Can one hear the shape of a concept?

Weibo Gong Dept. of Electrical and Computer Engineering Dept. of Computer Sciences University of Massachusetts, Amherst

July 27, 2012

2012 Chinese Control Conference

Hefei, Anhui

Among the red-apricot branches spring runs riot!

闹=making noise

Why is blossoming connecting to making noise?

红杏枝头春意闹

Outline

• Abstract concepts might be coded as complex dense neuron networks, or graphs, in brain

- Methods for large graph similarity finding is crucial
- Possibilities for implementing these algorithms in networked computers could lead to concept abstraction capabilities (intelligence)

methodology

- Intelligence is a complex adaptive dynamic system
- Mathematical guidance is necessary
- Wigner: "the unreasonable effectiveness of mathematics" in physics, engineering, ...
- Einstein: "Mathematics is not accurate when it is real, and it is not real when accurate."

example: diffusion equation

$$\frac{\partial \rho(x, y, t)}{\partial t} = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \rho(x, y, t)$$

From the naïve Fick's law to infinite propagation speed

Where are the information and automation technologies going next?

- Intelligence machinery for the next technology revolution?
- A forgotten hero in our discipline –

Norbert Wiener (1894-1964)

Develop brain function motived algorithms

Mathematical Challenge One: **The Mathematics of the Brain** --- Develop a mathematical theory to build a functional model of the brain that is mathematically consistent and predictive rather than merely biologically inspired.

Our agenda: We would like to learn from the brain, but not to mimic the real brain. Our brain is formed from a trial and error process and inevitably accumulates many illogical constructions that are hard to reason with. How do we form the abstract concept of triangle as a young child?

Now an example of more complex "concept"

We can categorize the tree leaves very quickly. Why are we so good in distinguishing tree leaves ? Nature forced quick similarity finding algorithm for shapes

Once upon a time we were fishes –

Shape similarity finding is a life skill for fishes

Proposed Requirements for Concept Abstraction Algorithms

- Concepts and their instances are represented by network connectivity, or graphs;
- Concept representations should be invariant against the rotation/permutation changes of the input signal representations;
- Concept representations could check similarity "immediately" (meaning "almost instantaneously");
- The spatial/temporal signal conversion mechanisms should be plausible for emerging from randomness.

Could random walk over graph help recognizing network connectivity quickly?

Can one hear the shape of a drum?

Given two planar domains D1 and D2. If the Laplacian eigenvalues $\lambda_k(D_1) = \lambda_k(D_2)$, does it follow that D1 is congruent to D2?

Relaxed version: "how much can we know about the shape (geometric information) of the domain from the Laplacian eigenvalues".

Mark Kac (1914-1984)

Laplacian Eigenvalues and Eigenfunctions

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u_k(x, y, t) = \lambda_k u_k(x, y, t), \quad k = 1, 2, \dots$$

Diffusion on the drum head

$$\rho(x, y, 0) = \delta(x - x_0, y - y_0)$$
$$\frac{\partial \rho(x, y, t)}{\partial t} = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \rho(x, y, t)$$

For a bounded $\Omega \subset R^2$

more results like

If Ω has r holes and Ω and holes are polygons.

$$t \downarrow 0 : \sum_{n=1}^{\infty} e^{-\lambda_n t} \sim \frac{|\Omega|}{2\pi t} - \frac{|\partial\Omega|}{4\sqrt{2\pi t}} + \frac{1-r}{6}$$

Mark Kac's intuitive reasoning :

$$\frac{\partial \rho(u,t)}{\partial t} = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \rho(u,t), \quad (x,y) = u, (x_0, y_0) = u_0$$

Heat does not see the boundary at the beginning:

$$\rho(u,t) = \sum_{n=1}^{\infty} e^{-\lambda_n t} \varphi_n(u) \varphi_n^T(u_0) \sim \frac{1}{2\pi t} e^{-\frac{\|u-u_0\|^2}{2t}} \text{ when } t \downarrow 0$$

The works of van den Berg, P. Gilkey and others on heat content on closed domains in a manifold

Can we accomplish this for random walks on graphs?

Can we accomplish this for random walk on graphs?

- Graph G = (V, E, W), complete, undirected, weighted.
 Adjacency matrix A = [w_{u,v}]with w_{uv} = weight of edge(u, v)
 Degree matrix D = diag[d_u] with d_u = ∑_v w_{uv}
- Graph Lapacian of G = L = D A
- "Walk matrix" $M = AD^{-1}$ for "naive" random walk $p_{k+1} = Mp_k$

Normalized graph Laplacian $L_n = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$, symmetric. Random Walk graph Laplacian $L_r = LD^{-1} = I - M$

Heat content of diffusion on a graph

Patrick McDonald and Robert Meyers, "ISOSPECTRAL POLYGONS, PLANAR GRAPHS AND HEAT CONTENT", PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY V.131, No.11, 2003

Consider a weighted graph G(V, E) with boundary ∂G and its normalized graph Laplacian L_n . The heat operator is e^{-tL_n} . Now consider the heat flow $h_t(u, v)$ (absorbed at ∂G):

$$\frac{\partial h_t(u,v)}{\partial t} = -L_n h_t(u,v) \rightarrow h_t(u,v) = \sum_{i=1}^{|V|} e^{-\lambda_i t} \varphi_i(u) \varphi_i^T(v)$$

$$Q(t) = \sum_{v \in V} \sum_{u \in V} h_t(u, v)$$
 contains rich information about G

 $\sum \sum h_t(u,v)$ is easy for computers,

easy for neurons too \odot

Short time asymptotics of heat content

• McDonald-Meyer have shown (\sim means approximately equal when $t \downarrow 0$)

$$Q_1(t) \sim Q_2(t) \Rightarrow spec(G_1) = spec(G_2)$$

$$Q_1(t) = Q_2(t) \stackrel{?}{\Rightarrow} G_1 = G_2$$

- Relevance:
 - 1. Q(t) is more feasible in hardware structure;
 - 2. Q(t) can be estimated from lazy walk of "pulses";
 - 3. Q(t) classification is instantaneous ($t \downarrow 0$)

Use Lazy Walk to approach diffusion

 Lazy Walk on graph: $M_L = (1 - \alpha)I + \alpha M = (1 - \alpha)I + \alpha AD^{-1}$ • *n* steps in (0, t) with $\alpha = \frac{t}{\pi}$: $M_L^n = [(1 - \alpha)I + \alpha A D^{-1}]^n$ $= [I - \alpha (I - AD^{-1})]^n$ $= [I - \alpha (D - A)D^{-1}]^n$ $= [I - \frac{t}{N}LD^{-1}]^n$ $\rightarrow e^{-tLD^{-1}}$ $= e^{-tL_r}$

Heat Content Estimation

• Due to the diagonalizability of L_r

 $L_r = \Phi_r \Lambda_r \Phi_r^{-1}$ $\Rightarrow e^{-tL_r} = \Phi_r e^{-t\Lambda_r} \Phi_r^{-1}$ $=\sum_{i}e^{-\lambda_{ri}t}\varphi_{ri}\psi_{ri}^{T}$ $e^{-tL_n} = \sum e^{-\lambda_{ni}t} \varphi_{ni} \varphi_{ni}^T$ $L_r = LD^{-1} = D^{\frac{1}{2}}D^{-\frac{1}{2}}LD^{-\frac{1}{2}}D^{-\frac{1}{2}} = D^{\frac{1}{2}}L_r D^{-\frac{1}{2}}$ $\Rightarrow \lambda_{ri} = \lambda_{ni}, \quad \varphi_{ri} = D^{-\frac{1}{2}} \varphi_{ni}$ $\Rightarrow h_{nt}(u,v) = h_{rt}(u,v)(\frac{d_v}{d})^{\frac{1}{2}}$

Connections to system identification

$$\frac{\partial h_t(u,v)}{\partial t} = -Lh_t(u,v) + Bx(t) \qquad \dot{x} = Ax + Bu$$
$$Q(t) = \sum \sum h_t(u,v) \qquad y = Cx$$

- Different plants, similar models;
- Nature prefers linear systems?
 ---- easy to code in DNA....

Thank you