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Abstract: This paper reports our recent research about new efficient problem-solvers for the dynamic weapon-target assignment 
(DWTA). A binary-encoding-based estimation of distribution algorithm (EDA) is proposed to solve DWTA problems. An 
elaborate constructive repair/improvement (CRI) operator is proposed and integrated into the EDA to achieve constraint 
saturation, which conduces to constraint satisfaction as well as the improvement of generated solutions. The performance 
comparison against another two EDAs which employ well-known constraint handling methods demonstrates the superiority of 
the CRI operator. The proposed EDA based on the CRI operator also shows very competitive and even better performance 
against several state-of-the-art DWTA algorithms. 
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1 Introduction 
The dynamic weapon-target assignment (DWTA) 

problem is a typical NP-Complete combinatorial 
optimization problem which is rooted in military operations 
research[1]-[4]. In practice, commanders have to react to the 
battle situation quickly while deliberating the whole 
combating effect through all stages to ensure the quality of 
decision schemes on resource allocation. The objective of 
DWTA is to minimize the own-force damage in defense 
scenarios or maximize the damage of enemies in offense 
scenarios by assigning available weapons to hostile targets 
on appropriate engagement occasions. In contrast to the 
static weapon-target assignment (SWTA) in which all 
weapons are assigned to targets in a single stage[1], a distinct 
feature of DWTA lies in that DWTA considers the pairing 
of weapons and targets among multiple engagement stages[2]. 
In other words, the resource allocation in DWTA involves 
the triplet pairing of weapons, targets and stages[5]-[7]. In the 
following, we provide a brief review on previous DWTA 
research. 

Most previous research on the weapon-target assignment 
has been focused on SWTA[4]. DWTA began to gain more 
attention of researchers only in recent years though it was 
formally put forward by Hosein and Athans in 1990[2]. Cai et 
al. provided a survey on WTA research and set forth some 
basic concepts on DWTA[4]. Hosein and Athans made a 
pioneering effort to analyze a two-stage DWTA process and 
proposed a suboptimal algorithm to find some desirable 
solutions[8]. Khosla proposed a hybrid algorithm of genetic 
algorithm and simulated annealing to solve a DWTA 
problem for network-centric force coordination[9]. Zacherl 
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designed a genetic algorithm to solve the DWTA problem 
involved in a UAV’s mission of striking time-sensitive 
targets[10]. Wu et al. proposed a DWTA algorithm based on 
genetic algorithm which handles targets one by one 
according to the deadlines of each weapon-target 
assignment pair[11]. Dionne et al. developed a sequential 
DWTA algorithm for naval warfare which considers all 
potential decisions and suffers from dimensional 
explosion[12]. Li et al. proposed a target-based DWTA model 
which aims at minimizing the total threat of the targets 
surviving through the whole defense process[13]. Recently, 
we built a generic defense-oriented asset-based DWTA 
model which incorporates different kinds of practical 
constraints[5]. We proposed an efficient permutation-based 
tabu search algorithm to solve the DWTA problem[6]. The 
tabu search algorithm takes advantage of a construction 
procedure to convert the permutations of available 
weapon-target-stage assignment pairs into saturated feasible 
solutions. In order to fit the real-time requirement of DWTA, 
we also proposed a constructive heuristic which uses the 
domain knowledge of DWTA in the form of three simple 
rules to obtain a high-quality solution very quickly[7]. The 
heuristic has a notable virtue of low computational 
complexity.  

The contribution of this paper is twofold. First, a new 
sophisticated constructive repair/improvement operator is 
proposed to handle constraints in DWTA. The operator can 
be applied in any binary-encoding based DWTA algorithms. 
Second, an estimation of distribution algorithm is proposed 
to solve DWTA problems more efficiently. 

2 Mathematical Model of the DWTA Problem 
The objective of the DWTA decision-making process is 

to maximize the expected total value of own-force assets 
surviving through the whole defense process: 
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where K and S  are the number of threatened assets and 
that of defense stages, respectively, t  is the stage index, 

1 2[ , , , ]SX X X=X  with [ ( )]t ij W TX x t ×=  is the 
decision matrix at stage t , and ( ) 1ijx t =  if weapon i  is 
assigned to target j  at stage t , ( ) 0ijx t =  otherwise; kT  
is the index set of the targets which threaten asset k ; t

jW  is 
the index set of the weapons which are assigned in stage t  
to intercept target j ; kv  is the value of asset k ; jkq  is the 
lethality probability that target j  destroys asset k , 
and ( )ijp t  is the lethality probability that weapon i  
destroys target j  at stage t  which can be evaluated 
according to actual combat situations. 

The following four kinds of constraints are considered in 
the DWTA model[5]-[7]:  
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where T and W are the number of targets and that of 
weapons, respectively. 

The constraint (2) reflects the weapons’ capability of 
striking multiple targets at the same time. In practice, most 
weapons can only engage a single target each time. Besides, 
a superior weapon capable of engaging multiple targets 
concurrently can be regarded as multiple separate weapons. 
Accordingly, we set 1in =  for {1,2, , }i W∀ ∈ . The 
constraint (3) restricts the ammunition consumption for each 
target at each stage. We assume that 1jm = for 

{1,2, , }j T∀ ∈ . This is a rational setting for combating 
systems with high accuracy and lethality, consistent with the 
common “shoot-look-shoot” engagement policy[2]. The 
constraint (4) is a resource constraint, reflecting the amount 
of ammunition available for weapons. 

iN ( 1,2, , )i W =  is the maximal number of times that 
weapon i can be used. The constraint (5) reflects the 
engagement feasibility with ( )ijf t  indicating whether 
weapon i  can be used to strike target j  at stage t . 

( ) 0ijf t =  if weapon i  cannot shoot target j  at stage t  
for any potential reason (e.g., the time window of targets and 
weapons[4],[11],[13]), and ( ) 1ijf t =  otherwise.  

A complete DWTA process is a multi-stage decision- 
making process. At each decision-making stage, the 
decision-maker (DM) needs to work out a global assignment 
scheme which takes into account the whole defense effect 
through all subsequent defense stages[6]. However, only the 
assignments which can be implemented immediately at the 
current stage are carried out. When entering the next stage, 
the DM has observed the outcomes of previous 

engagements and has to reformulate a new global 
assignment scheme which covers the subsequent stages 
starting from the next stage[7]. Nevertheless, from the 
perspective of DWTA problem-solving, the DM at each 
stage faces a similar global assignment problem. Besides, 
the DWTA problems corresponding to latter stages usually 
become much easier due to the reduction of targets, 
available weapons and engagement occasions. Therefore, 
the same DWTA algorithm can be applied at different stages, 
which means that one is only interested in obtaining 
assignments for the present stage[2]. In the following, we 
will focus on the DWTA problem-solving at one 
decision-making stage to design and evaluate DWTA 
algorithms. 

3 Estimation of Distribution Algorithm for 
DWTA problem-solving 

Estimation of distribution algorithms (EDAs), also 
termed as probabilistic model-building genetic 
algorithms[14]-[15], are population-based stochastic search 
algorithms that explore the space of potential solutions by 
building and sampling the probability model of promising 
candidate solutions. EDAs maintain a population of 
solutions and follow a cyclic operation procedure composed 
by three primary operations: choosing a subset of elite 
solutions (selection), building a probability model from the 
chosen solutions (modeling), and generate new solutions 
from the constructed model (sampling).  

3.1 Solution Encoding and Probability Model 

An appropriate solution encoding scheme is crucial for 
any competent algorithm to solve combinatorial 
optimization problems. The decision matrix X , apparently 
being a straightforward representation of solutions, is not an 
efficient encoding scheme as it contains many decision 
variables ( ( )ijx t ) which may violate the constraints in (5). 
In fact, it is unnecessary to include the variables which 
correspond to ( ) 0ijf t = since ( ) 1ijx t = will obviously 
violate constraints in this case. Therefore, we only consider 
feasible assignment pairs corresponding to ( ) 1ijf t =  which 
are also termed as available assignment pairs (AAPs) in 
previous research[5]-[7]. Arrange all AAPs by 

1AAP , 2AAP , , LAAP  where L denotes the number of 
AAPs and ( , , )k k k kAAP i j t= ( 1, 2, ,k L= ) is a 
triplet pairing of weapon ki , target kj and stage kt . We 
employ an L-sized 0-1 vector 1 2[ , , , ]Lz z z=z  to 
represent a DWTA solution where ( 1, 2, , )kz k L=  
indicates whether kAAP  is chosen ( 1kz = , 
equivalently, ( ) 1

k ki j kx t = ) or not ( 0kz = , 
i.e., ( ) 0

k ki j kx t = ).  

The EDA’s probability model for DWTA 
problem-solving is shown as follows: 
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where ( 1)kp z = is the probability that the component kz  
of elite solutions is one; 1 2[ , , , ]n n n n

Lz z z=z ( 1,2, ,n N= ) 



  

are elite solutions chosen for modeling; and N is the 
number of elite solutions, i.e., the sample size. 0.01 and 0.99 
are the lower and upper bounds for ( 1)kp z =  to avoid the 
premature convergence of the probability model. 
  The rule for generating new solutions from the above 
probability model is shown as follows: 

{1, if    < ( =1), for 1,2,...,0,    otherwise.
k

k
rand p zz k = L=   

   (7) 

where rand is a random number generated from the 
interval (0,1). 

Remark 1. The simple probability model was also 
employed in the classical univariate marginal distribution 
algorithm[16]. The linkage between different solution 
components may be considered to build a more 
sophisticated probability model such as a tree-based model 
or Bayesian network[14]-[15]. However, complicated models 
may cause a serious issue of computational complexity 
which is unacceptable for real-time DWTA 
decision-making. 

3.2 Constructive Repair/Improvement Operator 

The solutions which will be generated from the above 
model may not satisfy the constraints in (2), (3) or (4), 
resulting in infeasible solutions. Besides, even if feasible 
solutions can be produced, they may be unsaturated, 
meaning that more AAPs can be chosen to produce better 
solutions without any constraint violations. It should be 
noted that a saturated feasible solution contains as many 
assigned AAPs as possible, and any further addition of other 
AAPs will give rise to constraint violation. From the above 
considerations, in the following we propose a novel 
constructive repair/improvement operator to ensure 
constraint satisfaction as well as improve the quality of 
feasible solutions:  

Step 1. Convert the solution 1 2[ , , , ]Lz z z=z  
generated by the probability model into a new vector 

1 2[ , , , ]Lr r r=r  as follows: 
1 2* (1 )* for 1,2,...,k k k k kr z rand z rand k = L= − − ,     (8) 

where 1
krand and 2

krand are two random numbers 
generated from the interval (0,1). 

Step 2. Sort all AAPs in the descending order of the 
values of their corresponding elements in the vector r . For 
example, the vector [ 0.1,0.3,0.8, 0.6,0.2]= − −r which 
is generated from [0,1,1,0,1]=z will give the sorting 

result: 3AAP , 2AAP , 5AAP , 1AAP , 4AAP . 
Step 3. Use the following construction procedure to 

generate a saturated feasible solution: 

For i = 1 to L 

       Check if assigning the ith AAP ( ( )k iAAP ) in the 
sorted sequence will violate any constraints: if no 
constraints are violated, let ( ) 1k iz = ; otherwise, let 

( ) 0k iz = . 

End 

The above constructive repair/improvement (CRI) 
operator has the following features: 

1) Be able to retain the information contained in the 
probability model to large extent. On one hand, in the 
solution generated from the probability model, the chosen 
AAPs will be endowed with positive r values, and the 
unchosen ones lead to negative r values. Consequently, the 
chosen AAPs will be arranged to the head of the AAP 
sequence in Step 2, and they will be preferred to be rechosen 
in Step 3. On the other hand, the chosen AAPs which do not 
violate constraints will be reserved in the solution finally 
produced by Step 3. 

2) The construction procedure in Step 3 guarantees that 
all solutions generated by the CRI operator are saturated 
feasible solutions. The operator can not only repair 
infeasible solutions but also improve the quality of feasible 
solutions. 

3) Among all the chosen AAPs generated by EDA’s 
sampling procedure, the randomizing operation shown in (8) 
shows no preference to any of them. Therefore, any AAP 
which may have conflicts against other AAPs will have an 
opportunity to be included in the final solution produced by 
the CRI operator.  

3.3 EDA  

The procedure of the proposed EDA is presented as 
follows: 

Step 1. Initialization 
Randomly generate 1PS − solutions with 
( 1) 0.5kp z = = ( 1, 2, ,k L= ) and use the CRI 

operator to repair and improve the initial solutions. Use the 
rule-based heuristic proposed in [7] to generate a solution 
and add it into the population. Record the best solution in the 
whole population. 

Remark 2. The rule-based heuristic in [7] is de facto a 
deterministic greedy algorithm which chooses AAPs 
according to their ( )k jk ijv q p t values. 

Step 2. Elitist Selection 
Sort the PS  solutions in the descending order of their 

objective values. Select the *N PS R= ( (0,1)R ∈ ) top 
solutions to build the probability model [see (6)]. 

Step 3. Sampling 
Use the constructed model to generate PS N− new 

solutions, and use the CRI operator to repair and improve 
them. Replace the worst PS N−  solutions in the current 
population by the new solutions. Update the so-far-best 
solution. 

Step 4. Termination Criterion 
If the termination criterion is satisfied, terminate the 

algorithm and output the so-far-best solution; otherwise, go 
to Step 2. 

4 Computational Experiments and Performance 
Comparison  

There are ten DWTA test instances involved in the 
experiments, including two simple small-sized instances in 
[6] and eight instances generated by the test-case generator 
proposed in [7]. The characteristic parameters of these 
instances are listed as follows. 



  

Instance 1: Naval Single-Platform Combat Scenario  
(W5T3S3K1, L = 29) 

Instance 2: Ground-based Air Defense Scenario  
(W8T5S3K5, L = 36) 

Instance 3: W10T10S4K5 (L = 209) 
Instance 4: W20T10S4K5 (L = 387) 
Instance 5: W20T20S4K10 (L = 815) 
Instance 6: W20T20S4K20 (L = 803) 
Instance 7: W50T50S4K20 (L = 495) 
Instance 8: W50T50S4K20 (L = 2023) 
Instance 9: W100T50S4K50 (L = 1017) 
Instance 10: W100T100S4K50 (L = 1999) 

    All experiments were carried out in Matlab (Version 6.5) 
on a laptop with Intel (R) Core i5 CPU (2.27GHz) and 
1.92GB internal memory. Regarding any instance, all 
algorithms independently run 30 times and results are 
statistically analyzed. Without specific claims, any 
algorithm will be terminated when the number of function 
evaluations reaches min{5 * * ,50000}W T S . The EDA 
algorithm has two parameters: population size ( PS ) and 
selection ratio ( R ). Four kinds of settings are tested for 
each of them: 50,100,200,500PS = and 

0.1,0.3,0.5,0.7R = . There are totally sixteen 
combinations of the two parameters. It was found in 
preliminary experiments that 0.3R = is always a nice 
choice, and a smaller population size ( 50PS = ) fits 
small-sized instances while a larger population size 
( 200PS = ) is a better choice for large-sized instances. To 
save space, the detailed results are not shown here and the 
identified setting is described as follows: 

 50PS = and 0.3R = for instances with 1000L ≤ ; 
200PS = and 0.3R = for instances with 1000L > . 
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Fig. 1: The dynamic change of EDA’s probability model and the 
EDA’s convergence process (instance 7). 

Fig.1 shows the dynamic change of the EDA’s probability 
model and the convergence process of EDA in solving 
instance 7. For clarity, only five components of the 
probability model, ( 1)kp z = ( 1, 2,3,4,5k = ), are 
shown in Fig.1. It is clear that with the increase of 
generations, the probability model tends to polarization, that 

is to say, the probability values of the EDA model reach 
either its lower bound (0.01) or upper bound (0.99). Along 
with the polarization of the probability model, the algorithm 
converges as indicated by the curve of the average objective 
value of all solutions in the population. 

The following experiments are arranged into two parts. 
The first part provides a comparison between different 
constraint handling methods which are embedded into the 
same EDA algorithm, including the CRI operator and two 
well-known constraint handling methods in the constrained 
evolutionary optimization research. The second part gives a 
comparison between the proposed EDA and two 
state-of-the-art DWTA algorithms.  

4.1 Comparison on Constraint Handling Methods 

    There are many choices to handle constraints in 
constrained optimization[17]. The most common constraint 
handling methods are penalty functions which integrate the 
constraint handling and the improvement of objective values 
into a penalty function. Infeasible solutions will be 
penalized by decreasing (penalizing) their fitness according 
to their constraint violations. As pointed out by Runarrson 
and Yao, a crucial issue in the design of penalty functions is 
how to strike a balance between objective improvement and 
constraint satisfaction[18]. Runarsson and Yao proposed a 
stochastic ranking (SR) approach to balance the two goals in 
constrained optimization[18]. Deb proposed a 
straightforward approach based on three feasibility rules 
(FR)[19]. Both SR and FR allow the evolutionary population 
to include infeasible solutions. In SR, two feasible solutions 
are compared according to their objective values. In other 
cases, any two solutions are compared according to their 
objective values with probability fP  and according to their 
constraint violations with probability1 fP− [19]. Obviously, 
SR balances constraint satisfaction and objective 
improvement stochastically. In contrast, FR adopts three 
simple rules for pairwise comparison of solutions: 1) any 
feasible solution is preferred to any infeasible one; 2) among 
two feasible solutions, the one having better objective value 
is preferred; 3) among two infeasible solutions, the one 
having smaller constraint violation is preferred[19].  

In the following, SR and FR will be incorporated into the 
EDA framework in the previous section to solve DWTA 
problems. For both SR and FR, the constraint violation of a 
solution (denoted byφ ) is measured as follows: 
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where ( )H ⋅ is equal to the value of its argument if the 
argument is positive, and zero otherwise. 
    For brevity, the EDAs based on SR, FR and CRI are 
termed as EDA-SR, EDA-FR and EDA-CRI, respectively. 
The three EDA variants adopt the same probability model, 
the same sampling method as well as the same setting of 
EDA parameters. However, EDA-SR and EDA-FR do not 
employ the CRI operator to repair and/or improve solutions. 



  

Besides, it was observed that EDA-SR and EDA-FR spend 
less time generating new solutions. In the experiments, 
EDA-SR and EDA-FR are allowed to run until the maximal 
time that EDA-CRI takes among 30 runs has been exceeded. 
In EDA-SR, three different settings for its parameter fP  
are considered: 0.1,0.3,0.45fP =  where 0.45fP = is 
suggested by Runarsson and Yao[18]. Only the results 
corresponding to the best setting are presented for EDA-SR 
in each case. The experimental results about the three EDAs 
are shown in Tables 1 and 2. 
     From Tables 1 and 2, it is obvious that EDA-CRI 
outperforms both EDA-SR and EDA-FR in all cases. 
EDA-SR and EDA-FR even failed to find feasible solutions 
in some cases. For example, EDA-SR and EDA-FR did not 
produce feasible solutions once and twice among 30 runs 
regarding instance 5, respectively. In fact, both EDA-SR 
and EDA-FR spend too much time on infeasible solutions. 
In contrast, EDA-CRI only produces saturated feasible 
solutions, which benefits EDA-CRI to focus its search on 
promising solutions. 

4.2 Comparison against State-of-the-Art DWTA 
Algorithms 

    The tabu search (TS) based DWTA algorithm proposed 
in [6] and the rule-based constructive heuristic (CH) 
proposed in [7] are chosen for a further comparison with 
EDA-CRI. Like EDA, TS is a search algorithm; however, it 
relies on neighborhood exploration and diversification 
mechanisms to carry out a trajectory search rather than the 
population-based search in EDA. In contrast, CH is a 
deterministic greedy algorithm which produces a single 
solution without any iterative search. As claimed in [7], the 
main advantage of CH is its lower computational 
complexity which fits the DWTA requirement on real-time 
computation very well. Both TS and CH are employed to 
solve the above ten DWTA instances. The termination 
criterion for TS is same with that for EDA-CRI. The 
computational results are shown in Tables 1 and 2. 
     As shown in Table 1, EDA-CRI performs comparatively 
against TS in solving instances 1 and 2, and outperforms TS 
in all of the remaining cases. Compared with CH, EDA-CRI 
produces significantly better solutions in solving instances 1, 

Table 1: Statistical Results on Different DWTA Algorithms in the Form of the Mean plus Standard Deviation of Finally Discovered 
Best Objective Values in 30 Runs.  

Instance 
No. EDA-CRI EDA-SR EDA-FR Tabu search[6] Constructive 

heuristic[7] 
1 0.53007 ± 0.00185 0.45629 ± 0.06675(30)* 0.41763 ± 0.09191(30)* 0.53089 ± 0.00182# 0.52763 ± 0* 

2 171.104 ± 0 168.790 ± 1.579(30)* 168.040 ± 1.905(30)* 171.104 ± 0# 169.500 ± 0* 

3 312.76 ± 1.08 275.21 ± 12.46(30)* 273.72 ± 10.58(30)* 309.41 ± 1.80* 309.41 ± 0.00* 

4 332.26 ± 0.08 307.57 ± 6.78(30)* 304.53 ± 7.74(30)* 332.13 ± 0.10* 331.7 ± 0* 

5 577.73 ± 0.00 357.75 ± 29.34(29)* 325.29 ± 31.14(28)* 560.20 ± 4.24* 577.73 ± 0# 

6 1296.7 ±  0.0 1029.6 ± 37.7(26)* 991.2 ± 39.1(30)* 1283.5 ± 4.6* 1296.7 ± 0# 

7 1004.2 ± 1.8 885.13 ± 29.23(30)* 830.43 ± 21.51(30)* 986.80 ± 6.32* 970.59 ± 0* 

8 928.42 ± 0.00 429.38 ± 39.22(22)* 410.50 ± 37.98(25)* 912.05 ± 2.98* 928.42 ± 0# 

9 2988.7 ± 0.4 2569.9 ± 37.8(30)* 2514.5 ± 44.6(30)* 2986.1 ± 0.8* 2980.9 ± 0* 

10 2464.1 ± 0.0 1165.4 ± 74.1(24)* 1081.5 ± 67.8(24)* 2423.2 ± 7.6* 2464.1 ± 0# 
The numbers in parentheses for EDA-SR and EDA-FR are the times that they find feasible solutions in each case. 
* EDA-CRI performs better than the target algorithm, which is tested by the Wilcoxon rank sum test with a significance level 0.05. 
# The performances of EDA-CRI and the target algorithm have no significant difference. 
 
Table 2: Statistical Results on Different DWTA Algorithms in the Form of the Mean plus Standard Deviation of the Computation Time 

(in seconds) in 30 Runs 

Instance 
No. EDA-CRI EDA-SR EDA-FR Tabu search[6] Constructive 

heuristic[7] 
1 0.053 ± 0.008 0.071 ± 0.008 0.071 ± 0.008 0.035 ± 0.013 0.001 ± 0.004 

2 0.160 ± 0.077 0.234 ± 0.000 0.234 ± 0.003 0.092 ± 0.027 0.001 ± 0.004 

3 0.781 ± 0.036 0.823 ± 0.007 0.824 ± 0.007 0.458 ± 0.086 0.003 ± 0.008  

4 2.090 ± 0.057 2.290 ± 0.008 2.290 ± 0.008 1.306 ± 0.180 0.005 ± 0.007 

5 7.299 ± 0.223 7.447 ± 0.007 7.446 ± 0.008 8.213 ± 1.655 0.014 ± 0.009 

6 7.134 ± 0.078 7.348 ± 0.007 7.347 ± 0.006 7.631 ± 1.515 0.014 ± 0.009 

7 44.54 ± 1.42 48.43 ± 0.01 48.43 ± 0.01 20.29 ± 0.41 0.011 ± 0.008 

8 108.99 ± 3.38 126.28 ± 0.00 126.28 ± 0.00 42.22 ± 1.28 0.056 ± 0.019 

9 75.84 ± 0.64 78.17 ± 0.00 78.17 ± 0.00 33.35 ± 0.64 0.036 ± 0.010 
10 129.84 ± 2.26 135.20 ± 0.00 135.20 ± 0.00 56.85 ± 1.65 0.092 ± 0.026 



  

2, 3, 4, 7 and 9. It is not surprising that EDA-CRI did not 
lose to CH since EDA-CRI uses CH to provide an initial 
solution. However, EDA-CRI did not further improve the 
solution generated by CH in solving instances 5, 6, 8 and 10, 
which demonstrates that CH did provide high-quality 
solutions. From Table 2, there is no doubt that CH is the best 
DWTA algorithm in terms of time cost. This is because CH 
only relies on simple rules to generate a single solution 
without any iterative search. However, it is noteworthy that 
if the time for DWTA decision-making permits, any effort to 
improve the quality of decision schemes should be preferred. 
As shown in Table 2, EDA-CRI can solve smaller-sized 
instances (instances 1-6) within a few seconds, and solve 
larger-sized ones (instances 7-10) within a few minutes. In 
fact, the time cost can be reduced since EDA-CRI has 
converged earlier before the termination criterion is satisfied 
(see Fig.1). Besides, since EDA-CRI is a population-based 
optimizer, it is easy to implement EDA-CRI in parallel if the 
computing platform supports parallel computation, which 
can further reduce its time cost. In this sense, EDA-CRI is a 
desirable choice for DWTA problem-solving. 

5 Conclusion and Future Work 
An estimation of distribution algorithm based on a novel 

constructive repair/improvement operator is proposed for 
DWTA problem-solving. The repair/improvement operator 
not only effectively exploits the information on promising 
solutions extracted by EDA’s probability model, but also 
helps to achieve constraint satisfaction as well as improve 
the quality of feasible solutions. It was shown that the 
repair/improvement operator is superior to two well-known 
constraint handling methods in solving DWTA problems. 
The proposed EDA incorporates the sophisticated operator 
and uses a rule-based constructive heuristic to provide an 
initial solution. Experimental results demonstrate the 
efficiency of the proposed EDA in DWTA problem-solving. 

As a promising research line, it is possible to incorporate 
the domain knowledge of DWTA (e.g., rules similar to those 
used by the constructive heuristic in [7]) into EDA more 
efficiently, especially in the process of building EDA’s 
probability model. The search bias induced by appropriate 
heuristic rules may accelerate the convergence towards 
high-quality DWTA solutions and even global optimal 
decision schemes. How to build a more competent 
probability model for EDA deserves further research. 
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