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Abstract: Ellipsoids have been extensively used as estimates of the domain of attraction of a linear system under a saturated
linear feedback. For a linear system with a single input subject to actuator saturation, based on a convex hull representation of
the saturated linear feedback, a necessary and sufficient condition for an ellipsoid to be contractively invariant was previously
established, which, through the solution of an LMI problem, leads to the maximal ellipsoidal invariant set. For a linear system
with multiple inputs subject to actuator saturation, it has also been proven that the optimal ellipsoid resulting from the optimiza-
tion problem is the maximal one only under additional conditions. In this paper, we develop a complete characterization of the
maximal ellipsoidal invariant set of a linear system with multiple inputs subject to actuator saturation, which is summarized as a
comprehensive algorithm to determine if an invariant ellipsoid is the maximal one.
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1 Introduction

The stability and stabilization of a linear system subject
to actuator saturation have been drawing continual interest
from control theorists for decades now. For a linear system
that has a pole in the open right-half plane and is subject to
actuator saturation, linear feedback can only achieve local
stabilization [12]. This presents an important problem of es-
timating the domain of attraction for a linear system subject
to actuator saturation, which has attracted tremendous atten-
tion in resent years (see, e.g., [2, 4, 6]).

As a subset of the domain of attraction, a contractively
invariant set, from which all the trajectories of systems will
remain in it and converge to the equilibrium point, is widely
used as an estimate of the domain of attraction [3]. As a
popular candidate invariant set, the ellipsoid has been widely
used in estimating the domain of attraction for a linear sys-
tem subject to actuator saturation, due to its simple repre-
sentation as a level set of a quadratic Lypunov function (see,
e.g., [1, 4, 6, 13]). Global/local sector conditions [4] or con-
vex hull representation [6] of saturation functions are used to
express the derivative of the quadratic Lyapunov function in
terms of a single or a set of negative definite quadratic func-
tions, which ensure the negative definiteness of the deriva-
tive of the quadratic Lyapunov function. Conditions in the
form of linear matrix inequalities (LMIs) are established that
guarantee the negative definiteness of these quadratic func-
tions and constrained optimization problems are formulated
that result in a large contractively invariant ellipsoid.

We restrict our attention to the use of the convex hull rep-
resentation, which is less conservative than the sector con-
ditions in dealing with saturation functions. Since the con-
ditions for the negative definiteness of quadratic Lyapunov
functions are sufficient, the ellipsoid obtained through the
optimization problem cannot be guaranteed to be the maxi-
mal possible contractively invariant ellipsoid. As established
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in [7], however, for a linear system with a single input sub-
ject to actuator saturation, the ellipsoid such obtained is the
maximal one, since the conditions for the negative definite-
ness of those quadratic functions are proven to be necessary
as well. For a linear system with multiple inputs subject
to actuator saturation, it is pointed out in [8] that the con-
tractively invariant ellipsoid obtained from the optimization
problem is also the maximal possible contractively invariant
ellipsoid only when certain additional conditions are satis-
fied. However, it is worth noting that the conditions identi-
fied in [8] are the closest to those for the maximal possible
contractively invariant ellipsoid.

The main contribution of this paper is to propose a com-
prehensive algorithm for the complete determination of the
maximal possible contractively invariant ellipsoid for a lin-
ear system with multiple inputs subject to actuator satura-
tion. This algorithm summarizes several criterions pertain-
ing to conditions under which an optimal ellipsoid obtained
from certain optimization problems with constraints in the
form of LMIs or nonlinear equations is the maximal con-
tractively invariant one. Because of the space limitation, the
proofs of all new results, including Lemmas 3-5 and Theo-
rems 3-6, are omitted in this conference version of the paper,
and can be found in the journal version [11].

We will use standard notation. For a vector u =
[u1 u2 · · · um]T, |u|∞ := maxi |ui|. For two inte-
gers k1, k2, k1 < k2, I[k1, k2] := {k1, k1 + 1, · · · , k2}.
For a positive definite P ∈ Rn×n and a positive scalar ρ,
E(P, ρ) := {x ∈ Rn : xTPx ≤ ρ}, Eo(P, ρ) := {x ∈ Rn :
xTPx < ρ} and ∂E(P, ρ) := {x ∈ Rn : xTPx = ρ}. For a
matrix H ∈ Rm×n, L(H) := {x ∈ Rn : |Hx|∞ ≤ 1}. For
a matrix A, λmax(A) denotes the maximal eigenvalue of A,
and He(A) = AT +A.

2 Preliminaries
Consider a linear system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm. (1)



Under a saturated linear feedback u = sat(Fx), the closed-
loop system is

ẋ = Ax+Bsat(Fx), (2)

where sat : Rm → Rm denotes the vector val-
ued standard saturation function, which is defined as
sat(u) = [sat(u1), sat(u2), · · · , sat(um)]T, sat(ui) =
sgn(ui)min{1, |ui|}. A signal ui is said to saturate if |ui| >
1 and it is said to saturate critically if |ui| = 1. Given a pos-
itive definitive matrix P ∈ Rn×n, let V (x) = xTPx. The
ellipsoid E(P, ρ) is said to contractively invariant if

V̇ (x) = 2xTP (Ax+Bsat(Fx)) < 0,

for all x ∈ E(P, ρ) \ {0}. It is said to be contractively
invariant on a set Ω ⊂ Rn if V̇ (x) < 0 for all x ∈
(E(P, ρ) ∩ Ω) \ {0}. The following fact is clear.
Fact 1 Let ρc := sup{ρ > 0 : E(P, ρ) is contractively
invariant}. Then, a ρ∗ > 0 is such that ρ∗ = ρc if and only if
V̇ (x) < 0, ∀ x ∈ Eo(P, ρ∗) \ {0}, and V̇ (x0) = 0 for some
x0 ∈ ∂E(P, ρ∗).

For use later in the paper, we denote the maximal con-
tractively invariant ellipsoid as E(P, ρc), and refer to x0 ∈
∂E(P, ρc) such that V̇ (x0) = 0 as an extreme state.

We next recall the convex hull representation of a satu-
rated linear feedback from [6]. Let D denote the set of m×m
diagonal matrices whose diagonal elements are either 1 or
0. There are 2m such matrices in D, and we label them as
Di, i ∈ I[1, 2m]. Denote D−

i = I −Di. Clearly, D−
i ∈ D.

Lemma 1 [6] Let F,H ∈ Rm×n. Then, for any x ∈ L(H),

sat(Fx) ∈ co
{
DiFx+D−

i Hx : i ∈ I[1, 2m]
}
,

where co stands for the convex hull.
From Lemma 1, the m dimensional nonlinear function

sat(Fx) is expressed as a linear combination of the 2m aux-
iliary linear feedbacks. Under this expression the conditions
under which the ellipsoid E(P, ρ) is a contractively invariant
set of the closed-loop system (2) were established in [6, 9]
as follows.
Theorem 1 Given an ellipsoid E(P, ρ), if there exists an
H ∈ Rm×n such that

He(P (A+B(DiF +D−
i H))) < 0, ∀ i ∈ I[1, 2m], (3)

and E(P, ρ) ⊂ L(H), then E(P, ρ) is contractively invariant
under the feedback u = sat(Fx).

Clearly, the condition

(A+BF )TP + P (A+BF ) < 0 (4)

in (3) is necessary. Theorem 1 provides a set of sufficient
conditions under which E(P, ρ) is contractively invariant.
These conditions are presented in terms of linear matrix in-
equalities. Moreover, as established in [6], for a single input
system, that is, m = 1, the resulting linear matrix inequal-
ities that characterize the invariance of an ellipsoid E(P, ρ)
are also necessary.

Next, we will focus on the largest invariant ellipsoid
E(P, ρ) that satisfies the conditions of Theorem 1 for a given
positive definite matrix P . Based on Theorem 1, the follow-
ing optimization problem can be formulated:
sup
H

ρ (5)

s.t. a) He
(
P (A+B(DiF +D−

i H)
)
≤ 0, i ∈ I[1, 2m],

b) ρhjP
−1hT

j ≤ 1, j ∈ I[1,m].

Define ρ∗ = supH ρ. For a single input system, ρc = ρ∗,
since Conditions a) and b) are necessary for E(P, ρ) to be
contractively invariant. For multiple input systems, that is,
m ≥ 2, it is pointed out in [8] that ρ∗ = ρc is conditional.
For completeness and convenience of presentation, we tran-
scribe the main result in [8] that guarantees ρ∗ = ρc.

Theorem 2 Let (ρ∗, H∗) be an optimal solution to (5). Sup-
pose that

1) there is only one j such that ρ∗h∗
jP

−1h∗
j

T = 1 (i.e.,
the boundary of E(P, ρ) only touches one pair of the
hyperplanes h∗

jx = ±1);
2) there is only one i satisfying λmax(Ti) = 0, where Ti =

He(P (A + B(DiF + D−
i H

∗))). The matrix Ti has a
single eigenvalue at 0 and the only nonzero element in
D−

i is the jth diagonal one (D−
i H

∗ choose only h∗
j ).

Let x0 = ρ∗P−1h∗
j

T, then x0 is the unique intersection of
E(P, ρ∗) with h∗

jx = 1.
3) If |fkx0| ≤ 1 for all k ̸= j,

then ρ∗ = ρc.

Theorem 2 presents a criterion for determining if the con-
ditions in the optimization problem (5) result in the maximal
possible contractively invariant ellipsoid for a linear system
with multiple inputs subject to actuator saturation. As shown
by an example in [8], the optimal solution to (5) does not
always satisfy the conditions in Theorem 2. This implies
that the conditions in Theorem 2 are of conservativeness.
On the one hand, the result of Theorem 2 is established on
the optimization problem (5), which results from Lemma 1.
An alternative convex hull representation of saturated linear
feedback [10] with less conservativeness than Lemma 1 is
recalled as follows:

Lemma 2 Let F,Hi ∈ Rm×n, i ∈ I[1,m]. Then, for any
x ∈ L(Hi),

sat(Fx) ∈ co
{
DiFx+D−

i Hix : i ∈ I[1, 2m]
}
. (6)

A result similar to Lemma 2 can be found in [1, 13]. As
shown in Lemma 2, an m-dimensional saturated linear feed-
back can be expressed as a linear combination of a set of 2m

auxiliary linear feedbacks, each of which associates with an
Hi. On the other hand, the limitation of Theorem 2 also lies
on that the extreme state only causes one input to saturate.

Motivated by the limitations of Theorem 2, we will start
our presentation of the main results in the next sections with
a result that generalizes Theorem 2. Several improved cri-
terions will be proposed to determine the maximal possible
contractively invariant ellipsoid, and, as a result, a compre-
hensive algorithm for the determination of the maximal con-
tractively ellipsoidal invariant set will be developed for a
linear system with multiple inputs subject to actuator satu-
ration.

3 The Maximal Contractively Invariant Ellipsoid:
LMIs Approach

3.1 An alternative criterion
Based on the observation of the limitations of Theorem 2,

we apply Lemma 2 to obtain the optimization problem:
sup

Hi, i∈I[1,2m]

ρ (7)

s.t. a) He
(
P (A+B(DiF +D−

i Hi)
)
≤ 0, i ∈ I[1, 2m],

b) ρhijP
−1hT

ij ≤ 1, i ∈ I[1, 2m], j ∈ I[1,m],



where hij ∈ R1×n is the jth row of Hi. Note that there
exists no coupling of the auxiliary feedback matrices Hi’s
between the 2m LMIs in a). Thus, the optimization problem
(7) can be decoupled as a set of optimization problems:

sup
Hi

ρi, i ∈ I[1, 2m], (8)

s.t. a) He
(
P (A+B(DiF +D−

i Hi)
)
≤ 0,

b) ρihijP
−1hT

ij ≤ 1, j ∈ I[1,m].

Let (ρ∗,H∗
01,H

∗
02, · · · ,H∗

02m) and (ρ∗i ,H
∗
i ),

i ∈ I[1, 2m], be the optimal solutions to optimiza-
tion problems (7) and (8), respectively. Clearly,
ρ∗ = mini∈I[1,2m]{ρ∗i }. For every optimization prob-
lem in (8), except the one associated with Di = I , there
exists a j such that ρ∗i h

∗
ijP

−1h∗T

ij = 1 and λmax(Si) = 0,
where Si = He

(
P (A+B(DiF +D−

i H
∗
i ))

)
. Hence,

for the optimization problem (7), there must be a j
such that ρ∗h∗

0ijP
−1h∗

0ij
T = 1 and λmax(S0i) = 0,

where i associates with the ρ∗i which is equal to ρ∗, and
S0i = He

(
P (A+B(DiF +D−

i H
∗
0i))

)
. The following

theorem, which generalizes Theorem 2, provides a new
criterion for determining the maximal ellipsoidal invariant
set for a linear system with multiple inputs subject to
actuator saturation.

Theorem 3 Let (ρ∗,H∗
01,H

∗
02, · · · ,H∗

02m) and (ρ∗i ,H
∗
i ),

i ∈ I[1, 2m], be the optimal solutions to the optimization
problems (7) and (8), respectively. Denote Ji = {j : dij ̸=
0, j ∈ I[1,m]}, where dij is the jth diagonal element of Di.
Suppose that

1) there is only one i such that ρ∗i = ρ∗;
2) for the i in 1), all h∗

ij’s that satisfy ρ∗h∗
ijP

−1h∗T

ij = 1
for all j ∈ Ji are equal to each other.

Denote h∗
i := h∗

ij , ∀ j ∈ Ji, and let x0 = ρ∗P−1h∗T
i .

3) If |fjx0| ≤ 1 for all j /∈ Ji,
then ρ∗ = ρc.

Differently from Theorem 2, which is used to determine
the maximal contractively invariant ellipsoid E(P, ρc) in
the case that only one input saturates when V̇ (x0) = 0,
x0 ∈ ∂E(P, ρc), Theorem 3 works in the generalized case
where more than one input could saturate synchronously at
x0. Clearly, if the conditions in Theorem 2 are satisfied, the
conditions in Theorem 3 will also be satisfied.

3.2 A new criterion
Theorem 3 refers to the same partitions of the state space

as Theorem 2, each of which is represented as Di, i ∈
I[1, 2m]. In this subsection, we first introduce another parti-
tioning of the state space. The closed-loop system (2) can be
rewritten as

ẋ = Ax+
∑

j∈N̄(x)

bjfjx+
∑

j∈N̄c(x)

(−1)pj(x)bj , (9)

where N̄(x) := {j ∈ [1,m] : |fjx| < 1} ⊆ I[1,m], N̄ c(x)
is the complement of N̄(x), and

pj(x) =

{
0, sat(fjx) = 1, j ∈ N̄ c(x),

1, sat(fjx) = −1, j ∈ N̄ c(x).

Depending on whether an input saturates or not and whether
it saturates at 1 or −1, there are 3m different saturation

statuses of the m inputs. The state space can thus be ac-
cordingly divided into 3m regions, denoted as Ωi, i ∈
I[0, 3m − 1]. For example, for a two-dimensional input
sat(Fx), that is F ∈ R2×n, we have 9 state regions as fol-
lows, Ω0 = {x : |f1x| < 1, |f2x| < 1}, Ω1 = {x : |f1x| <
1, f2x ≥ 1},Ω2 = {x : f1x ≥ 1, |f2x| < 1}, Ω3 = {x :
f1x ≥ 1, f2x ≥ 1}, Ω4 = {x : f1x ≤ −1, f2x ≥ 1},
−Ω1,−Ω2,−Ω3,−Ω4. Two state regions are said to be ad-
jacent if only one input has different statuses on the two re-
gions, and one of statuses must be non-saturation. For ex-
ample, Ω0 and Ω1 are adjacent to each other since f2x is
unsaturated in Ω0, while f2x saturates in Ω1.

By the piecewise symmetry of these state regions with
respect to the one where none of the m inputs saturates,
we only need to consider 1

2 (3
m − 1) regions. We rela-

bel these regions as Ωi, i ∈ I[1, 1
2 (3

m − 1)]. Define
N = {Nl : Nl ⊆ I[1,m]} and qj = 0 or 1, j ∈ N c

l ,
where Nl denotes the set of inputs that do not saturate, N c

l is
the complement of Nl, qj = 0 denotes the saturation value
of the jth input is 1, and qj = 1 means the saturation value
of the jth input is −1. We use Nl and qj to denote Ωi.

Let N(Ωi) be Nl associated with Ωi, and Ωo
i be the in-

terior of Ωi. Denote Ai = A +
∑

j∈N(Ωi)
bjfj and Bi =∑

j∈Nc(Ωi)
(−1)qj bj . In each of Ωi’s, the dynamic of sys-

tem (2) is equivalent to that of the following linear system
with constant inputs:

ẋ = Aix+ Bi, i ∈ I[1, 0.5(3m − 1)]. (10)

We consider the following group of 1
2 (3

m − 1) optimization
problems, each of which corresponds to a system in (10):

sup
hi

ρi, i = 1, 2, · · · , 0.5(3m − 1), (11)

s.t. a) He(P (Ai + Bihi)) ≤ 0,

b) ρihiP
−1hT

i ≤ 1,
where hi ∈ R1×n.

Note that it is not guaranteed that each of the optimization
problems in (11) is solvable. Suppose that the ith optimiza-
tion problem in (11) is solvable and (ρ∗i , h

∗
i ) is its optimal

solution. If an ith optimization problem in (18) is not solv-
able, let ρ∗i = 0. Let E(P, ρ♯i) be the minimal ellipsoid that
intersects with Ωi.

Lemma 3 Suppose that ρ∗i ̸= 0. Then, E(P, ρi) is contrac-
tively invariant on Ωo

i for the corresponding system in (10),
where ρi ∈ (ρ♯i , ρ

∗
i ). Moreover, E(P, ρ∗i ) is the maximal

contractively invariant ellipsoid on Ωi if x0i ∈ Ωi, where
x0i = ρ∗iP

−1h∗T
i .

Lemma 3 provides a sufficient condition to guarantee the
contractive invariance of E(P, ρi) on Ωo

i . Next, we will
present the main result in this subsection, the proof of which
is mainly established on Lemma 3.

Theorem 4 Let (ρ∗i , h
∗
i ) be the solutions to the solvable opti-

mization problems in (11), and x0i = ρ∗iP
−1h∗

i
T. Let ρ∗i = 0

for the unsolvable optimization problems. Suppose that there
exist some x0i ∈ Ωi. Denote ρ∗ = min{ρ∗i : x0i ∈ Ωi}. De-
fine Ω = {Ωi : ρ

∗
i < ρ∗}. If all of Ωi’s in Ω are not adjacent

to each other, then ρ∗ = ρc.

Theorem 4 generalizes Theorem 2 when m = 2. In this
case, we only consider the following 1

2 (3
2 − 1) = 4 re-

gions of state space, Ω1 = {N1 = {1}, q2 = 0}, Ω2 =



{N2 = {2}, q1 = 0}, Ω3 = {N3 = ∅, q1 = 0, q2 = 0},
and Ω4 = {N3 = ∅, q1 = 0, q2 = 1}. Let (ρ∗,H∗) and
(ρ∗i , h

∗
i ), i ∈ I[1, 4], be the optimal solutions to (5) and

(11), respectively. Suppose that conditions in Theorem 2
are satisfied. Then there exists only j = 1 correspond-
ing to Ω1(D1 = diag{1, 0}) (or, j = 2 corresponding to
Ω2(D2 = diag{0, 1})) such that x01 = ρ∗P−1h∗

1 ∈ Ω1

(or x02 = ρ∗P−1h∗
2 ∈ Ω2). Thus, we have ρ∗1 = ρ∗ and

ρ∗2 > ρ∗ (or, ρ∗2 = ρ∗ and ρ∗1 > ρ∗). Clearly, Ω2 /∈ Ω
(or, Ω1 /∈ Ω). Note that Ω3 and Ω4 are not adjacent to each
other. In whatever case that Ω = ∅, Ω = {Ω3}, Ω = {Ω4}
or Ω = {Ω3,Ω4}, the condition in Theorem 4 is satisfied.
Hence, Theorem 2 is a special case of Theorem 4 when
m = 2.

4 The Maximal Contractively Invariant Ellipsoid:
Algebraic Computational Approach

Section 3 provides two new criterions to determine if the
optimal ellipsoid obtained from (7) or (11) is the maximal
contractively invariant ellipsoid of a linear system with mul-
tiple inputs subject to actuator saturation. In fact, in these
criterions, the following condition is necessarily satisfied for
the extreme state x0 ∈ ∂E(P, ρc). Without loss of general-
ity, we assume that x0 ∈ Ωi.

I) There exists a g0 > 0 such that for all g > g0,
He(PAT

i)− gPBiBT
iP < 0.

The satisfaction of Condition I) guarantees that the
maximal value of V̇ (x) on ∂E(P, ρc) occurs at x0 and
dV̇ (x)
dx

∣∣∣
x=x0

= 0, which implies that the maximal contrac-

tively invariant ellipsoid E(P, ρc) can be obtained through
the solutions of a group of LMIs. However, Condition I) is
not always easy to satisfy, particularly when the dimension
of the input is high. In this section, we will adopt an al-
gebraic computational approach to obtain the maximal con-
tractively invariant ellipsoid for system (2).

4.1 Algebraic computation in Ωi’s
Reconsider the systems (10) with constant inputs. We

start this subsection by presenting the following lemma,
which characterizes the contractive invariance of an ellip-
soid E(P, ρi) on a state region for the corresponding system
in (10).
Lemma 4 Let (λik, ρik, ηik), k ∈ I[1,Ki], be all the so-
lutions to the following nonlinear equations and matrix in-
equalities:

BT
iP (He(PAi) + λP )−1P (He(PAi) + λP )−1PBi = ρ,

(12)
λρ+ BT

iP (He(PAi) + λP )−1PBi = 0, (13)

He(PAi) + λP +He(ηBT
iP (He(PAi) + λP )−1P ) ≤ 0,

(14)
and

λ < 0, (15)
where ρ ∈ R and η ∈ Rn×1. Let x0ik = −(He(PAi) +
λikP )−1PBi. Denote

ρ∗i =

{
min{ρik : k ∈ I[1,Ki]}, ∀ x0ik /∈ Ωi,
ξ, otherwise. (16)

where ξ = min{ρik : x0ik ∈ Ωi, k ∈ I[1,Ki]}. Let λ∗
i

and x∗
0i be the λik and x0ik associated with ρ∗i , respectively.

Then, for any ρi ∈ (ρ♯i , ρ
∗
i ), E(P, ρi) is contractively invari-

ant on Ωo
i for the corresponding system in (10). Moreover,

E(P, ρ∗i ) is the maximal contractively invariant ellipsoid on
Ωi if x∗

0i ∈ Ωi.

We consider the computational issue for nonlinear equa-
tions (12) and (13). Substituting (12) into (13), we have

λBT
iP (He(PAi) + λP )−1P (He(PAi) + λP )−1PBi

+BT
iP (He(PAi) + λP )−1PBi = 0.

It is a (2n + 1)th order polynomial equation of λ, which is
very difficult to solve directly. By matrix inverse theorem,
one can obtain (He(PAi) + λP )−1 = Si − SiΘiSi, where
Si = (He(PAi))

−1, and Θi =
(
1
λP

−1 + Si

)−1
. Then (13)

is equivalent to
λρ− BT

iSiΘiSiBi = −BT
iSiBi. (17)

From (12), we have

BT
iSiΘiP

−1ΘiSiBi = ρλ2. (18)

Substituting (18) into (17), we have

λBT
iSiΘiP

−1ΘiSiBi − BT
iSiΘiSiBi = −λ2BT

iSiBi

⇐⇒ BT
iSiΘiSiΘiSiBi = BT

iSiBi

⇐⇒ det

[
BT
iSiBi BT

iSiΘi

ΘiSiBi S−1
i

]
= 0

⇐⇒ det

[
Θ−1

i Si
1

BT
iSiBi

SiBiBT
iSi Θ−1

i

]
= 0.

It follows that λ−1 is an eigenvalue of the following matrix[
−P

1
2SiP

1
2 P

1
2SiP

1
2

(BT
iSiBi)

−1P
1
2SiBiBT

iSiP
1
2 −P

1
2SiP

1
2

]
. (19)

If (19) has no negative real eigenvalues or (14) is not satis-
fied, which means that (12)-(15) have no solution, let ρ∗i = 0.
Otherwise, compute ρ∗i as (16). Let

ρ∗ =

{
β, ∃ i such that x∗

0i ∈ Ωi,
+∞, otherwise, (20)

where β = min{ρ∗i : x∗
0i ∈ Ωi, ρ

∗
i ̸= 0}. Assume that

ρ∗ ̸= +∞. Define Ω = {Ωi : ρ
∗
i < ρ∗}.

Theorem 5 If every element in Ω is not adjacent to each
other, then ρc = ρ∗.

In the procedure to solve the nonlinear equations (12) and
(13), it is naturally considered that He(PAi) is invertible,
and BT

iSiBi is not equal to 0. However, these might not
always be true, in which case, we can choose a λo such
that He(PAi) + λoI is nonsingular, and BT

i(He(PAi) +
λoI)

−1Bi ̸= 0. Let Soi = He(PAi)+λoI and λe = λ−λo.
Then λ−1

e is an eigenvalue of the alternative matrix[
−P

1
2SoiP

1
2 P

1
2SoiP

1
2

Λ −P
1
2SoiP

1
2

]
, (21)

where Λ = (BT
iSoiBi)

−1P
1
2SoiBiBT

iSoiP
1
2 . Thus, λ =

λo + λe.

4.2 Algebraic computation in the intersections between
Ωi’s

All criterions presented above apply to the systems, whose
extreme state x0 ∈ Ωi satisfies that dV̇ (x)

dx → 0 as x →
x0, x ∈ Ωi. However, this condition is not always satisfied



either. In this case, x0 resides in the intersection between two
Ωi’s, where one input critically saturates, i.e., there exists a
j ∈ I[1,m] such that sat(fjx) = fjx.

Denote Ω = {Ωi : ρ
∗
i < ρ∗}, where ρ∗i and ρ∗ have been

defined in the previous subsection. Suppose that there are R
elements in Ω. We relabel them as Ωr, r ∈ I[1,R]. As-
sume that there exist R1 intersections between these Ωr’s.
Denote the intersection between Ωr and Ωl, r, l ∈ I[1,R],
as X r,l. Let h(r, l) represent that the h(r, l)th input satu-
rates critically on X r,l. Then X r,l = {x : fh(r,l)x =
sat(fh(r,l)x), x ∈ Ωr ∩ Ωl, r, l ∈ I[1,R]}. Define a region
of state space X h(r,l) = {x : fh(r,l)x = sat(fh(r,l)), r, l ∈
I[1,R]}. Clearly, X r,l ⊂ X h(r,l). We use the state trans-
formation of the form z = Tx, where T = UP

1
2 for

the unitary matrix U such that f̄h(r,l) = fh(r,l)T
−1 =

[f̄h(r,l)1, 01×(n−1)], where f̄h(r,l)1 ̸= 0. Let

Ār,l = TArT
−1, b̄r,l = TBr =

[
b̄(r,l)1
b̄(r,l)2

]
,

Ār,l
T
+ Ār,l =

[
Q̄(r,l)11 Q̄(r,l)12

Q̄T
(r,l)12 Q̄(r,l)22

]
,

where b̄(r,l)1 ∈ R, Q̄(r,l)11 ∈ R. Let zr,l = [z(r,l)1 z(r,l)2]
T,

z(r,l)1 ∈ R. Then z(r,l)1 =
sat(fh(r,l)x)

f̄h(r,l)1
, and

żr,l = Ār,lzr,l + b̄r,l. (22)

The derivative of the quadratic Lyapunov function for (22)
on X h(r,l) is given as follows,

V̇r,l(x) =xTHe(PAr)x+ 2xTPBr

=zT
r,l(Ār,l + ĀT

r,l)zr,l + 2zT
r,lb̄r,l

=zT
(r,l)2Q̄(r,l)22z(r,l)2

+ 2zT
(r,l)2(Q̄

T
(r,l)12z(r,l)1 + b̄(r,l)2) + αr,l

= : gr,l(z(r,l)2),

where αr,l = Q̄(r,l)11(z(r,l)1)
2 + 2b̄(r,l)1z(r,l)1.

Define X o
r,l = {x : x ∈ X r,l,N (x) ⊂ X r,l}, where

N (x) is any neighborhood of x on X h(r,l). For simplicity,
let br,l = (Q̄T

(r,l)12z(r,l)1 + b̄(r,l)2) and Sr,l = Q̄(r,l)22.

Lemma 5 Let (λ(r,l)k, ρ(r,l)k, η(r,l)k), k ∈ I[1,Kr], be all
the solutions to the following equations and inequalities:

bT
r,l(Sr,l + λI)−2br,l = ρ− (z(r,l)1)

2, (23)

λ(ρ− (z(r,l)1)
2) + bT

r,l(Sr,l + λI)−1br,l = αr,l, (24)

Sr,l + Γ + ΓT < 0, (25)
and

λ < 0, (26)
where λ, ρ ∈ R, η ∈ R(n−1)×1 and Γ = ηbT

r,l(Sr,l+λI)−1.
Let z0(r,l)k2 = −(Sr,l + λ(r,l)kI)

−1br,l, and x0(r,l)k =
T−1[z(r,l)1, z

T
0(r,l)k2]

T. Let

ρ♮r,l =

{
min{ρ(r,l)k : k ∈ I[1,Kr]}, ∀ x0(r,l)k /∈ X r,l,
π, otherwise,

where π = min{ρ(r,l)k : x0(r,l)k ∈ X r,l, k ∈ I[1,Kr]}.
Let λr,l and x0(r,l) be the λ(r,l)k and x0(r,l)k associated with
ρ♮r,l. Then for any ρr,l ∈ (ρ♯r,l, ρ

♮
r,l), E(P, ρr,l) is contrac-

tively invariant on X o
r,l for the corresponding system in (10).

Moreover, E(P, ρ♮r,l) is the maximal contractively invariant
ellipsoid on X r,l if x0(r,l) ∈ X r,l.

We proceed to solve the nonlinear equations (23) and (24).
Substituting (23) into (24), we have

λbT
r,lΥr,lΥr,lbr,l + bT

r,lΥr,lbr,l = αr,l, (27)
where Υr,l = (Sr,l + λI)−1. We consider two following
cases:

Case 1) αr,l ̸= 0. It follows from (27) that
bT
r,lΥr,l(Sr,l + 2λI)Υr,lbr,l = αr,l

⇐⇒ det

[
αr,l −bT

r,lΥr,l

−Υr,lbr,l (Sr,l + 2λI)−1

]
= 0

⇐⇒ det

[
Sr,l + λI Sr,l

−α−1
r,l br,lb

T
r,l Sr,l − 2α−1

r,l br,lb
T
r,l + λI

]
= 0,

which implies that λ is an eigenvalue of the following matrix[
−Sr,l −Sr,l

α−1
r,l br,lb

T
r,l −Sr,l + 2α−1

r,l br,lb
T
r,l

]
. (28)

Case 2) αr,l = 0. It follows from (27) that
bT
r,lΥr,l(Sr,l + 2λI)Υr,lb = 0

⇐⇒ det

[ 1
λI + S−1

r,l S−1
r

Ψ 1
λI + S−1

r,l

]
= 0,

where Ψ = (bT
r,lS

−1
r,l br,l)

−1S−1
r,l br,lb

T
r,lS

−1
r,l . Then, 1

λ is an
eigenvalue of the following matrix[

−S−1
r,l S−1

r,l

(bT
r,lS

−1
r,l br,l)

−1S−1
r,l br,lb

T
r,lS

−1 −S−1
r,l

]
. (29)

If (28) (or (29)) has no negative real eigenvalues or (25) is
not satisfied, that is, (23)-(26) have no solutions, let ρ♮r,l = 0.
Otherwise, compute ρ♮r,l as (28) (or (29)). Let

ρ♮ =

{
κ, ∃ r such that x0(r,l) ∈ X r,l,
+∞, otherwise. (30)

where κ = min{ρ♮r,l : x0(r,l) ∈ X r,l, ρ
♮
r,l ̸= 0, r, l ∈

I[1,R]}.
Theorem 6 Let ρ∗ be defined as (20), then ρc =
min{ρ∗, ρ♮}.

We consider a special class of system (2), the planar sys-
tems, that is, n = 2. Since the intersection of ∂E(P, ρ)
and the surface fjx = 1, j = 1, 2, · · · ,m, only includes
isolated states, Lemma 4 and Lemma 5 cannot be used to
determine the maximal contractively invariant ellipsoid. In
this case, we only need to solve the quadratic equations
gr,l(z(r,l)2) = 0 with unknown z(r,l)2. Thus, we have
x0(r,l) = T−1[z(r,l)1, z(r,l)2]

T. Then ρ♮ can be determined
from (30).
4.3 An algorithm for the determination of ρc

In this subsection, we summarize all the criterions pre-
sented in this paper in a comprehensive algorithm to deter-
mine the maximal contractively invariant ellipsoid E(P, ρc)
for a linear system with multiple inputs subject to actuator
saturation.

Algorithm 1: The determination of ρc.
Step 1. Solve the optimization problem (7). Set the op-

timal solution (ρ∗,H∗
1 ,H

∗
2 , · · · ,H∗

2m). If the optimal solu-
tion satisfies conditions in Theorem 3, then ρc = ρ∗. Else go
to Step 2.

Step 2. Solve the optimization problems (11). Set the
optimal solutions (ρ∗i , h

∗
i ), i = 1, 2, · · · , 1

2 (3
m − 1). Com-

pute x0i = ρ∗iP
−1h∗

i
T for the solvable optimization prob-

lems. If all x0i /∈ Ωi, set ρ∗ = +∞. Else, denote



ρ∗ = min{ρ∗i : x0i ∈ Ωi}. If the condition in Theorem
4 is satisfied, then ρc = ρ∗. Else go to Step 3.

Step 3. If n = 2, solve the quadratic equations
gr,l(z(r,l)2) = 0 with unknown z(r,l)2. Compute x0(r,l) =

T−1[z(r,l)1, z(r,l)2]
T and determine ρ♮ from (30). Go to Step

8. Else go to Step 4.
Step 4. Let ρi = ρ∗i and ρ = ρ∗. Define Ω = {Ωi : ρi <

ρ}. For every Ωi ∈ Ω, compute ρ∗i , and determine ρ∗ from
(20). If ρ∗ = +∞, go to Step 6. Else go to Step 5.

Step 5. Set ρ∗ = min{ρ, ρ∗}. If the condition in Theorem
5 is satisfied, then ρc = ρ∗. Else go to Step 6.

Step 6. Set Ω = {Ωi : ρ
∗
i < ρ∗}. Denote the intersections

between Ωi’s in Ω as X r,l, where r, l ∈ {i : Ωi ∈ Ω}.
Step 7. For every pair (r, l), compute ρ♮r,l. Determine ρ♮

from (30).
Step 8. ρc = min{ρ∗, ρ♮}.

5 A Numerical Example

Consider system (2) with the following matrices:

A =

[
−5 −2 10
−4 −1 −1
0 3 1

]
, B =

[
−4 −1
1 −2

−5 3

]
,

F =

[
9.3733 −0.3965 9.0277
6.1005 7.4549 −7.1289

]
, P = I.

Solving the optimization problem (5), we obtain ρ∗ =

2.4605, H∗ =

[
0.2567 0.2204 0.5402

−0.3290 0.5425 −0.0404

]
, and

ρ∗h∗
1P

−1h∗T
1 = 1. Moreover, λmax(He(P (A + BDiF +

BD−
i H

∗))) = 0, where D−
i = diag{1, 0}. Condi-

tions 1) and 2) in Theorem 2 are both satisfied. How-
ever, x0 = ρ∗P−1h∗T

1 = [0.6315, 0.5425, 1.3292]T, and
Fx0 = [17.7041,−1.5804]T. Condition 3) in Theorem 2 is
not satisfied. Thus we have ρc ̸= ρ∗ = 2.4605. Next, solv-
ing the optimization problem (7), we obtain ρ∗ = 2.8799 and
λmax(He(P (A + BDiF + BD−

i H
∗
i ))) = 0, where D−

i =

diag{1, 0}, and H∗
i =

[
−0.0538 0.0014 −0.0971

0 0 0

]
.

Moreover, x0 = ρ∗P−1h∗T
1 = [0.6287, 0.9601, 1.2499]T,

and Fx0 = [16.7955, 2.0825]T. Condition 3) in Theorem
3 is not satisfied either. Hence, ρc ̸= ρ∗ = 2.8799.

Solving the group of optimization problems in (11), we
obtain ρ∗1 = 8.1542, ρ∗2 = 2.8766, and ρ∗i = 0, i = 3, 4.
Moreover, there exists no x0i ∈ Ωi, ∀ i ∈ I[1, 4]. Clearly,
the condition in Theorem 4 is not satisfied. On the other
hand, computing the eigenvalues of matrices (19) associated
with Ω3 and Ω4, we obtain ρ∗3 = 0.9841, ρ∗4 = 4.8290,
and x03 /∈ Ω3, x04 ∈ Ω4. Moreover, both LMIs in (14)
associated with Ω3 and Ω4 are feasible. Thus, ρ∗ = ρ∗4 =
4.8290, and Ω = {Ω2,Ω3}. Clearly, Ω2 is adjacent to Ω3.
Thus, Theorem 5 does not apply to this example. Next, we
consider the intersection X 2,3, and compute the eigenval-
ues of the corresponding matrices (28). Then we obtain
ρ♮ = ρ♮2,3 = 3.2276. Finally, by Theorem 6, we have
ρc = min{ρ∗, ρ♮} = min{4.8290, 3.2276} = ρ♮ = 3.2276.

We depict V̇ (x) on ∂E(P, 3.2276) in the left plot of Fig.
1, where the maximal value of V̇ (x) is not larger than 0.
Shown in the right plot of Fig. 1 is V̇ (x) on the intersec-
tion between ∂E(P, 3.2276) and x1 = 0.7018. Clearly, the
maximal value of V̇ (x) on ∂E(P, 3.2276) reaches 0. This
verifies that ρc = 3.2276. Moreover, dV̇ (x)

dx |x0 ̸= 0 can be
also observed, which implies that x0 ∈ X 2,3.
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Fig. 1: The derivative V̇ (x) on ∂E(P, ρc).

6 Conclusions

This paper revisits the problem of determining the maxi-
mal contractively invariant ellipsoid for a linear system with
multiple inputs subject to actuator saturation. A comprehen-
sive algorithm was developed to determine the maximal el-
lipsoidal invariant set by using LMIs and algebraic compu-
tational approaches. Simulation examples, including the one
in Section 5 and those in the journal version of this paper
[11], illustrated that this algorithm is capable of determining
the maximal ellipsoidal invariant set for any linear system
with multiple inputs subject to actuator saturation.
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