mathbf{u}; \mathbf{x}_0),$$

• Hessian given by

$$\frac{\partial^2 V(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^2} = \frac{\partial \hat{\mathbf{y}}^T}{\partial \boldsymbol{\theta}} \mathbf{P}_v^{-1} \left(\frac{\partial \hat{\mathbf{y}}^T}{\partial \boldsymbol{\theta}}\right)^T + \mathbf{S}$$

- Local identifiability test in $\hat{\theta} = \arg \min V(\theta)$: Hessian > 0
- With quadratic approximation of cost function around $\hat{\theta}$: Hessian given by $\partial \hat{\mathbf{y}}^T = (\partial \hat{\mathbf{y}}^T)^T$

$$rac{\partial \hat{\mathbf{y}}^T}{\partial oldsymbol{ heta}} \mathbf{P}_v^{-1} \left(rac{\partial \hat{\mathbf{y}}^T}{\partial oldsymbol{ heta}}
ight)^T$$

Testing local identifiability in identification

Rank test on Hessian through SVD

$$\frac{\partial \hat{\mathbf{y}}^T}{\partial \boldsymbol{\theta}} \mathbf{P}_v^{-\frac{1}{2}} \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix}$$

- If $\Sigma_2 = 0$ then lack of local identifiability
- SVD can be used to reparameterize the model structure through $\theta = U_1 \rho$, $\dim(\rho) << \dim(\theta)$

in order to achieve local identifiability in ρ

- Columns of \mathbf{U}_1 are basis functions of the identifiable parameter space

$$\frac{\partial \hat{\mathbf{y}}^T}{\partial \boldsymbol{\theta}} \mathbf{P}_v^{-\frac{1}{2}} \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix}$$

- What if $\Sigma_2 \neq 0$ but contains (many) small singular values ? No lack of identifiability, but possibly very poor variance properties
- Identifiability mostly considered in a yes/no setting: qualitative rather than quantitative [Bellman and Åström (1970), Grewal and Glover (1976)]
- Approach: *quantitative* analysis of appropriate parameter space, maintaining physical parameter interpretation

Asymptotic variance analysis: $\operatorname{cov}(\hat{\theta}) = J^{-1} = \left(\mathbb{E} \left[\left. \frac{\partial^2 V(\theta)}{\partial \theta^2} \right|_{\hat{\theta}} \right] \right)^{-1}$

with J = Fisher Information Matrix.

• Sample estimate of parameter variance, on the basis of $V(\boldsymbol{\theta})$:

$$cov(\hat{\boldsymbol{\theta}}) = \begin{cases} \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_1^{-2} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_2^{-2} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} & \text{for } \boldsymbol{\Sigma}_2 > 0 \\ \infty & \text{for } \boldsymbol{\Sigma}_2 = 0 \end{cases}$$

 $cov(\boldsymbol{U_1}\boldsymbol{\hat{\rho}}) = \mathbf{U_1}\boldsymbol{\Sigma}_1^{-2}\mathbf{U_1}^T$

 $cov(\hat{\boldsymbol{ heta}}) > cov(\boldsymbol{U_1}\hat{\boldsymbol{
ho}}) \qquad ext{if } \boldsymbol{\Sigma}_2 > 0$

$$cov(\hat{\boldsymbol{ heta}}) > cov(\boldsymbol{U_1}\hat{\boldsymbol{
ho}}) \qquad ext{if } \boldsymbol{\Sigma}_2 > 0$$

- Discarding singular values that are small, reduces the variance of the resulting parameter estimate
- Particularly important in situations of (very) large numbers of small s.v.'s
- Model structure approximation (local)
- Quantified notion of identifiability related to parameter variance

Approximating the identifiable parameter space

• Interpretation:

Remove the parameter directions that are poorly identifiable (have large variance)

• This is different from removing the (separate) parameters for which the value 0 lies within the confidence bound [Hjalmarsson, 2005]

Simple reservoir example

2D two-phase example (top view)

21 x 21 grid block permeabilities5 wells; 3 permeability strokes

1 injector (centre)4 producers (corners)

5 inputs: 1 injector flow-rate, and 4 bottom hole pressures 8 outputs: producer flow rates (water and oil)

Using the reduced parameter space –iteratively- in estimation:

Observation:

Only grid block permeabilites around well are identifiable.

Reasoning

- Optimization on the basis of nonlinear reservoir models suffers from model uncertanties
- Optimization on the basis of identified (linear) models suffers from a lack of predictive capabilities beyond the –localmeasurement interval

Two-level approach

Example: 3D reservoir

Example: 3D reservoir

3 production strategies

1. Reactive control

- Maximal injection rates/minimal bottom-hole pressures
- Shut-in wells when watercut >0.90
- 2. Open-loop life-cycle optimization
 - Optimize inputs based on reservoir model
 - Apply to 'truth' model
- 3. Combined dynamic optimization & MPC control
 - Life-cycle optimization on reservoir model to obtain references
 - Excitation on 'truth' model to identify low-order model
 - MPC on 'truth' model to track references

Low-order linear modeling (system id)

Example: Identification Experiment

Input excitation for identification

Example: Results

	NPV	%
Case 1: Reactive Control	550 M\$	-
Case 2: Open-loop Optimization	558 M\$	+1.5%
Case 3: Two-level Control	594 M\$	+8.0%
Maximum based on reservoir model	596 M\$	+8.4%

[Van Essen et al., CDC 2010]

Example: Results

Production rates at the 4 producers

Optimized model output trajDesigned input applied to plantMPC tracking controlled plant

Control relevant models

• What are the important physical phenomena in the reservoir that are essential for the optimized operational strategy?

 There is a serious gap between the reservoir models with geological relevance, and goal-oriented models that are fit for control/optimization.

Summary

- Challenging problems in model-based operation on the basis of highly uncertain information
- Systems and control tools play an important role
- Size of the prize: field tests
- Key elements:
 - Model-based optimization under physical constraints and geological uncertainties
 - Appropriate merging of physical and measured data in loworder reliable and goal-oriented models
 - Capturing the essential non-linear behaviour of reservoirs
 - Challenging parametrization issues, in relation to control-relevance and identifiability (control-relevant geological models?)
 - Learning the optimal strategy in one shot (batch)

The Team:

Paul Van den Hof

Gijs van Essen

Jan Dirk Jansen

Okko Bosgra Malgorzata Kaleta

Sippe Douma

Jorn Van Doren

Remus Hanea

Arnold Heemink

Mariya Krymskaya

Ali Vakili

Further reading

- J.D. Jansen, O.H. Bosgra and P.M.J. Van den Hof (2008). Journal of Process Control, 18 (9), pp. 846-855.
- P.M.J. Van den Hof, J.D. Jansen and A.W. Heemink (2012). Plenary paper in: *Proc. 2012 IFAC workshop on Automatic Control in Offshore Oil and Gas Production,* NTNU, Norway, pp. 189-200. (IFAC Papers-on-Line)
- Several control-related papers and thesisses available at: <u>www.dcsc.tudelft.nl/~pvandenhof/publications.htm</u> or through: p.m.j.vandenhof@tue.nl

Thank you for your attention

Model-Based Optimization and Control of Subsurface Flow in Oil Reservoirs

Paul Van den Hof with Jan Dirk Jansen, Arnold Heemink

Plenary lecture, 32nd Chinese Control Conference, 26-28 July 2013, Xi'an, China

BR

THE VALUE

ISAPP