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Abstract: This paper considers the distributed robust consensus problem of multi-agent systems with nominal linear
dynamics but subject to different matching uncertainties. Due to the existence of nonidentical uncertainties, the multi-
agent systems discussed in this paper are essentially heterogeneous. A distributed continuous static consensus protocol
based on the relative state information is first designed, under which the consensus error is uniformly ultimately bounded
and exponentially converges to a small adjustable residual set. A fully distributed adaptive consensus protocol is then
designed, which, contrary to the static protocol, relies on neither the eigenvalues of the Laplacian matrix nor the upper
bounds of the uncertainties. A sufficient condition for the existence of the proposed protocols is that each agent is
stabilizable.
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1 Introduction

Cooperative control of a network of autonomous agents has
been an emerging research direction and attracted a lot of
attention from many scientific communities, for its poten-
tial applications in broad areas including spacecraft forma-
tion flying, sensor networks, and cooperative surveillance
[1]. In the area of cooperative control, consensus is an im-
portant and fundamental problem, which means to develop
distributed control policies using only local information to
ensure that the agents reach an agreement on certain quan-
tities of interest.
Two pioneering works on consensus are [2] and [3]. A the-
oretical explanation is provided in [2] for the alignment
behavior observed in the Vicsek model [4] and a general
framework of the consensus problem for networks of in-
tegrators is proposed in [3]. Since then, the consensus
problem has been extensively studied by various schol-
ars from different perspectives; see [5, 6, 7, 8, 9] and
references therein. Existing consensus algorithms can be
roughly categorized into two classes, namely, consensus
without a leader (i.e., leaderless consensus) and consen-
sus with a leader. The latter is also called leader-follower
consensus or distributed tracking. In [5], a sufficient con-
dition is derived to achieve consensus for multi-agent sys-
tems with jointly connected communication graphs. The
authors in [6] design a distributed neighbor-based estima-
tor to track an active leader. Distributed tracking algo-
rithms are proposed in [10] and [11] for a network of
agents with first-order dynamics. Consensus of networks
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of double- and high-order integrators is studied in [12, 13].
The consensus problem of multi-agent systems with gen-
eral discrete- and continuous-time linear dynamics is stud-
ied in [7, 8, 9, 14, 15, 16]. It is worth noting that the de-
sign of the consensus protocols in [7, 8, 15, 16] requires
the knowledge of the eigenvalues of the Laplacian matrix
of the communication graph, which is actually global in-
formation. To overcome this limitation, distributed adap-
tive consensus protocols are proposed in [17, 18]. For the
case where there exists a leader with possibly nonzero con-
trol input, distributed controllers are proposed in [19, 18]
to solve the leader-follower consensus problem. A com-
mon assumption in [7, 8, 9, 14, 15, 16, 19, 18] is that the
dynamics of the agents are identical and precisely known,
which might be restrictive and not practical in many cir-
cumstances. In practical applications, the agents may be
subject to certain parameter uncertainties or unknown ex-
ternal disturbances.

This paper considers the distributed robust consensus prob-
lem of multi-agent systems with identical nominal linear
dynamics but subject to different matching uncertainties.
A typical example belonging to this scenario is a network
of mass-spring systems with different masses or unknown
spring constants. Due to the existence of the nonidenti-
cal uncertainties which may be time-varying, nonlinear and
unknown, the multi-agent systems discussed in this paper
are essentially heterogeneous. The heterogeneous multi-
agent systems in this paper contain the homogeneous lin-
ear multi-agent systems studied in [7, 8, 9, 14, 15, 16] as a
special case where the uncertainties do not exist. Note that
because of the existence of the uncertainties, the consensus
problem in this case becomes quite challenging to solve



and the consensus algorithms given in [7, 8, 9, 14, 15, 16]
are not applicable any more.
In this paper, we present a systematic procedure to address
the distributed robust consensus problem of multi-agent
systems with matching uncertainties. A distributed contin-
uous static consensus protocol based on the relative states
of neighboring agents is designed, under which the con-
sensus error is uniformly ultimately bounded and exponen-
tially converges to a small residual set. Note that the design
of this protocol relies on the eigenvalues of the Laplacian
matrix and the upper bounds of the matching uncertain-
ties. In order to remove these requirements, a fully dis-
tributed adaptive protocol is further designed, under which
the residual set of the consensus error is also given. One
desirable feature is that for both the static and adaptive pro-
tocols, the residual sets of the consensus error can be made
to be reasonably small by properly selecting the design pa-
rameters of the protocols. It is pointed out that a sufficient
condition of the existence of the proposed protocols is that
each agent is stabilizable.
2 Problem Statement

In this paper, we consider a network of N autonomous
agents with identical nominal linear dynamics but subject
to heterogeneous uncertainties. The dynamics of the i-th
agent are described by

ẋi = Axi +B[ui + fi(xi, t)], i = 1, · · · , N, (1)

where xi ∈ Rn is the state, ui ∈ Rp is the control in-
put, A and B are constant known matrices with compatible
dimensions, and fi(xi, t) ∈ Rn represents the lumped un-
certainty associated with the i-th agent, which is supposed
to satisfy the following assumption.
Assumption 1. There exist continuous scalar valued func-
tions ρi(xi, t), i = 1, · · · , N , such that ‖fi(xi, t)‖ ≤
ρi(xi, t), i = 1, · · · , N , for all t ≥ 0 and xi ∈ Rn.
The communication topology among the agents is repre-
sented by an undirected graph G = (V, E), where V =
{1, · · · , N} is the set of nodes (i.e., agents), and E ⊂ V×V
is the set of edges (i.e., communication links). An edge
(i, j) (i 6= j) means that agents i and j can obtain infor-
mation from each other. A path between distinct nodes
i1 and il is a sequence of edges of the form (ik, ik+1),
k = 1, · · · , l−1. An undirected graph is connected if there
exists a path between every pair of distinct nodes, otherwise
is disconnected.
The objective of this section is to solve the consensus prob-
lem for the agents in (1), i.e., to design distributed con-
sensus protocols such that limt→∞ ‖xi(t) − xj(t)‖ = 0,
∀ i, j = 1, · · · , N .
3 Distributed Static Consensus Protocol

Based on the relative states of neighboring agents, the fol-
lowing distributed static consensus protocol is proposed:

ui = cK

N∑
j=0

aij(xi − xj) + ρi(xi, t)

× g(K

N∑
j=0

aij(xi − xj)), i = 1, · · · , N,

(2)

where c > 0 is the constant coupling gain, K ∈ Rp×n is
the feedback gain matrix, aij is the (i, j)-th entry of the
adjacency matrix associated with G, defined as aii = 0,
aij = aji = 1 if (j, i) ∈ E and aij = aji = 0 otherwise,
and the nonlinear function g(·) is defined as follows: for
w ∈ Rn,

g(w) =

{
w
‖w‖ , if ρi(xi, t)‖w‖ > κ
w
κ , if ρi(xi, t)‖w‖ ≤ κ

, (3)

where κ is a small positive value.
Let x = [xT1 , · · · , xTN ]T and ρ = diag(ρ1, · · · , ρN ). Using
(2) for (1), we can obtain the closed-loop network dynam-
ics as

ẋ = (IN ⊗A+ cL ⊗BK)x+ (IN ⊗B)F (x, t)

+ (ρ⊗B)G(x),
(4)

where L denotes the Laplacian matrix of G, defined by
Lii =

∑N
j=1,j 6=i aij and Lij = −aij for i 6= j, and

F (x, t) ,

 f1(x1, t)
...

fN (xN , t)

 , G(x) ,


g(K

∑N
j=1 L1jxj)

...
g(K

∑N
j=1 LNjxj)

 .
(5)

Regarding the algebraic properties of L, we have
Lemma 1 [5]. (i) Zero is a simple eigenvalue of L with
1 as an eigenvector and all the other eigenvalues are posi-
tive if and only if G is connected; (ii) The smallest nonzero
eigenvalue λ2 of L satisfies λ2 = min

x 6=0,1T x=0

xTLx
xT x

.

Let ξ = (M ⊗ In)x, where M = IN − 1
N 11T , and

ξ = [ξT1 , · · · , ξTN ]T . It is easy to see that 0 is a simple
eigenvalue of M with 1 as a corresponding right eigenvec-
tor and 1 is the other eigenvalue with multiplicity N − 1.
Then, it follows that ξ = 0 if and only if x1 = · · · = xN .
Therefore, the consensus problem under the protocol (2) is
solved if and only if ξ asymptotically converges to zero.
Hereafter, we refer to ξ as the consensus error. By noting
that LM = L, it is not difficult to obtain from (4) that the
consensus error ξ satisfies

ξ̇ = (IN ⊗A+ cL ⊗BK)ξ + (M ⊗B)F (x, t)

+ (Mρ⊗B)G(ξ).
(6)

The following result provides a sufficient condition to de-
sign the consensus protocol (2).
Theorem 1. Suppose that the communication graph G is
undirected and connected and Assumption 1 holds. The
parameters in the distributed protocol (2) are designed as
c ≥ 1

λ2
and K = −BTP−1, where λ2 is the smallest

nonzero eigenvalue of L and P > 0 is a solution to the
following linear matrix inequality (LMI):

AP + PAT − 2BBT < 0, (7)

Then, the consensus error ξ of (6) is uniformly ultimately
bounded and exponentially converges to the residual set

D1 , {ξ : ‖ξ‖2 ≤ 2λmax(P )Nκ

αλ2
}, (8)



with a rate faster than exp(−αt), where

α = −λmax(AP + PAT − 2BBT )/λmax(P ). (9)

Proof. Consider the following Lyapunov function candi-
date:

V1 =
1

2
ξT (L ⊗ P−1)ξ. (10)

By the definition of ξ, it is easy to see that (1T ⊗ I)ξ = 0.
For a connected graph G, it then follows from Lemma 1
that

V1(ξ) ≥ 1

2
λ2ξ

T (IN ⊗ P−1)ξ ≥ λ2

2λmax(P )
‖ξ‖2. (11)

The time derivative of V1 along the trajectory of (4) is given
by

V̇1 = ξT (L ⊗ P−1)ξ̇

= ξT [(L ⊗ P−1A+ cL2 ⊗ P−1BK)ξ

+ (L ⊗ P−1B)F (x, t) + (Lρ⊗ P−1B)G(ξ)].
(12)

By using Assumption 2, we can obtain that

ξT (L ⊗ P−1B)F (x, t) =

N∑
i=1

N∑
j=1

LijξTj P−1Bfi(xi, t)

≤
N∑
i=1

‖BTP−1
N∑
j=1

Lijξj‖‖fi(xi, t)‖

≤
N∑
i=1

ρi(xi, t)‖BTP−1
N∑
j=1

Lijξj‖.

(13)
Next, consider the following three cases.
i) ρi(xi, t)‖K

∑N
j=1 Lijξj‖ > κ, i = 1, · · · , N .

In this case, it follows from (3) and (5) that

ξT (Lρ⊗ P−1B)G(ξ)

= −
N∑
i=1

ρi(xi, t)‖BTP−1
N∑
j=1

Lijξj‖.
(14)

Substituting (14) and and (13) into (12) yields V̇1 ≤
1
2ξ
TX ξ, where

X = L ⊗ (P−1A+ATP−1)− 2cL2 ⊗ P−1BBTP−1.
(15)

ii) ρi(xi, t)‖K
∑N
j=1 Lijξj‖ ≤ κ, i = 1, · · · , N .

In this case, we can get from (3) and (5) that

ξT (Lρ⊗ P−1B)G(ξ)

= −
N∑
i=1

ρi(xi, t)

κ
‖BTP−1

N∑
j=1

Lijξj‖2 ≤ 0.
(16)

Substituting (14), (13), and (16) into (12) gives

V̇1 ≤
1

2
ξTX ξ +Nκ. (17)

iii) ξ satisfies neither case i) nor case ii).

Without loss of generality, assume that
ρi(xi, t)‖K

∑N
j=1 Lijξj‖ > κ, i = 1, · · · , l, and

ρi(xi, t)‖K
∑N
j=1 Lijξj‖ ≤ κ, i = l + 1, · · · , N , where

2 ≤ l ≤ N − 1. In this case, we can get that

ξT (Lρ⊗ P−1B)G(ξ)

≤ −
l∑
i=1

ρi(xi, t)‖BTP−1
N∑
j=1

Lijξj‖.
(18)

Then, it follows from (12), (14), (18), and (13) that V̇1 ≤
1
2ξ
TX ξ + (N − l)κ.

Therefore, by analyzing the above three cases, we get that
V̇1 satisfies (17) for all ξ ∈ RNn. Note that (17) can be
rewritten as

V̇1 ≤ −αV1 + αV1 +
1

2
ξTX ξ +Nκ

= −αV1 +
1

2
ξT (X + αL ⊗ P−1)ξ +Nκ,

(19)

where α > 0.
Because G is connected, it follows from lemma 1 that zero
is a simple eigenvalue of L and all the other eigenvalues

are positive. Let U = [ 1√
N
Y1 ] and UT =

[
1T
√

N

Y2

]
, with

Y1 ∈ RN×(N−1), Y2 ∈ R(N−1)×N , be such unitary ma-
trices that UTLU = Λ , diag(0, λ2, · · · , λN ), where
λ2 ≤ · · · ≤ λN are the nonzero eigenvalues of L. Let
ξ̄ , [ξ̄T1 , · · · , ξ̄TN ]T = (UT ⊗ P−1)ξ. By the definitions
of ξ and ξ̄, it is easy to see that ξ̄1 = ( 1T

√
N
⊗ P−1)ξ =

( 1T
√
N
M ⊗ P−1)x = 0. Then, it follows that

ξT (X + αL ⊗ P−1)ξ

= ξ̄T [Λ⊗ (AP + PAT + αP )− 2cΛ2 ⊗BBT ]ξ̄

≤
N∑
i=2

λiξ̄
T
i (AP + PAT + αP − 2BBT )ξ̄i.

(20)

Because α = −λmax(AP +PAT −2BBT )/λmax(P ), we
can see from (20) that ξT (X + αL ⊗ P−1)ξ ≤ 0. Then,
we can get from (19) that

V̇1 ≤ −αV1 +Nκ. (21)

By using the well-known Comparison lemma (Lemma 3.4
in [20]), we can obtain from (21) that

V1(ξ) ≤ [V1(ξ(0))− Nκ

α
]exp(−αt) +

Nκ

α
, (22)

which, by (11), implies that ξ exponentially converges
to the residual set D1 in (8) with a rate not less than
exp(−αt). �
Remark 1. The distributed consensus protocol (2) con-
sists of a linear part and a nonlinear part, where the
term ρi(xi, t)g(K

∑N
j=1 aij(xi − xj)) is used to sup-

press the effect of the uncertainties fi(xi, t). For the
case where fi(xi, t) = 0, we can accordingly remove
ρi(xi, t)g(K

∑N
j=1 aij(xi − xj)) from (2), which can re-

cover the static consensus protocols as in [7, 8]. As shown



in Proposition 2 of [7], a necessary and sufficient condi-
tion for the existence of a P > 0 to the LMI (7) is that
(A,B) is stabilizable. Therefore, a sufficient condition for
the existence of (2) satisfying Theorem 1 is that (A,B) is
stabilizable.
Remark 2. Note that the residual set D1 depends on the
smallest nonzero eigenvalue of L, the number of agents,
the largest eigenvalue of P , and the size κ of the boundary
layer. By choosing a sufficiently small κ, the consensus
error ξ under the protocol (2) can converge to an arbitrarily
small neighborhood of zero, which is acceptable in most
applications.

4 Distributed Adaptive Consensus Protocol

In the last section, the design of the distributed proto-
col (2) relies on the minimal nonzero eigenvalue λ2 of L
and the upper bounds ρi(xi, t) of the matching uncertain-
ties fi(xi, t). However, λ2 is global information in the
sense that each agent has to know the entire communica-
tion graph to compute it. Besides, the bounds ρi(xi, t) of
the uncertainties fi(xi, t) might not be easily obtained in
some cases. In this section, we will design fully distributed
protocols without requring either λ2 or ρi(xi, t).
Before moving forward, we introduce a modified assump-
tion regarding the bounds of the lumped uncertainties
fi(xi, t), i = 1, · · · , N .
Assumption 2. There are positive constants di and ei such
that ‖fi(xi, t)‖ ≤ di + ei‖xi‖, i = 1, · · · , N .
Based on the local state information of neighboring agents,
we propose the following distributed adaptive protocol to
each agent:

ui = d̄iK

N∑
j=1

aij(xi − xj) + r(K

N∑
j=1

aij(xi − xj)),

˙̄di = τi[−ϕid̄i +

N∑
j=1

aij(xi − xj)TΓ

N∑
j=1

aij(xi − xj)

+ ‖K
N∑
j=1

aij(xi − xj)‖],

˙̄ei = εi[−ψiēi + ‖K
N∑
j=1

aij(xi − xj)‖‖xi‖],

(23)
where d̄i(t) and ēi(t) are the adaptive gains associated with
the i-th agent, Γ ∈ Rn×n is the feedback gain matrix, τi
and εi are positive scalars, ϕi and ψi are small positive
constants chosen by the designer, the nonlinear function
r(·) is defined as follows: for w ∈ Rn,

r(w) =

{
w(d̄i+ēi‖xi‖)

‖w‖ , if (d̄i + ēi‖xi‖)‖w‖ > κ
w(d̄i+ēi‖xi‖)2

κ , if (d̄i + ēi‖xi‖)‖w‖ ≤ κ
,

(24)
and the rest of the variables are defined as in (2).
Let the consensus error ξ be defined as in (6) and D =
diag(d̄1, · · · , d̄N ). Then, it is not difficult to get from
(1) and (23) that the closed-loop network dynamics can be

written as

ξ̇ = (IN ⊗A+MDL ⊗BK)ξ + (M ⊗B)F (x, t)

+ (M ⊗B)R(ξ),

˙̄di = τi[−ϕid̄i +

N∑
j=1

LijξTj Γ

N∑
j=1

Lijξj + ‖K
N∑
j=1

Lijξj‖],

˙̄ei = εi[−ψiēi + ‖K
N∑
j=1

Lijξj‖‖xi‖], i = 1, · · · , N,

(25)
where

R(ξ) ,


r(K

∑N
j=1 L1jξj)

...
r(K

∑N
j=1 LNjξj)

 , (26)

and the rest of the variables are defined as in (4).
To establish the ultimate boundedness of the states ξ, d̄i,
and ēi of (25), we use the following Lyapunov function
candidate

V2 =
1

2
ξT (L ⊗ P−1)ξ +

N∑
i=1

d̃2
i

2τi
+

N∑
i=1

ẽ2
i

2εi
, (27)

where ẽi = ēi − ei, d̃i = d̄i − β, i = 1, · · · , N , and
β ≥ maxi=1,··· ,N{di, 1

λ2
}.

Theorem 2. Suppose that G is connected and Assump-
tions 2 holds. The feedback gain matrices of the distributed
adaptive protocol (23) are designed as K = −BTP−1 and
Γ = P−1BBTP−1, where P > 0 is a solution to the LMI
(7). Then, both the consensus error ξ and the adaptive gains
d̄i and ēi, i = 1, · · · , N , in (25) are uniformly ultimately
bounded and the following statements hold.

i) For any ϕi and ψi, ξ, d̃i, and ẽi exponentially con-
verge to the residual set

D2 , {ξ, d̃i, ẽi : V2 <
1

2δ

N∑
i=1

(β2ϕi+e
2
iψi)+

Nκ

4δ
},

(28)
with a convergence rate faster than exp(−δt), where
δ , mini=1,··· ,N{α,ϕiτi, ψiεi} and α is defined as in
(9).

ii) If small ϕi and ψi satisfy % ,
maxi=1,··· ,N{ϕiτi, ψiεi} < α, then in addition
to i), ξ exponentially converges to the residual set

D3 , {ξ : ‖ξ‖2 ≤ λmax(P )

λ2ρ
[

N∑
i=1

(β2ϕi + e2
iψi)

+
1

2
Nκ]}.

(29)

with a rate faster than exp(−%t).
Proof. The time derivative of V2 along (25) can be obtained



as

V̇2 = ξT (L ⊗ P−1)ξ̇ +

N∑
i=1

d̃i
τi

˙̃
di +

N∑
i=1

ẽi
εi

˙̃ei

= ξT [(L ⊗ P−1A+ LD̃L ⊗ P−1BK)ξ

+ L ⊗ P−1B)F (x, t) + (L ⊗ P−1B)R(ξ)]

+

N∑
i=1

d̃i[−ϕi(d̃i + β) +

N∑
j=1

LijξTj Γ

N∑
j=1

Lijξj

+ ‖K
N∑
j=1

Lijξj‖] +

N∑
i=1

ẽi[−ψi(ẽi + ei)

+ ‖K
N∑
j=1

Lijξj‖‖xi‖],

(30)
where D̃(t) = diag(d̃1 + β, · · · , d̃N + β).
By noting that K = −BP−1, it is easy to get that

ξT (LD̃L ⊗ P−1BK)ξ = −
N∑
i=1

(d̃i + β)

N∑
j=1

LijξTj

× P−1BBTP−1
N∑
j=1

Lijξj .

(31)
In light of Assumption 2, we can obtain that

ξT (L ⊗ P−1B)F (x, t)

=

N∑
j=1

(di + ei‖xi‖)‖BTP−1
N∑
j=1

Lijξj‖.
(32)

In what follows, we consider three cases.
i) (d̄i + ēi‖xi‖)‖K

∑N
j=1 Lijξj‖ > κ, i = 1, · · · , N .

In this case, we can get from (24) and (26) that

ξT (L ⊗ P−1B)R(ξ)

= −
N∑
i=1

[d̃i + β + (ẽi + ei)‖xi‖]‖BTP−1
N∑
j=1

Lijξj‖.

(33)
Substituting (31), (32), and (33) into (30) yields

V̇2 ≤
1

2
ξTYξ −

N∑
i=1

(β − di)‖BTP−1
N∑
j=1

Lijξj‖

− 1

2

N∑
i=1

(ϕid̃
2
i + ψiẽ

2
i ) +

1

2

N∑
i=1

(β2ϕi + e2
iψi),

where we have used the fact that−d̃2
i −d̃iβ ≤ − 1

2 d̃
2
i + 1

2β
2

and Y , L⊗(P−1A+ATP−1)−2βL2⊗P−1BBTP−1.

ii) (d̄i + ēi‖xi‖)‖K
∑N
j=1 Lijξj‖ ≤ κ, i = 1, · · · , N .

In this case, we can get from (24) and (26) that

ξT (L ⊗ P−1B)R(ξ)

= −
N∑
i=1

(d̄i + ēi‖xi‖)2

κ
‖BTP−1

N∑
j=1

Lijξj‖2.
(34)

Then, it follows from (31), (32), (34), and (30) that

V̇2 ≤
1

2
ξTYξ −

N∑
i=1

(β − di)‖BTP−1
N∑
j=1

Lijξj‖+
1

4
Nκ

− 1

2

N∑
i=1

(ϕid̃
2
i + ψiẽ

2
i ) +

1

2

N∑
i=1

(β2ϕi + e2
iψi).

(35)
Note that to get (35), we have used the follow-
ing fact: − (d̄i+ēi‖xi‖)2

κ ‖BTP−1
∑N
j=1 Lijξj‖2 +

(d̄i + ēi‖xi‖)‖BTP−1
∑N
j=1 Lijξj‖ ≤ 1

4κ for

(d̄i + ēi‖xi‖)‖K
∑N
j=1 Lijξj‖ ≤ κ.

iii) (d̄i + ēi‖xi‖)‖K
∑N
j=1 Lijξj‖ > κ, i = 1, · · · , l, and

(d̄i + ēi‖xi‖)‖K
∑N
j=1 Lijξj‖ ≤ κ, i = l + 1, · · · , N ,

where 2 ≤ l ≤ N − 1.
By following similar steps in the two cases above, it is not
difficult to get that

V̇2 ≤
1

2
ξTYξ −

N∑
i=1

(β − di)‖BTP−1
N∑
j=1

Lijξj‖

− 1

2

N∑
i=1

(ϕid̃
2
i + ψiẽ

2
i ) +

1

2

N∑
i=1

(β2ϕi + e2
iψi)

+
1

4
(N − l)κ.

Therefore, based on the above three cases, we can get
that V̇2 satisfies (35) for all ξ ∈ RNn. Because β ≥
maxi=1,··· ,N di and βλ2 ≥ 1, it follows from (35) that

V̇2 ≤
1

2
ξTYξ − 1

2

N∑
i=1

(ϕid̃
2
i + ψiẽ

2
i )

+
1

2

N∑
i=1

(β2ϕi + e2
iψi) +

1

4
Nκ.

(36)

Note that (36) can be rewritten into

V̇2 ≤ −δV2 +
1

2
ξT (Y + δL ⊗ P−1)ξ − 1

2

N∑
i=1

[(ϕi −
δ

τi
)d̃2
i

+ (ψi −
δ

εi
)ẽ2
i )] +

1

2

N∑
i=1

(β2ϕi + e2
iψi) +

1

4
Nκ.

(37)
Because βλ2 ≥ 1 and 0 < δ ≤ α, by following sim-
ilar steps in the proof of Theorem 1, we can show that
ξT (Y + δL ⊗ P−1)ξ ≤ 0. Further, by noting that δ ≤
mini=1,··· ,N{ϕiτi, ψiεi}, it follows from (37) that

V̇2 ≤ −δV2 +
1

2

N∑
i=1

(β2ϕi + e2
iψi) +

1

4
Nκ, (38)

which implies that

V2 ≤ [V2(0)− Nκ

4δ
− 1

2δ

N∑
i=1

(β2ϕi + e2
iψi)]exp(−δt)

+
1

2δ

N∑
i=1

(β2ϕi + e2
iψi) +

Nκ

4δ
.

(39)



Therefore, V2 exponentially converges to the residual set
D2 in (28) with a rate faster than exp(−δt), implying that
ξ, d̄i, and ēi are uniformly ultimately bounded.
Next, if % , maxi=1,··· ,N{ϕiτi, ψiεi} < α, we can obtain
a smaller residual set for ξ by rewriting (37) into

V̇2 ≤ −%V2 +
1

2
ξT (Y + αL ⊗ P−1)ξ +

1

4
Nκ

− α− %
2

ξT (L ⊗ P−1)ξ +
1

2

N∑
i=1

(β2ϕi + e2
iψi)

≤ −%V2 −
λ2(α− %)

2λmax(P )
‖ξ‖2 +

1

4
Nκ

+
1

2

N∑
i=1

(β2ϕi + e2
iψi).

(40)
Obviously, it follows from (40) that V̇2 ≤ −%V2 if ‖ξ‖2 >
λmax(P )
λ2(α−%) [

∑N
i=1(β2ϕi + e2

iψi) + 1
2Nκ]. Then, by noting

V2 ≥ λ2

2λmax(P )‖ξ‖
2, we can get that ξ exponentially con-

verges to the residual set D3 in (29) with a rate faster than
exp(−%t). �
Remark 3. From (28) and (29), we can observe that the
residual sets D2 and D3 decrease as κ decreases. Given
κ, smaller ϕi and ψi give a smaller bound for ξ and at the
same time yield a larger bound for d̄i and ēi. For the case
where ϕi = 0 and ψi = 0, d̄i and ēi will tend to infinity. In
real implementations, if large d̄i and ēi are acceptable, we
can choose ϕi, ψi, and κ to be relatively small in order to
guarantee a small ξ.

5 Conclusion

This paper has addressed the robust consensus problem for
multi-agent systems with heterogeneous matching uncer-
tainties. Distributed static and adaptive consensus proto-
cols have been designed, under which the consensus error
has been shown to be ultimately bounded and exponentially
converges to small adjustable residual sets. An interesting
future topic is to consider more general uncertainties which
do not necessarily satisfy the matching condition. Another
direction is to discuss the case with general directed and
switching communication graphs.
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