内容简介:
             布尔网络已成为描述和模拟细胞网络(其元素只有开关行为)的强大工具。本书提供了系统地分析和控制布尔网络的全新方法,基本工具是称为矩阵半张量积的这一新的矩阵乘法。使用矩阵半张量积可将逻辑函数表示成传统的离散时间线性系统,从而可以通过一组公式轻松揭示布尔网络拓扑结构的一些基本特性,如不动点、极限环、暂态期和吸引域等。这一理论框架使得动态控制系统的状态空间方法可应用于布尔网络的控制。布尔控制网络的双线性系统表示使得研究其能控、能观、镇定、干扰解耦、辨识、最优控制等基本控制问题成为可能。
            本书自成体系,读者只需线性代数和线性控制系统的基本知识。本书开始于对命题逻辑和矩阵半张量积的简要介绍。然后用布尔(控制)网络的(双)线性表示研究其干扰解耦和分解等问题。最后,考虑到多值逻辑能够更准确地描述实际的网络,本书也对其做了介绍并引入随机布尔网络等。附录是相关的数值计算,相关的MATLAB®工具箱可从http://lsc.amss.ac.cn/~dcheng/下载。
            本书可为从事系统生物学、控制、系统科学和物理相关领域的研究人员提供基本参考,也可成为研究生课程的教材。计算机科学家和逻辑学家或许也能从本书中找到感兴趣的内容。 
            
          英文目录: 
          
1   Propositional Logic
  1.1 Statements
  1.2 Implication and Equivalence
  1.3 Adequate Sets of Connectives
  1.4 Normal Form
  1.5 Multi-valued Logic
  References
2   Semi-tensor  Product of Matrices
  2.1 Multiple-Dimensional Data
  2.2 Semi-tensor Product  of Matrices
  2.3 Swap Matrix
  2.4 Properties of the Semi-tensor Product
  2.5 General Semi-tensor Product
  References
3   Matrix Expression of Logic
  3.1 Structure Matrix  of a Logical Operator
  3.2 Structure Matrix  for k-valued  Logic
  3.3 Logical Matrices
  References
4   Logical Equations
  4.1 Solution of a Logical  Equation
  4.2 Equivalent Algebraic Equations
  4.3 Logical Inference
  4.4 Substitution
  4.5 k-valued Logical  Equations
  4.6 Failure Location: An Application
    4.6.1 Matrix Expression of Route Logic
    4.6.2 Failure  Location
    4.6.3 Cascading Inference 
  References
5   Topological Structure of a Boolean  Network
  5.1 Introduction to Boolean  Networks
  5.2 Dynamics of Boolean  Networks
  5.3 Fixed Points  and Cycles
  5.4 Some Classical Examples
  5.5 Serial Boolean Networks
  5.6 Higher Order Boolean  Networks
    5.6.1 First Algebraic Form of Higher Order Boolean  Networks
    5.6.2 Second Algebraic Form of Higher  Order Boolean Networks
  References
6   Input-State  Approach to Boolean  Control Networks
  6.1 Boolean Control  Networks
  6.2 Semi-tensor Product  Vector Space vs. Semi-tensor Product Space
  6.3 Cycles in Input-State Space
  6.4 Cascaded Boolean  Networks
  6.5 Two Illustrative Examples
  References
7    Model Construction via Observed Data
  7.1 Reconstructing Networks
  7.2 Model Construction for General Networks
  7.3 Construction with Known Network Graph
  7.4 Least In-degree Model
  7.5 Construction of Uniform Boolean  Network
  7.6 Modeling via Data with Errors
  References
8   State Space and Subspaces
  8.1 State Spaces  of Boolean Networks
  8.2 Coordinate Transformation
  8.3 Regular  Subspaces
  8.4 Invariant Subspaces
  8.5 Indistinct Rolling  Gear Structure
  References
9   Controllability and Observability  of Boolean Control Networks
  9.1 Control via Input Boolean  Network
  9.2 Subnetworks
  9.3 Controllability via Free Boolean  Sequence
  9.4 Observability
  References
10   Realization  of Boolean Control Networks
  10.1 What Is a Realization?
  10.2 Controllable Normal Form
  10.3 Observable Normal Form
  10.4 Kalman Decomposition
  10.5 Realization
  References
11   Stability and Stabilization
  11.1 Boolean Matrices
  11.2 Global Stability
  11.3 Stabilization of Boolean  Control Networks
  References
12   Disturbance  Decoupling
  12.1 Problem Formulation
  12.2 Y -friendly Subspace
  12.3 Control Design
  12.4 Canalizing Boolean Mapping
  12.5 Solving DDPs via Constant Controls
  References
13   Feedback Decomposition of Boolean Control Networks
  13.1 Decomposition of Control  Systems
  13.2 The Cascading State-space Decomposition Problem
  13.3 Comparable Regular  Subspaces
  13.4 The Parallel State-space Decomposition Problem
  13.5 Input–Output Decomposition
  References
14   k-valued Networks
  14.1 A  Review of k-valued  Logic
  14.2 Dynamics  of k-valued  Networks
  14.3 State  Space and Coordinate Transformations
  14.4 Cycles  and Transient Period
  14.5 Network Reconstruction
  14.6 k-valued  Control Networks
  14.7 Mix-valued Logic
  References
15   Optimal Control
  15.1 Input-State Transfer  Graphs
  15.2 Topological Structure of Logical Control  Networks
  15.3 Optimal Control of Logical Control  Networks
  15.4 Optimal Control of Higher-Order Logical Control  Networks
  References
16   Input-State  Incidence Matrices
  16.1 The Input-State Incidence  Matrix
  16.2 Controllability
  16.3 Trajectory Tracking and Control Design
  16.4 Observability
  16.5 Fixed Points  and Cycles
  16.6 Mix-valued Logical  Systems
  References
17   Identification of Boolean Control Networks
  17.1 What Is Identification? 
  17.2 Identification via Input-State Data
  17.3 Identification via Input–Output Data
  17.4 Numerical Solutions
    17.4.1 General Algorithm
    17.4.2 Numerical Solution  Based on Network Graph
    17.4.3 Identification of Higher-Order Systems
  17.5 Approximate Identification
  References
18   Applications to Game Theory
  18.1 Strategies with Finite Memory
  18.2 Cycle Strategy
  18.3 Compounded Games 
  18.4 Sub-Nash Solution for Zero-Memory Strategies
  18.5 Nash Equilibrium for μ-Memory Strategies
  18.6 Common Nash (Sub-Nash) Solutions for μ-Memory Strategies
  References
19   Random Boolean Networks
  19.1 Markov Chains
  19.2 Vector Form of Random Boolean  Variables
  19.3 Matrix Expression of a Random  Boolean Network
  19.4 Some Topological Properties
  References
Appendix A    Numerical Algorithms
  A.1 Computation of Logical Matrices
  A.2 Basic Functions
  A.3 Some Examples
Appendix B Proofs of Some Theorems Concerning the Semi-tensor Product