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Upstream oil industry characteristics

• Capital intensive: well: 1-100·106 US$, field: 0.1-10·109 US$
• Uncertainty: geology, oil price, limited data
• Stretched in time scales:

• production operations: day – weeks
• field development – years
• reservoir management: 10s of years

• Slow in response
• Many disciplines involved: geology, geophysics, reservoir  

engineering, production, drilling
• Remote
• New technology: horizontal drilling, multi-laterals, time lapse 

seismics, smart fields ….
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Oil Production

• Production from Oil Reservoirs

• Porous rock with oil in pores
• Geological structure heterogeneous

• Very different rock properties within reservoir

• 101 – 104 km2 in size
• 103m – 104m underground
• Difficult locations
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Oil production mechanisms

• Primary recovery – natural flow
(depletion drive, 5-15% recovery)

• Secondary recovery – injection of water or gas to maintain 
reservoir pressure and displace oil actively
(water flooding, gas flooding, 20-70% recovery)

• Tertiary recovery – injection of steam or chemicals (polymers, 
surfactants) to change the in-situ physical properties (e.g. 
viscosity, surface tension)
(steam flooding, polymer flooding, 20-90% recovery)
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Waterflooding

• Involves the injection of water through the use of injection wells
• Goal is to increase reservoir pressure and displace oil by water
• Production is terminated when ratio between produced oil and 

water is no longer economically viable

Introduction – The Problem Setting

oil-water front fingering by-passed oil water breakthrough

time
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Waterflooding (WF) 

Essentially a batch process
• Life time in the order of decades
• Potential to recover 20-70% of the oil

Limited in practice by lack of operational strategy

Waterflooding
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Reservoir characteristics

• 3D
• heterogenity of reservoir
• flow dynamics determined by 

geological structure (permeability)

(Gijs van Essen et al., CAA 2006)
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Smart well with inflow control valves

• Smart wells allow control over (distributed) local valve settings in
injectors and producers, and local measurements.
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The Objective

• Inputs: control valve settings of the wells (injectors and producers)
• Smart wells: multiple (subsurface) valves

• Outputs: (fractional) flow rates and/or bottomhole pressures
• Smart wells: multiple (subsurface) measurement devices 

valve settings well 1

System 

(oil reservoir
& wells)

Input (u) Output (y)

valve settings well Nw

valve settings well 2

oil/water flow rate 
producer 1

Disturbances Noise

bottom-hole 
pressure producer 1

oil/water flow rate 
producer Np

bottom-hole 
pressure producer Np

Objective: Economic operational strategy that optimizes 
performance (life cycle) 
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• Introduction 
• Closed-loop reservoir management
• Current limitations and challenges

• Robust optimization
• Balancing long-term and short-term objectives (hierarchical)
• Parameter estimation
• Time-scale separation – 2-level approach 
• Control-relevant models

• Discussion

Contents
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Mass balance:

Momentum (Darcy’s law):

Saturations satisfy:

Simplifying assumptions, a.o.: 

Variables:
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Discretization in space and time

After discretization in space (and time):

and     typically the permeabilities in each grid block

• Models are large-scale
• Nonlinear
• Long simulation time
• Typically used off-line
• Actually a batch-type process



Page 14

Model-based optimization

Net present value (NPV):

Model-based Life-Cycle Optimization

Optimization problem:

Non-convex optimization, solved by gradient-based method:
Adjoint-variables calculation through backward integration of
the related (Hamiltonian based adjoint) equation.
(feasible for systems of this size) [Ramirez, 1987; Brouwer & 

Jansen, SPE J, 2004]
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12-well example

• 3D reservoir
• 8 injection / 4 production wells
• Period of 10 years 
• High-permeability channels
• 18.553 grid blocks
• Minimum rate of 0.1 stb/d
• Maximum rate of 400 stb/d
• No discount factor
• ro = 20 $/stb, rw = 3 $/stb and ri = 1 $/stb
• Optimization of economic revenues (NPV)

(Gijs van Essen et al., 
CAA 2006)

• Model-based optimal control with a known model
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Reactive versus optimal control
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Reactive versus optimal control
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Closed-loop Reservoir Management

• Moving from (batch-wise) open-loop optimization to 
on-line closed-loop control

• State estimator 
• Optimized plant input through NMPC in 

receding/shrinking horizon
• No trajectory following but dynamic RTO

But how about the model?
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Closed-loop Reservoir Management

• First-principle models (geology) are highly uncertain

• Opportunities for identification are limited 
(nonlinear behaviour dependent on front-location, single 
batch process, experimental limitations)

• Option: estimate physical parameters (permeabilities) in 
first principles model; starting with initial guess

Obtaining a model
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Closed-loop Reservoir Management

Several options for nonlinear state and parameter 
estimation:

Available from oceanographic domain:
Ensemble Kalman filter (EnKF) (Evensen, 2006)

• Kalman type estimator, with analytical error propagation
replaced by Monte Carlo approach
(error cov. matrix determined by processing ensemble of
model realizations)

• Ability to handle model uncertainty (in some sense)
• In reservoir engineering used for estimation of states and

parameters (history matching)

Note: # parameters = # states
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Ensemble Kalman Filter

• As prior information an ensemble of initial states is 
generated from a given distribution

• By simulating every ensemble member, corresponding ensembles 
and are generated, and stored as columns of 

matrices    and    respectively

• The measurement update of a EKF is applied to every element of 
the ensemble, where the covariance matrices are replaced by 
sampled estimates on the basis of    and    .

• The update becomes: ,
where          is given by: 

• The result is a new ensemble

(BLUE)
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Closed-loop Reservoir Management
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Closed-loop simulation example

• 3 study cases: reactive control, optimal open-loop control based 
on perfect (‘reality’) model, optimal closed-loop control

+8.3%

+8.8%
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Closed-loop simulation example

Parameter updates at different times
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Closed-loop reservoir management

Relatively poor looking models may work quite well!

plant model
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• Model uncertainty uncertain geology

• Model complexity geological vs control models

• Measurement data limited knowledge

• Nonlinearity dynamics change over lifetime

• Process configuration (dynamic) well placement

Limitations and challenges
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• Use 100 realizations in a max-mean approach: 

Robust optimization 

[Gijs van Essen et al., Proc. CCA, 2006]

• Reservoir models / permeability structure are highly uncertain

model realizations
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Robust optimization example

3 control strategies applied to set of 100 realizations:
• reactive control, nominal optimization (100 strategies), 

robust optimization

[Van Essen et al, SPE J, 2009]

(each strategy is applied to 100 “systems”)
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Hierarchical optimization

• Focussing on life-time (long-term) NPV has 
limitations:

• Compromise in short-term production
• Erratic operational strategy

[Van Essen et al, SPE J, 2009]
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Hierarchical optimization

• Distinguish two different objective functions:

with        the long-term NPV

[Van Essen et al, SPE J, 2011]

• Additionally optimize for short-term production:

such that

with        the short-term NPV

Utilize degrees of freedom in the input to optimize 
short-term production
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Objective function with ridges
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Hierarchical optimization example

Optimization of secondary 
objective function - constrained 

to null-space of primary objective

Optimization of 
secondary objective function -

unconstrained
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Hierarchical optimization example

Short-term 
NPV long term NPV

short-term NPV under
constraints on long-term NPV

[Van Essen et al, SPE J, 2011]
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Hierarchical optimization example

Long-term optimized

Short-term constrained optimized
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Typical approach in geological models:

Parameter Estimation

• Use EnKF to estimate states
• Consider parameters (grid-block permeabilities) as extended
states

• Estimate parameters and states, based on an initial ensemble

• Data not sufficiently informative to estimate all 
parameters
• Parameters are updated only in directions where data 
contains information

Result and reliability is crucially dependent on initial 
state/model
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Bayesian approach:

Parameter Estimation

Lack of identifiability: Hessian of V is poorly conditioned 

• The Bayesian estimate becomes heavily determined by priors

Parametrization can be reduced by projecting unto the 
(locally) identifiable subspace  

Several alternatives for reduction of parameter space

[Van Doren et al, IFAC 2008,2011]

[Durlovsky et al., 1996; Zhang et al. 2008; Van Doren, 2010; Jafarpour & McLaughlin, 2008,2009; Tavakoli & 
Reynolds, 2010]

Capturing long-term behaviour (nonlinear) is the challenge

data
priors
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Testing local identifiability in model estimation

• Local identifiability test in                          :  Hessian > 0

• Consider quadratic identification criterion based on prediction 
errors                         

• Hessian given by 

• With quadratic approximation of cost function around   :
Hessian given by 
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• SVD can be used to reparameterize the model structure through

Testing local identifiability in identification

• Rank test on Hessian through SVD

• If             then lack of local identifiability

in order to achieve local identifiability in  

• Columns of      are basis functions of the identifiable parameter 
space
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No lack of identifiability, but possibly very poor variance properties

Testing local identifiability in identification

• What if             but contains (many) small singular values ?

• Identifiability mostly considered in a yes/no setting: qualitative 
rather than quantitative [Bellman and Åström (1970), Grewal and Glover (1976)]

• Approach: quantitative analysis of appropriate parameter space,
maintaining physical parameter interpretation
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Approximating the identifiable parameter space

Asymptotic variance analysis:

with  = Fisher Information Matrix.

• Sample estimate of parameter variance, on the basis of        :
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• Discarding singular values that are small, reduces the variance of 
the resulting parameter estimate

• Particularly important in situations of (very) large numbers of 
small s.v.’s

• Model structure approximation (local)

• Quantified notion of identifiability – related to parameter variance

Approximating the identifiable parameter space
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• Interpretation:
Remove the parameter directions that are poorly identifiable (have 
large variance) 

Approximating the identifiable parameter space

• This is different from removing the (separate) parameters for which 
the value 0 lies within the confidence bound [Hjalmarsson, 2005]
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Simple reservoir example

2D two-phase example

21 x 21 grid block permeabilities
5 wells; 3 permeability strokes

(top view)

1 injector (centre)
4 producers (corners)

5 inputs: 1 injector flow-rate, and 4 bottom hole pressures
8 outputs: producer flow rates (water and oil)

[Van Doren, 2010]
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Simple reservoir example

Using the reduced parameter space –iteratively- in estimation: 

exact field initial estimate
(local point)  

final estimate

Observation:
Only grid block permeabilites around well are identifiable.
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Reasoning

Time-scale separation – Two-level approach

• Optimization on the basis of nonlinear reservoir models
suffers from model uncertanties

• Optimization on the basis of identified (linear) models suffers 
from a lack of predictive capabilities beyond the –local-
measurement interval

Combine the two
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Two-level approach
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Example: 3D reservoir

local grid 
refinement

modeling error 
in main flow 

direction

‘truth’ model
time step size: 0.25 days

8 injection wells, 4 production wells

reservoir model
time step size: 30 days

Modeling error due to geological uncertainty 
& undermodeling of fast, local dynamics
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Example: 3D reservoir

3 production strategies

1. Reactive control
• Maximal injection rates/minimal bottom-hole pressures
• Shut-in wells when watercut >0.90 

2. Open-loop life-cycle optimization
• Optimize inputs based on reservoir model
• Apply to ‘truth’ model

3. Combined dynamic optimization & MPC control
• Life-cycle optimization on reservoir model to obtain references
• Excitation on ‘truth’ model to identify low-order model
• MPC on ‘truth’ model to track references
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Low-order linear modeling (system id)

Persistently 
exciting inputs

=
Injection rates 

&
Producer BHP’s

Virtual 
asset

System 
Identification

identified 
model

Liquid 
production flow 

rates
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Example: Identification Experiment

sub-space
identification

Input excitation for 
identification

Simulation fit of 8th

order identified model
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Example: Results

NPV %

Case 1: Reactive Control 550 M$ -

Case 2: Open-loop Optimization 558 M$ +1.5%

Case 3: Two-level Control 594 M$ +8.0%

Maximum based on reservoir model 596 M$ +8.4%

[Van Essen et al., CDC 2010]
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Example: Results

Optimized model output traj

Designed input applied to plant

MPC tracking controlled plant

Production rates at the 4 producers
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Control relevant models

• What are the important physical phenomena in the reservoir that 
are essential for the optimized operational strategy?

• There is a serious gap between the reservoir models with 
geological relevance, and goal-oriented models that are fit for 
control/optimization. 
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Summary
• Challenging problems in model-based operation on the basis of 

highly uncertain information
• Systems and control tools play an important role
• Size of the prize: …. field tests

• Key elements:
• Model-based optimization under physical constraints and 

geological uncertainties
• Appropriate merging of physical and measured data in low-

order reliable and goal-oriented models
• Capturing the essential non-linear behaviour of reservoirs
• Challenging parametrization issues, in relation to 

control-relevance and identifiability 
(control-relevant geological models?)

• Learning the optimal strategy in one shot (batch)
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Further reading

• J.D. Jansen, O.H. Bosgra and P.M.J. Van den Hof (2008). 
Journal of Process Control, 18 (9), pp. 846-855. 

• P.M.J. Van den Hof, J.D. Jansen and A.W. Heemink (2012).
Plenary paper in:
Proc. 2012 IFAC workshop on Automatic Control in Offshore 
Oil and Gas Production, NTNU, Norway, pp. 189-200.
(IFAC Papers-on-Line)

• Several control-related papers and thesisses available at:
www.dcsc.tudelft.nl/~pvandenhof/publications.htm
or through: p.m.j.vandenhof@tue.nl 

http://www.dcsc.tudelft.nl/~pvandenhof/publications.htm
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